/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.12 by dimitri, Wed Jun 4 08:12:48 2014 UTC revision 1.20 by heimbach, Mon Nov 24 20:02:20 2014 UTC
# Line 4  mixing in a circumpolar channel. Ocean M Line 4  mixing in a circumpolar channel. Ocean M
4  </li></ul>  </li></ul>
5    
6  <ul><li>  <ul><li>
7  H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang, K. Bowman,  M. Azaneu, R. Kerr, and M. Mata,
8  and H. Zhang, 2014: Using Green's Functions to initialize and adjust a global,  2014: <a href="http://ecco2.org/manuscripts/2014/Azaneu2014.pdf">
9  eddying ocean biogeochemistry general circulation model. Ocean Modelling,  Assessment of the ECCO2 reanalysis on the representation of Antarctic
10    Bottom Water properties.</a> Ocean Sci. Discuss., 11, 1023-1091.
11    </li></ul>
12    
13    <ul><li>
14    H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,
15    K. Bowman, and H. Zhang, 2014:
16    <a href="http://ecco2.org/manuscripts/2014/Brix2014.pdf"> Using
17    Green's Functions to initialize and adjust a global, eddying ocean
18    biogeochemistry general circulation model.</a> Ocean Modelling,
19  submitted.  submitted.
20  </li></ul>  </li></ul>
21    
22  <ul><li>  <ul><li>
23    Buckley, M., R.M. Ponte, G. Forget, and P. Heimbach, 2014:
24    Determining the origins of advective heat transport variability in the North Atlantic.
25    J. Clim., submitted.
26    </li></ul>
27    
28    <ul><li>
29  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:
30  Low-frequency SST and upper-ocean heat content variability in the North  Low-frequency SST and upper-ocean heat content variability in the North
31  Atlantic. J. Clim., in revision.  Atlantic. J. Clim., 27, 4996-5018, doi:10.1175/JCLI-D-13-00316.1.
32    </li></ul>
33    
34    <ul><li>
35    M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014: Determining the
36    origins of advective heat transport variability in the North Atlantic. J.
37    Clim., in revision.
38  </li></ul>  </li></ul>
39    
40  <ul><li>  <ul><li>
41  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of atmospheric reanalysis products for the Arctic Ocean and implications for uncertainties in air-sea fluxes, Journal of Climate, in revision.  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
42    atmospheric reanalysis products for the Arctic Ocean and implications
43    for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.
44  </li></ul>  </li></ul>
45    
46  <ul><li>  <ul><li>
47  G. Danabasoglu, et al., 2014: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean states. Ocean Modelling, 73, 76-107.  R. Chen, G. Flerl, and C. Wunsch, 2014:
48    <a href="http://ecco2.org/manuscripts/2014/Chen2014.pdf"> A
49    description of local and nonlocal eddy-mean flow interaction in a
50    global eddy-permitting state estimate. </a> J. Phys. Oceanogr., 44,
51    2336-2352.
52  </li></ul>  </li></ul>
53    
54  <ul><li>  <ul><li>
55  B. Dushaw, 2014: Assessing the horizontal refraction of ocean acoustic  Dail, H. and C. Wunsch, 2014:
56  tomography signals using high-resolution ocean state  Dynamical Reconstruction of Upper-Ocean Conditions in the Last Glacial Maximum Atlantic.
57  estimates. . Acoust. Soc. Am., 136, in press.  J. Clim., 27(2), 807–823. doi:10.1175/JCLI-D-13-00211.1
58    </ul></li>
59    
60    <ul><li>
61    G. Danabasoglu, et al., 2014: North Atlantic simulations in
62    Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part
63    I: Mean states. Ocean Modelling, 73, 76-107, doi:10.1016/j.ocemod.2013.10.005.
64    </li></ul>
65    
66    <ul><li>
67    Danabasoglu, G., R. Curry, P. Heimbach, Y. Kushnir, C. Meinen, R. Msadek, M. Patterson, L. Thompson, S. Yeager, and R. Zhang, 2014:
68    2013 US AMOC Science Team Annual Report on Progress and Priorities. 162 pp.
69    <a href="https://usclivar.org/sites/default/files/amoc/2014/USAMOC_2013AnnualReport_final.pdf">US CLIVAR Report 2014-4</a>, US CLIVAR Project Office, Washington D.C., 20006.
70    </ul></li>
71    
72    <ul><li>
73    Dansereau, V., P. Heimbach, and M. Losch, 2014:
74    Simulation of sub-ice shelf melt rates in a general circulation model: velocity-dependent transfer and the role of friction.
75    J. Geophys. Res., 119(3), 1765-1790, doi:10.1002/2013JC008846.
76    </ul></li>
77    
78    <ul><li>
79    B. Dushaw, 2014:
80    <a href="http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4881928?aemail=author">
81    Assessing the horizontal refraction of ocean acoustic tomography
82    signals using high-resolution ocean state estimates.</a>
83    Acoust. Soc. Am., 136, 122.
84  </li></ul>  </li></ul>
85    
86  <ul><li>  <ul><li>
# Line 38  Deep-Sea Res. I, 86, 1-20. Line 91  Deep-Sea Res. I, 86, 1-20.
91  </li></ul>  </li></ul>
92    
93  <ul><li>  <ul><li>
94    M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2014:
95    <a href="http://ecco2.org/manuscripts/2014/Flexas2014.pdf">
96    Role of tides on the formation of the Antarctic Slope Front at the
97    Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.
98    </li></ul>
99    
100    <ul><li>
101    Forget, G. and R.M. Ponte, 2014: The partition of regional sea level variability.
102    Prog. Oceanogr., submitted.
103    </ul></li>
104    
105    <ul><li>
106    D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2014:
107    Quantifying the processes controlling intraseasonal mixed-layer
108    temperature variability in the tropical Indian
109    Ocean. J. Geophys. Res., revised.
110    </li></ul>
111    
112    <ul><li>
113    D. Halpern, D. Menemenlis, and X. Wang,
114    2014: <a href="http://ecco2.org/manuscripts/2014/Halpern2014.pdf">
115    Impact of data assimilation on ECCO2 Equatorial Undercurrent and North
116    Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean
117    Tech., in press.
118    </li></ul>
119    
120    <ul><li>
121    Heimbach, P., F. Straneo, O. Sergienko, and G. Hamilton, 2014:
122    International workshop on understanding the response of Greenlands marine-terminating glaciers to oceanic and atmospheric forcing: Challenges to improving observations, process understanding and modeling. June 4-7, 2013, Beverly, MA, USA.
123    <a href="http://www.usclivar.org/sites/default/files/documents/2014/2013GRISOWorkshopReport_v2_0.pdf">US CLIVAR Report 2014-1</a>, US CLIVAR Project Office, Washington DC, 20006.
124    </ul></li>
125    
126    <ul><li>
127  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
128  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
129  (Special Section on Planet Earth and Big Data), submitted.  (Special Section on Planet Earth and Big Data), 36(5), S267–S295, doi:10.1137/130925311.
130  </li></ul>  </li></ul>
131    
132  <ul><li>  <ul><li>
133    Liang, X., C. Wunsch, P. Heimbach, and G. Forget, 2014:
134    Vertical redistribution of oceanic heat. Submitted.
135    </ul></li>
136    
137    <ul><li>
138  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,
139  J. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,  J. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,
140  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">
# Line 61  model.</a> J. Mar. Syst., 129, 437-451. Line 152  model.</a> J. Mar. Syst., 129, 437-451.
152  </li></ul>  </li></ul>
153    
154  <ul><li>  <ul><li>
155  C. Piecuch and R. Ponte, 2014:  Mechanisms of global mean steric sea level change.  J. Clim., in press.  L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,
156    C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,
157    2014: Quantifying the observability of CO2 flux uncertainty in
158    atmospheric CO2 records using products from NASA's Carbon Monitoring
159    Flux Pilot Project. J. Geophys. Res., submitted.
160    </li></ul>
161    
162    <ul><li>
163    C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2014: Vertical
164    structure  of ocean pressure fluctuations with application
165    to satellite-gravimetric observations. J. Atmos. Oce. Tech., in revision.
166    </li></ul>
167    
168    <ul><li>
169    C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
170    level change.  J. Clim., 27, 824-834.
171    </li></ul>
172    
173    <ul><li>
174    R. Ponte, and C. Piecuch, 2014: Interannual bottom pressure signals
175    in the Australian-Antarctic and Bellingshausen Basins. J. Phys. Oceanogr.,
176    44, 1456-1465.
177    </li></ul>
178    
179    <ul><li>
180    Sciascia, R., C. Cenedese, D. Nicoli, P. Heimbach, and F. Straneo, 2014:
181    Impact of periodic intermediary flows on submarine melting of a Greenland glacier.
182    J. Geophys. Res., in press, doi:10.1002/2014JC009953.
183    </ul></li>
184    
185    <ul><li>
186    H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,
187    M. Schodlok, and A. Khazendar,
188    2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">
189    Sensitivity of the dynamics of Pine Island Glacier, West Antarctica,
190    to climate forcing for the next 50 years.</a> The Cryosphere, 8,
191    1699-1710.
192  </li></ul>  </li></ul>
193    
194  <ul><li>  <ul><li>
# Line 71  sensing data. J. Geophys. Res., submitte Line 198  sensing data. J. Geophys. Res., submitte
198  </li></ul>  </li></ul>
199    
200  <ul><li>  <ul><li>
201    N. Vinogradova,  R. Ponte, I. Fukumori, and O. Wang, 2014:
202    Estimating satellite salinity errors for assimilation of Aquarius and SMOS
203    data into climate models. J. Geophys. Res., 119.
204    </li></ul>
205    
206    <ul><li>
207    N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,
208    and J. Davis, 2014: Dynamic adjustment of the ocean circulation to
209    self-attraction and loading effects, J. Phys. Oceanogr., in revision.
210    </li></ul>
211    
212    <ul><li>
213  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
214  ocean variability, J. Phys. Oceanogr., 44, 944-966.  ocean variability, J. Phys. Oceanogr., 44, 944-966, doi:10.1175/JPO-D-13-0113.1.
215  </li></ul>  </li></ul>
216    
217  <ul><li>  <ul><li>
218  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the Abyssal Ocean. J. Phys. Oceanogr., in press.  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
219    Abyssal Ocean. J. Phys. Oceanogr., 44(8), 2013-2030, doi:10.1175/JPO-D-13-096.1.
220  </li></ul>  </li></ul>
221    
222  <ul><li>  <ul><li>
223  S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent vertical mixing using seasonally averaged observations from the TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.  S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and
224    I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent
225    vertical mixing using seasonally averaged observations from the
226    TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.
227  </li></ul>  </li></ul>
228    
229  <ul><li>  <ul><li>

Legend:
Removed from v.1.12  
changed lines
  Added in v.1.20

  ViewVC Help
Powered by ViewVC 1.1.22