/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.22 by dimitri, Wed Nov 26 20:39:46 2014 UTC revision 1.25 by dimitri, Wed Feb 11 19:30:39 2015 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
 R. Abernathey, D. Ferreira, and A. Klocker, 2014: Diagnostics of eddy  
 mixing in a circumpolar channel. Ocean Modelling, submitted.  
 </li></ul>  
   
 <ul><li>  
2  M. Azaneu, R. Kerr, and M. Mata,  M. Azaneu, R. Kerr, and M. Mata,
3  2014: <a href="http://ecco2.org/manuscripts/2014/Azaneu2014.pdf">  2014: <a href="http://ecco2.org/manuscripts/2014/Azaneu2014.pdf">
4  Assessment of the ECCO2 reanalysis on the representation of Antarctic  Assessment of the ECCO2 reanalysis on the representation of Antarctic
# Line 11  Bottom Water properties.</a> Ocean Sci. Line 6  Bottom Water properties.</a> Ocean Sci.
6  </li></ul>  </li></ul>
7    
8  <ul><li>  <ul><li>
 H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,  
 K. Bowman, and H. Zhang, 2014:  
 <a href="http://ecco2.org/manuscripts/2014/Brix2014.pdf"> Using  
 Green's Functions to initialize and adjust a global, eddying ocean  
 biogeochemistry general circulation model.</a> Ocean Modelling,  
 submitted.  
 </li></ul>  
   
 <ul><li>  
9  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:
10  Low-frequency SST and upper-ocean heat content variability in the North  Low-frequency SST and upper-ocean heat content variability in the North
11  Atlantic. J. Clim., 27, 4996-5018, doi:10.1175/JCLI-D-13-00316.1.  Atlantic. J. Clim., 27, 4996-5018.
 </li></ul>  
   
 <ul><li>  
 M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014: Determining the  
 origins of advective heat transport variability in the North Atlantic. J.  
 Clim., in revision.  
12  </li></ul>  </li></ul>
13    
14  <ul><li>  <ul><li>
# Line 46  global eddy-permitting state estimate. < Line 26  global eddy-permitting state estimate. <
26  </li></ul>  </li></ul>
27    
28  <ul><li>  <ul><li>
29  Dail, H. and C. Wunsch, 2014:  H. Dail and C. Wunsch, 2014: Dynamical Reconstruction of Upper-Ocean
30  Dynamical Reconstruction of Upper-Ocean Conditions in the Last Glacial Maximum Atlantic.  Conditions in the Last Glacial Maximum Atlantic.  J. Clim., 27, 807–823.
 J. Clim., 27(2), 807–823. doi:10.1175/JCLI-D-13-00211.1  
31  </ul></li>  </ul></li>
32    
33  <ul><li>  <ul><li>
34  G. Danabasoglu, et al., 2014: North Atlantic simulations in  G. Danabasoglu, et al., 2014: North Atlantic simulations in Coordinated
35  Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part  Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean
36  I: Mean states. Ocean Modelling, 73, 76-107, doi:10.1016/j.ocemod.2013.10.005.  states. Ocean Modelling, 73, 76-107.
37  </li></ul>  </li></ul>
38    
39  <ul><li>  <ul><li>
40  Danabasoglu, G., R. Curry, P. Heimbach, Y. Kushnir, C. Meinen, R. Msadek, M. Patterson, L. Thompson, S. Yeager, and R. Zhang, 2014:  G. Danabasoglu, R. Curry, P. Heimbach, Y. Kushnir, C. Meinen, R. Msadek,
41  2013 US AMOC Science Team Annual Report on Progress and Priorities. 162 pp.  M. Patterson, L. Thompson, S. Yeager, and R. Zhang, 2014: 2013 US AMOC Science
42  <a href="https://usclivar.org/sites/default/files/amoc/2014/USAMOC_2013AnnualReport_final.pdf">US CLIVAR Report 2014-4</a>, US CLIVAR Project Office, Washington D.C., 20006.  Team Annual Report on Progress and Priorities. 162 pp. <a
43    href="https://usclivar.org/sites/default/files/amoc/2014/USAMOC_2013AnnualReport_final.pdf">
44    US CLIVAR Report 2014-4</a>, US CLIVAR Project Office, Washington D.C., 20006.
45  </ul></li>  </ul></li>
46    
47  <ul><li>  <ul><li>
48  Dansereau, V., P. Heimbach, and M. Losch, 2014:  V. Dansereau, P. Heimbach, and M. Losch, 2014: Simulation of sub-ice shelf
49  Simulation of sub-ice shelf melt rates in a general circulation model: velocity-dependent transfer and the role of friction.  melt rates in a general circulation model: velocity-dependent transfer and the
50  J. Geophys. Res., 119(3), 1765-1790, doi:10.1002/2013JC008846.  role of friction.  J. Geophys. Res., 119, 1765-1790.
51  </ul></li>  </ul></li>
52    
53  <ul><li>  <ul><li>
# Line 85  Deep-Sea Res. I, 86, 1-20. Line 66  Deep-Sea Res. I, 86, 1-20.
66  </li></ul>  </li></ul>
67    
68  <ul><li>  <ul><li>
69  M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2014:  P. Heimbach, F. Straneo, O. Sergienko, and G. Hamilton, 2014:
 <a href="http://ecco2.org/manuscripts/2014/Flexas2014.pdf">  
 Role of tides on the formation of the Antarctic Slope Front at the  
 Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  
 </li></ul>  
   
 <ul><li>  
 Forget, G. and R.M. Ponte, 2014: The partition of regional sea level variability.  
 Prog. Oceanogr., submitted.  
 </ul></li>  
   
 <ul><li>  
 D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2014:  
 Quantifying the processes controlling intraseasonal mixed-layer  
 temperature variability in the tropical Indian  
 Ocean. J. Geophys. Res., in press.  
 </li></ul>  
   
 <ul><li>  
 D. Halpern, D. Menemenlis, and X. Wang,  
 2014: <a href="http://ecco2.org/manuscripts/2014/Halpern2014.pdf">  
 Impact of data assimilation on ECCO2 Equatorial Undercurrent and North  
 Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean  
 Tech., in press.  
 </li></ul>  
   
 <ul><li>  
 Heimbach, P., F. Straneo, O. Sergienko, and G. Hamilton, 2014:  
70  International workshop on understanding the response of Greenlands marine-terminating glaciers to oceanic and atmospheric forcing: Challenges to improving observations, process understanding and modeling. June 4-7, 2013, Beverly, MA, USA.  International workshop on understanding the response of Greenlands marine-terminating glaciers to oceanic and atmospheric forcing: Challenges to improving observations, process understanding and modeling. June 4-7, 2013, Beverly, MA, USA.
71  <a href="http://www.usclivar.org/sites/default/files/documents/2014/2013GRISOWorkshopReport_v2_0.pdf">US CLIVAR Report 2014-1</a>, US CLIVAR Project Office, Washington DC, 20006.  <a href="http://www.usclivar.org/sites/default/files/documents/2014/2013GRISOWorkshopReport_v2_0.pdf">US CLIVAR Report 2014-1</a>, US CLIVAR Project Office, Washington DC, 20006.
72  </ul></li>  </ul></li>
# Line 120  International workshop on understanding Line 74  International workshop on understanding
74  <ul><li>  <ul><li>
75  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
76  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
77  (Special Section on Planet Earth and Big Data), 36(5), S267–S295, doi:10.1137/130925311.  (Special Section on Planet Earth and Big Data), 36, S267–S295.
78  </li></ul>  </li></ul>
79    
80  <ul><li>  <ul><li>
 Liang, X., C. Wunsch, P. Heimbach, and G. Forget, 2014:  
 Vertical redistribution of oceanic heat. Submitted.  
 </ul></li>  
   
 <ul><li>  
81  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,
82  J. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,  G. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,
83  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">
84  Carbon monitoring system flux estimation and attribution: Impact of  Carbon monitoring system flux estimation and attribution: Impact of
85  ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric  ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric
# Line 146  model.</a> J. Mar. Syst., 129, 437-451. Line 95  model.</a> J. Mar. Syst., 129, 437-451.
95  </li></ul>  </li></ul>
96    
97  <ul><li>  <ul><li>
 L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,  
 C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,  
 2014: Quantifying the observability of CO2 flux uncertainty in  
 atmospheric CO2 records using products from NASA's Carbon Monitoring  
 Flux Pilot Project. J. Geophys. Res., submitted.  
 </li></ul>  
   
 <ul><li>  
 C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2014: Vertical  
 structure  of ocean pressure fluctuations with application  
 to satellite-gravimetric observations. J. Atmos. Oce. Tech., in revision.  
 </li></ul>  
   
 <ul><li>  
98  C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea  C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
99  level change.  J. Clim., 27, 824-834.  level change.  J. Clim., 27, 824-834.
100  </li></ul>  </li></ul>
# Line 171  in the Australian-Antarctic and Bellings Line 106  in the Australian-Antarctic and Bellings
106  </li></ul>  </li></ul>
107    
108  <ul><li>  <ul><li>
109  Sciascia, R., C. Cenedese, D. Nicoli, P. Heimbach, and F. Straneo, 2014:  R. Sciascia, C. Cenedese, D. Nicoli, P. Heimbach, and F. Straneo, 2014: Impact
110  Impact of periodic intermediary flows on submarine melting of a Greenland glacier.  of periodic intermediary flows on submarine melting of a Greenland glacier.
111  J. Geophys. Res., 119(10), 7078-7098, doi:10.1002/2014JC009953.  J. Geophys. Res., 119, 7078-7098.
112  </ul></li>  </ul></li>
113    
114  <ul><li>  <ul><li>
# Line 186  to climate forcing for the next 50 years Line 121  to climate forcing for the next 50 years
121  </li></ul>  </li></ul>
122    
123  <ul><li>  <ul><li>
 G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2014: Sea ice  
 deformation in a coupled ocean-sea ice model and in satellite remote  
 sensing data. J. Geophys. Res., submitted.  
 </li></ul>  
   
 <ul><li>  
124  N. Vinogradova,  R. Ponte, I. Fukumori, and O. Wang, 2014:  N. Vinogradova,  R. Ponte, I. Fukumori, and O. Wang, 2014:
125  Estimating satellite salinity errors for assimilation of Aquarius and SMOS  Estimating satellite salinity errors for assimilation of Aquarius and SMOS
126  data into climate models. J. Geophys. Res., 119.  data into climate models. J. Geophys. Res., 119.
127  </li></ul>  </li></ul>
128    
129  <ul><li>  <ul><li>
 N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,  
 and J. Davis, 2014: Dynamic adjustment of the ocean circulation to  
 self-attraction and loading effects, J. Phys. Oceanogr., in revision.  
 </li></ul>  
   
 <ul><li>  
130  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
131  ocean variability, J. Phys. Oceanogr., 44, 944-966, doi:10.1175/JPO-D-13-0113.1.  ocean variability, J. Phys. Oceanogr., 44, 944-966.
132  </li></ul>  </li></ul>
133    
134  <ul><li>  <ul><li>
135  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
136  Abyssal Ocean. J. Phys. Oceanogr., 44(8), 2013-2030, doi:10.1175/JPO-D-13-096.1.  Abyssal Ocean. J. Phys. Oceanogr., 44, 2013-2030.
 </li></ul>  
   
 <ul><li>  
 S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and  
 I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent  
 vertical mixing using seasonally averaged observations from the  
 TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.  
 </li></ul>  
   
 <ul><li>  
 V. Zemskova, B. White, and A. Scotti, 2014: Available potential energy  
 and the general circulation: Partitioning wind, buoyancy forcing, and  
 irreversible mixing. J. Phys. Oceanogr., submitted.  
137  </li></ul>  </li></ul>

Legend:
Removed from v.1.22  
changed lines
  Added in v.1.25

  ViewVC Help
Powered by ViewVC 1.1.22