/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.16 by dimitri, Mon Nov 3 18:11:29 2014 UTC revision 1.24 by dimitri, Mon Jan 12 19:33:18 2015 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2  R. Abernathey, D. Ferreira, and A. Klocker, 2014: Diagnostics of eddy  M. Azaneu, R. Kerr, and M. Mata,
3  mixing in a circumpolar channel. Ocean Modelling, submitted.  2014: <a href="http://ecco2.org/manuscripts/2014/Azaneu2014.pdf">
4  </li></ul>  Assessment of the ECCO2 reanalysis on the representation of Antarctic
5    Bottom Water properties.</a> Ocean Sci. Discuss., 11, 1023-1091.
 <ul><li>  
 H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,  
 K. Bowman, and H. Zhang, 2014:  
 <a href="http://ecco2.org/manuscripts/2014/Brix2014.pdf"> Using  
 Green's Functions to initialize and adjust a global, eddying ocean  
 biogeochemistry general circulation model.</a> Ocean Modelling,  
 submitted.  
6  </li></ul>  </li></ul>
7    
8  <ul><li>  <ul><li>
9  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:
10  Low-frequency SST and upper-ocean heat content variability in the North  Low-frequency SST and upper-ocean heat content variability in the North
11  Atlantic. J. Clim., in revision.  Atlantic. J. Clim., 27, 4996-5018.
12  </li></ul>  </li></ul>
13    
14  <ul><li>  <ul><li>
15  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
16  atmospheric reanalysis products for the Arctic Ocean and implications  atmospheric reanalysis products for the Arctic Ocean and implications
17  for uncertainties in air-sea fluxes, Journal of Climate, in revision.  for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.
18  </li></ul>  </li></ul>
19    
20  <ul><li>  <ul><li>
21  G. Danabasoglu, et al., 2014: North Atlantic simulations in  R. Chen, G. Flerl, and C. Wunsch, 2014:
22  Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part  <a href="http://ecco2.org/manuscripts/2014/Chen2014.pdf"> A
23  I: Mean states. Ocean Modelling, 73, 76-107.  description of local and nonlocal eddy-mean flow interaction in a
24    global eddy-permitting state estimate. </a> J. Phys. Oceanogr., 44,
25    2336-2352.
26    </li></ul>
27    
28    <ul><li>
29    H. Dail and C. Wunsch, 2014: Dynamical Reconstruction of Upper-Ocean
30    Conditions in the Last Glacial Maximum Atlantic.  J. Clim., 27, 807–823.
31    </ul></li>
32    
33    <ul><li>
34    G. Danabasoglu, et al., 2014: North Atlantic simulations in Coordinated
35    Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean
36    states. Ocean Modelling, 73, 76-107.
37  </li></ul>  </li></ul>
38    
39  <ul><li>  <ul><li>
40    G. Danabasoglu, R. Curry, P. Heimbach, Y. Kushnir, C. Meinen, R. Msadek,
41    M. Patterson, L. Thompson, S. Yeager, and R. Zhang, 2014: 2013 US AMOC Science
42    Team Annual Report on Progress and Priorities. 162 pp. <a
43    href="https://usclivar.org/sites/default/files/amoc/2014/USAMOC_2013AnnualReport_final.pdf">
44    US CLIVAR Report 2014-4</a>, US CLIVAR Project Office, Washington D.C., 20006.
45    </ul></li>
46    
47    <ul><li>
48    V. Dansereau, P. Heimbach, and M. Losch, 2014: Simulation of sub-ice shelf
49    melt rates in a general circulation model: velocity-dependent transfer and the
50    role of friction.  J. Geophys. Res., 119, 1765-1790.
51    </ul></li>
52    
53    <ul><li>
54  B. Dushaw, 2014:  B. Dushaw, 2014:
55  <a href="http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4881928?aemail=author">  <a href="http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4881928?aemail=author">
56  Assessing the horizontal refraction of ocean acoustic tomography  Assessing the horizontal refraction of ocean acoustic tomography
# Line 46  Deep-Sea Res. I, 86, 1-20. Line 66  Deep-Sea Res. I, 86, 1-20.
66  </li></ul>  </li></ul>
67    
68  <ul><li>  <ul><li>
69  M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2014:  P. Heimbach, F. Straneo, O. Sergienko, and G. Hamilton, 2014:
70  <a href="http://ecco2.org/manuscripts/2014/Flexas2014.pdf">  International workshop on understanding the response of Greenlands marine-terminating glaciers to oceanic and atmospheric forcing: Challenges to improving observations, process understanding and modeling. June 4-7, 2013, Beverly, MA, USA.
71  Role of tides on the formation of the Antarctic Slope Front at the  <a href="http://www.usclivar.org/sites/default/files/documents/2014/2013GRISOWorkshopReport_v2_0.pdf">US CLIVAR Report 2014-1</a>, US CLIVAR Project Office, Washington DC, 20006.
72  Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  </ul></li>
 </li></ul>  
   
 <ul><li>  
 D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2014:  
 Quantifying the processes controlling intraseasonal mixed-layer  
 temperature variability in the tropical Indian  
 Ocean. J. Geophys. Res., revised.  
 </li></ul>  
   
 <ul><li>  
 D. Halpern, D. Menemenlis, and X. Wang,  
 2014: <a href="http://ecco2.org/manuscripts/2014/Halpern2014.pdf">  
 Impact of data assimilation on ECCO2 Equatorial Undercurrent and North  
 Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean  
 Tech., in press.  
 </li></ul>  
73    
74  <ul><li>  <ul><li>
75  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
76  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
77  (Special Section on Planet Earth and Big Data), submitted.  (Special Section on Planet Earth and Big Data), 36, S267–S295.
78  </li></ul>  </li></ul>
79    
80  <ul><li>  <ul><li>
# Line 91  model.</a> J. Mar. Syst., 129, 437-451. Line 95  model.</a> J. Mar. Syst., 129, 437-451.
95  </li></ul>  </li></ul>
96    
97  <ul><li>  <ul><li>
98  L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,  C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
99  C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,  level change.  J. Clim., 27, 824-834.
 2014: Quantifying the observability of CO2 flux uncertainty in  
 atmospheric CO2 records using products from NASA's Carbon Monitoring  
 Flux Pilot Project. J. Geophys. Res., submitted.  
100  </li></ul>  </li></ul>
101    
102  <ul><li>  <ul><li>
103  C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea  R. Ponte, and C. Piecuch, 2014: Interannual bottom pressure signals
104  level change.  J. Clim., in press.  in the Australian-Antarctic and Bellingshausen Basins. J. Phys. Oceanogr.,
105    44, 1456-1465.
106  </li></ul>  </li></ul>
107    
108  <ul><li>  <ul><li>
109  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2014: Sea ice  R. Sciascia, C. Cenedese, D. Nicoli, P. Heimbach, and F. Straneo, 2014: Impact
110  deformation in a coupled ocean-sea ice model and in satellite remote  of periodic intermediary flows on submarine melting of a Greenland glacier.
111  sensing data. J. Geophys. Res., submitted.  J. Geophys. Res., 119, 7078-7098.
112  </li></ul>  </ul></li>
113    
114  <ul><li>  <ul><li>
115  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of  H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,
116  ocean variability, J. Phys. Oceanogr., 44, 944-966.  M. Schodlok, and A. Khazendar,
117    2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">
118    Sensitivity of the dynamics of Pine Island Glacier, West Antarctica,
119    to climate forcing for the next 50 years.</a> The Cryosphere, 8,
120    1699-1710.
121  </li></ul>  </li></ul>
122    
123  <ul><li>  <ul><li>
124  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the  N. Vinogradova,  R. Ponte, I. Fukumori, and O. Wang, 2014:
125  Abyssal Ocean. J. Phys. Oceanogr., in press.  Estimating satellite salinity errors for assimilation of Aquarius and SMOS
126    data into climate models. J. Geophys. Res., 119.
127  </li></ul>  </li></ul>
128    
129  <ul><li>  <ul><li>
130  S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
131  I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent  ocean variability, J. Phys. Oceanogr., 44, 944-966.
 vertical mixing using seasonally averaged observations from the  
 TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.  
132  </li></ul>  </li></ul>
133    
134  <ul><li>  <ul><li>
135  V. Zemskova, B. White, and A. Scotti, 2014: Available potential energy  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
136  and the general circulation: Partitioning wind, buoyancy forcing, and  Abyssal Ocean. J. Phys. Oceanogr., 44, 2013-2030.
 irreversible mixing. J. Phys. Oceanogr., submitted.  
137  </li></ul>  </li></ul>

Legend:
Removed from v.1.16  
changed lines
  Added in v.1.24

  ViewVC Help
Powered by ViewVC 1.1.22