/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.8 by dimitri, Tue Feb 4 14:12:04 2014 UTC revision 1.21 by heimbach, Tue Nov 25 01:59:17 2014 UTC
# Line 4  mixing in a circumpolar channel. Ocean M Line 4  mixing in a circumpolar channel. Ocean M
4  </li></ul>  </li></ul>
5    
6  <ul><li>  <ul><li>
7  H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang, K. Bowman,  M. Azaneu, R. Kerr, and M. Mata,
8  and H. Zhang, 2014: Using Green's Functions to initialize and adjust a global,  2014: <a href="http://ecco2.org/manuscripts/2014/Azaneu2014.pdf">
9  eddying ocean biogeochemistry general circulation model. Ocean Modelling,  Assessment of the ECCO2 reanalysis on the representation of Antarctic
10    Bottom Water properties.</a> Ocean Sci. Discuss., 11, 1023-1091.
11    </li></ul>
12    
13    <ul><li>
14    H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,
15    K. Bowman, and H. Zhang, 2014:
16    <a href="http://ecco2.org/manuscripts/2014/Brix2014.pdf"> Using
17    Green's Functions to initialize and adjust a global, eddying ocean
18    biogeochemistry general circulation model.</a> Ocean Modelling,
19  submitted.  submitted.
20  </li></ul>  </li></ul>
21    
22  <ul><li>  <ul><li>
23  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:
24  Low-frequency SST and upper-ocean heat content variability in the North  Low-frequency SST and upper-ocean heat content variability in the North
25  Atlantic. J. Clim., in revision.  Atlantic. J. Clim., 27, 4996-5018, doi:10.1175/JCLI-D-13-00316.1.
26  </li></ul>  </li></ul>
27    
28  <ul><li>  <ul><li>
29  Chaudhuri, A. H., R. M. Ponte, and A. T. Nguyen, 2014: A comparison of atmospheric reanalysis products for the Arctic Ocean and implications for uncertainties in air-sea fluxes, Journal of Climate, in revision.  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014: Determining the
30    origins of advective heat transport variability in the North Atlantic. J.
31    Clim., in revision.
32  </li></ul>  </li></ul>
33    
34  <ul><li>  <ul><li>
35  Danabasoglu, G., et al., 2014: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean states. Ocean Modelling, 73, 76-107, doi:10.1016/j.ocemod.2013.10.005.  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
36    atmospheric reanalysis products for the Arctic Ocean and implications
37    for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.
38  </li></ul>  </li></ul>
39    
40  <ul><li>  <ul><li>
41  Dansereau, V., P. Heimbach, and M. Losch, 2014: Simulation of sub-ice shelf melt rates in a general circulation model: velocity-dependent transfer and the role of friction. J. Geophys. Res., accepted.  R. Chen, G. Flerl, and C. Wunsch, 2014:
42    <a href="http://ecco2.org/manuscripts/2014/Chen2014.pdf"> A
43    description of local and nonlocal eddy-mean flow interaction in a
44    global eddy-permitting state estimate. </a> J. Phys. Oceanogr., 44,
45    2336-2352.
46    </li></ul>
47    
48    <ul><li>
49    Dail, H. and C. Wunsch, 2014:
50    Dynamical Reconstruction of Upper-Ocean Conditions in the Last Glacial Maximum Atlantic.
51    J. Clim., 27(2), 807–823. doi:10.1175/JCLI-D-13-00211.1
52    </ul></li>
53    
54    <ul><li>
55    G. Danabasoglu, et al., 2014: North Atlantic simulations in
56    Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part
57    I: Mean states. Ocean Modelling, 73, 76-107, doi:10.1016/j.ocemod.2013.10.005.
58    </li></ul>
59    
60    <ul><li>
61    Danabasoglu, G., R. Curry, P. Heimbach, Y. Kushnir, C. Meinen, R. Msadek, M. Patterson, L. Thompson, S. Yeager, and R. Zhang, 2014:
62    2013 US AMOC Science Team Annual Report on Progress and Priorities. 162 pp.
63    <a href="https://usclivar.org/sites/default/files/amoc/2014/USAMOC_2013AnnualReport_final.pdf">US CLIVAR Report 2014-4</a>, US CLIVAR Project Office, Washington D.C., 20006.
64    </ul></li>
65    
66    <ul><li>
67    Dansereau, V., P. Heimbach, and M. Losch, 2014:
68    Simulation of sub-ice shelf melt rates in a general circulation model: velocity-dependent transfer and the role of friction.
69    J. Geophys. Res., 119(3), 1765-1790, doi:10.1002/2013JC008846.
70    </ul></li>
71    
72    <ul><li>
73    B. Dushaw, 2014:
74    <a href="http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4881928?aemail=author">
75    Assessing the horizontal refraction of ocean acoustic tomography
76    signals using high-resolution ocean state estimates.</a>
77    Acoust. Soc. Am., 136, 122.
78  </li></ul>  </li></ul>
79    
80  <ul><li>  <ul><li>
# Line 36  Deep-Sea Res. I, 86, 1-20. Line 85  Deep-Sea Res. I, 86, 1-20.
85  </li></ul>  </li></ul>
86    
87  <ul><li>  <ul><li>
88    M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2014:
89    <a href="http://ecco2.org/manuscripts/2014/Flexas2014.pdf">
90    Role of tides on the formation of the Antarctic Slope Front at the
91    Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.
92    </li></ul>
93    
94    <ul><li>
95    Forget, G. and R.M. Ponte, 2014: The partition of regional sea level variability.
96    Prog. Oceanogr., submitted.
97    </ul></li>
98    
99    <ul><li>
100    D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2014:
101    Quantifying the processes controlling intraseasonal mixed-layer
102    temperature variability in the tropical Indian
103    Ocean. J. Geophys. Res., revised.
104    </li></ul>
105    
106    <ul><li>
107    D. Halpern, D. Menemenlis, and X. Wang,
108    2014: <a href="http://ecco2.org/manuscripts/2014/Halpern2014.pdf">
109    Impact of data assimilation on ECCO2 Equatorial Undercurrent and North
110    Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean
111    Tech., in press.
112    </li></ul>
113    
114    <ul><li>
115    Heimbach, P., F. Straneo, O. Sergienko, and G. Hamilton, 2014:
116    International workshop on understanding the response of Greenlands marine-terminating glaciers to oceanic and atmospheric forcing: Challenges to improving observations, process understanding and modeling. June 4-7, 2013, Beverly, MA, USA.
117    <a href="http://www.usclivar.org/sites/default/files/documents/2014/2013GRISOWorkshopReport_v2_0.pdf">US CLIVAR Report 2014-1</a>, US CLIVAR Project Office, Washington DC, 20006.
118    </ul></li>
119    
120    <ul><li>
121  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
122  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
123  (Special Section on Planet Earth and Big Data), submitted.  (Special Section on Planet Earth and Big Data), 36(5), S267–S295, doi:10.1137/130925311.
124    </li></ul>
125    
126    <ul><li>
127    Liang, X., C. Wunsch, P. Heimbach, and G. Forget, 2014:
128    Vertical redistribution of oceanic heat. Submitted.
129    </ul></li>
130    
131    <ul><li>
132    J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,
133    J. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,
134    2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">
135    Carbon monitoring system flux estimation and attribution: Impact of
136    ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric
137    sources and sinks.</a> Tellus B, 66, 22486.
138  </li></ul>  </li></ul>
139    
140  <ul><li>  <ul><li>
# Line 50  model.</a> J. Mar. Syst., 129, 437-451. Line 146  model.</a> J. Mar. Syst., 129, 437-451.
146  </li></ul>  </li></ul>
147    
148  <ul><li>  <ul><li>
149  M. Morlighem, E. Rignot, J. Mouginot, X. Wu, H. Seroussi, E. Larour, and  L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,
150  J. Paden, 2014: Bed topography of Russell Glacier, Greenland, inferred from  C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,
151  mass conservation using Operation IceBridge data. J. Glaciol., submitted.  2014: Quantifying the observability of CO2 flux uncertainty in
152    atmospheric CO2 records using products from NASA's Carbon Monitoring
153    Flux Pilot Project. J. Geophys. Res., submitted.
154    </li></ul>
155    
156    <ul><li>
157    C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2014: Vertical
158    structure  of ocean pressure fluctuations with application
159    to satellite-gravimetric observations. J. Atmos. Oce. Tech., in revision.
160    </li></ul>
161    
162    <ul><li>
163    C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
164    level change.  J. Clim., 27, 824-834.
165  </li></ul>  </li></ul>
166    
167  <ul><li>  <ul><li>
168  M. Morlighem, H. Seroussi, E. Larour and E. Rignot, 2014: Inversion of basal  R. Ponte, and C. Piecuch, 2014: Interannual bottom pressure signals
169  friction in Antarctica using exact and incomplete adjoints of a higher-order  in the Australian-Antarctic and Bellingshausen Basins. J. Phys. Oceanogr.,
170  model, J. Geophys. Res., submitted.  44, 1456-1465.
171  </li></ul>  </li></ul>
172    
173  <ul><li>  <ul><li>
174  Piecuch, C. G., and R. M. Ponte, 2014:  Mechanisms of global mean steric sea level change.  J. Clim., in press.  Sciascia, R., C. Cenedese, D. Nicoli, P. Heimbach, and F. Straneo, 2014:
175    Impact of periodic intermediary flows on submarine melting of a Greenland glacier.
176    J. Geophys. Res., 119(10), 7078-7098, doi:10.1002/2014JC009953.
177    </ul></li>
178    
179    <ul><li>
180    H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,
181    M. Schodlok, and A. Khazendar,
182    2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">
183    Sensitivity of the dynamics of Pine Island Glacier, West Antarctica,
184    to climate forcing for the next 50 years.</a> The Cryosphere, 8,
185    1699-1710.
186  </li></ul>  </li></ul>
187    
188  <ul><li>  <ul><li>
# Line 72  sensing data. J. Geophys. Res., submitte Line 192  sensing data. J. Geophys. Res., submitte
192  </li></ul>  </li></ul>
193    
194  <ul><li>  <ul><li>
195    N. Vinogradova,  R. Ponte, I. Fukumori, and O. Wang, 2014:
196    Estimating satellite salinity errors for assimilation of Aquarius and SMOS
197    data into climate models. J. Geophys. Res., 119.
198    </li></ul>
199    
200    <ul><li>
201    N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,
202    and J. Davis, 2014: Dynamic adjustment of the ocean circulation to
203    self-attraction and loading effects, J. Phys. Oceanogr., in revision.
204    </li></ul>
205    
206    <ul><li>
207  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
208  ocean variability, submitted.  ocean variability, J. Phys. Oceanogr., 44, 944-966, doi:10.1175/JPO-D-13-0113.1.
209  </li></ul>  </li></ul>
210    
211  <ul><li>  <ul><li>
212  Wunsch, C., G. Forget, and P. Heimbach, 2013: Bidecadal Thermal Changes in the Abyssal Ocean. J. Phys. Oceanogr., submitted.  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
213    Abyssal Ocean. J. Phys. Oceanogr., 44(8), 2013-2030, doi:10.1175/JPO-D-13-096.1.
214  </li></ul>  </li></ul>
215    
216  <ul><li>  <ul><li>
217  Zedler, S., C.S. Jackson, F. Yao, P. Heimbach, A. Koehl, R.B. Scott, and I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent vertical mixing using seasonally averaged observations from the TOGA/TAO array from 2004 to 2007. Ocean Modelling., submitted.  S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and
218    I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent
219    vertical mixing using seasonally averaged observations from the
220    TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.
221  </li></ul>  </li></ul>
222    
223    <ul><li>
224    V. Zemskova, B. White, and A. Scotti, 2014: Available potential energy
225    and the general circulation: Partitioning wind, buoyancy forcing, and
226    irreversible mixing. J. Phys. Oceanogr., submitted.
227    </li></ul>

Legend:
Removed from v.1.8  
changed lines
  Added in v.1.21

  ViewVC Help
Powered by ViewVC 1.1.22