/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.12 by dimitri, Wed Jun 4 08:12:48 2014 UTC revision 1.28 by dimitri, Fri Jul 8 23:25:29 2016 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2  R. Abernathey, D. Ferreira, and A. Klocker, 2014: Diagnostics of eddy  M. Azaneu, R. Kerr, and M. Mata,
3  mixing in a circumpolar channel. Ocean Modelling, submitted.  2014: <a href="http://www.ocean-sci.net/10/923/2014/os-10-923-2014.html">
4    Assessment of the representation of Antarctic Bottom Water properties in the
5    ECCO2 reanalysis.</a> Ocean Sci., 10, 923-946.
6  </li></ul>  </li></ul>
7    
8  <ul><li>  <ul><li>
9  H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang, K. Bowman,  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:
10  and H. Zhang, 2014: Using Green's Functions to initialize and adjust a global,  Low-frequency SST and upper-ocean heat content variability in the North
11  eddying ocean biogeochemistry general circulation model. Ocean Modelling,  Atlantic. J. Clim., 27, 4996-5018.
 submitted.  
12  </li></ul>  </li></ul>
13    
14  <ul><li>  <ul><li>
15  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
16  Low-frequency SST and upper-ocean heat content variability in the North  atmospheric reanalysis products for the Arctic Ocean and implications
17  Atlantic. J. Clim., in revision.  for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.
18    </li></ul>
19    
20    <ul><li>
21    R. Chen, G. Flerl, and C. Wunsch, 2014:
22    <a href="http://ecco2.org/manuscripts/2014/Chen2014.pdf"> A
23    description of local and nonlocal eddy-mean flow interaction in a
24    global eddy-permitting state estimate. </a> J. Phys. Oceanogr., 44,
25    2336-2352.
26    </li></ul>
27    
28    <ul><li>
29    K. Childers, 2014:
30    <a href="http://ecco2.org/manuscripts/2015/Childers2014.pdf">
31    Circulation and Transport Across the Iceland Faroes Shetland Ridge.</a>
32    Ph.D. Thesis, Marine and Atmospheric Science, Stony Brook University, NY.
33  </li></ul>  </li></ul>
34    
35  <ul><li>  <ul><li>
36  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of atmospheric reanalysis products for the Arctic Ocean and implications for uncertainties in air-sea fluxes, Journal of Climate, in revision.  H. Dail and C. Wunsch, 2014: Dynamical Reconstruction of Upper-Ocean
37    Conditions in the Last Glacial Maximum Atlantic.  J. Clim., 27, 807–823.
38    </ul></li>
39    
40    <ul><li>
41    G. Danabasoglu, et al., 2014: North Atlantic simulations in Coordinated
42    Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean
43    states. Ocean Modelling, 73, 76-107.
44  </li></ul>  </li></ul>
45    
46  <ul><li>  <ul><li>
47  G. Danabasoglu, et al., 2014: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean states. Ocean Modelling, 73, 76-107.  G. Danabasoglu, R. Curry, P. Heimbach, Y. Kushnir, C. Meinen, R. Msadek,
48    M. Patterson, L. Thompson, S. Yeager, and R. Zhang, 2014: 2013 US AMOC Science
49    Team Annual Report on Progress and Priorities. 162 pp. <a
50    href="https://usclivar.org/sites/default/files/amoc/2014/USAMOC_2013AnnualReport_final.pdf">
51    US CLIVAR Report 2014-4</a>, US CLIVAR Project Office, Washington D.C., 20006.
52    </ul></li>
53    
54    <ul><li>
55    V. Dansereau, P. Heimbach, and M. Losch, 2014: Simulation of sub-ice shelf
56    melt rates in a general circulation model: velocity-dependent transfer and the
57    role of friction.  J. Geophys. Res., 119, 1765-1790.
58    </ul></li>
59    
60    <ul><li>
61    T. Dotto, R. Kerr, M. Mata, M. Azaneu, I. Wainer, E. Fahrbach, and G. Rohardt,
62    2014: <a href="http://www.ocean-sci.net/10/523/2014/os-10-523-2014.html">
63    Assessment of the structure and variability of Weddell Sea water masses in
64    distinct ocean reanalysis products.</a> Ocean Sci., 10, 523-546.
65  </li></ul>  </li></ul>
66    
67  <ul><li>  <ul><li>
68  B. Dushaw, 2014: Assessing the horizontal refraction of ocean acoustic  B. Dushaw, 2014:
69  tomography signals using high-resolution ocean state  <a href="http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4881928?aemail=author">
70  estimates. . Acoust. Soc. Am., 136, in press.  Assessing the horizontal refraction of ocean acoustic tomography
71    signals using high-resolution ocean state estimates.</a>
72    Acoust. Soc. Am., 136, 122.
73  </li></ul>  </li></ul>
74    
75  <ul><li>  <ul><li>
# Line 38  Deep-Sea Res. I, 86, 1-20. Line 80  Deep-Sea Res. I, 86, 1-20.
80  </li></ul>  </li></ul>
81    
82  <ul><li>  <ul><li>
83    S. Gao, T. Qu, and X. Nie, 2014: Mixed layer salinity budget in the tropical
84    Pacific Ocean estimated by a global GCM. J. Geophys. Res., 119, 8255-8270.
85    </li></ul>
86    
87    <ul><li>
88    P. Heimbach, F. Straneo, O. Sergienko, and G. Hamilton, 2014:
89    International workshop on understanding the response of Greenlands marine-terminating glaciers to oceanic and atmospheric forcing: Challenges to improving observations, process understanding and modeling. June 4-7, 2013, Beverly, MA, USA.
90    <a href="http://www.usclivar.org/sites/default/files/documents/2014/2013GRISOWorkshopReport_v2_0.pdf">US CLIVAR Report 2014-1</a>, US CLIVAR Project Office, Washington DC, 20006.
91    </ul></li>
92    
93    <ul><li>
94  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
95  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
96  (Special Section on Planet Earth and Big Data), submitted.  (Special Section on Planet Earth and Big Data), 36, S267–S295.
97  </li></ul>  </li></ul>
98    
99  <ul><li>  <ul><li>
100  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,
101  J. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,  G. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,
102  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">
103  Carbon monitoring system flux estimation and attribution: Impact of  Carbon monitoring system flux estimation and attribution: Impact of
104  ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric  ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric
# Line 61  model.</a> J. Mar. Syst., 129, 437-451. Line 114  model.</a> J. Mar. Syst., 129, 437-451.
114  </li></ul>  </li></ul>
115    
116  <ul><li>  <ul><li>
117  C. Piecuch and R. Ponte, 2014:  Mechanisms of global mean steric sea level change.  J. Clim., in press.  C. Piecuch, I. Fukumori, R. Ponte and O. Wang, 2014: Vertical Structure of
118    Ocean Pressure Variations with Application to Satellite-Gravimetric
119    Observations. Journal of Atmospheric and Oceanic Technology, 32, 603-613.
120  </li></ul>  </li></ul>
121    
122  <ul><li>  <ul><li>
123  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2014: Sea ice  C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
124  deformation in a coupled ocean-sea ice model and in satellite remote  level change.  J. Clim., 27, 824-834.
 sensing data. J. Geophys. Res., submitted.  
125  </li></ul>  </li></ul>
126    
127  <ul><li>  <ul><li>
128  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of  R. Ponte, and C. Piecuch, 2014: Interannual bottom pressure signals
129  ocean variability, J. Phys. Oceanogr., 44, 944-966.  in the Australian-Antarctic and Bellingshausen Basins. J. Phys. Oceanogr.,
130    44, 1456-1465.
131  </li></ul>  </li></ul>
132    
133  <ul><li>  <ul><li>
134  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the Abyssal Ocean. J. Phys. Oceanogr., in press.  R. Sciascia, C. Cenedese, D. Nicoli, P. Heimbach, and F. Straneo, 2014: Impact
135    of periodic intermediary flows on submarine melting of a Greenland glacier.
136    J. Geophys. Res., 119, 7078-7098.
137    </ul></li>
138    
139    <ul><li>
140    H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,
141    M. Schodlok, and A. Khazendar,
142    2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">
143    Sensitivity of the dynamics of Pine Island Glacier, West Antarctica,
144    to climate forcing for the next 50 years.</a> The Cryosphere, 8,
145    1699-1710.
146  </li></ul>  </li></ul>
147    
148  <ul><li>  <ul><li>
149  S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent vertical mixing using seasonally averaged observations from the TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.  S. Tett, T. Sherwin, A. Shravat, and O. Browne, 2014: How Much Has the North
150    Atlantic Ocean Overturning Circulation Changed in the Last 50 Years? Journal
151    of Climate, 27, 6325-6342.
152    </ul></li>
153    
154    <ul><li>
155    N. Vinogradova,  R. Ponte, I. Fukumori, and O. Wang, 2014:
156    Estimating satellite salinity errors for assimilation of Aquarius and SMOS
157    data into climate models. J. Geophys. Res., 119, 4732-4744.
158    </li></ul>
159    
160    <ul><li>
161    B. Webber, A. Matthews, K. Heywood, J. Kaiser and S. Schmidtko, 2014:
162    Seaglider observations of equatorial Indian Ocean Rossby waves associated with
163    the Madden-Julian Oscillation. J. Geophys. Res., 119, 3714-3731.
164    </li></ul>
165    
166    <ul><li>
167    C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
168    ocean variability, J. Phys. Oceanogr., 44, 944-966.
169  </li></ul>  </li></ul>
170    
171  <ul><li>  <ul><li>
172  V. Zemskova, B. White, and A. Scotti, 2014: Available potential energy  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
173  and the general circulation: Partitioning wind, buoyancy forcing, and  Abyssal Ocean. J. Phys. Oceanogr., 44, 2013-2030.
 irreversible mixing. J. Phys. Oceanogr., submitted.  
174  </li></ul>  </li></ul>

Legend:
Removed from v.1.12  
changed lines
  Added in v.1.28

  ViewVC Help
Powered by ViewVC 1.1.22