/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.10 by dimitri, Fri Apr 25 15:11:38 2014 UTC revision 1.23 by dimitri, Sun Dec 21 14:21:23 2014 UTC
# Line 4  mixing in a circumpolar channel. Ocean M Line 4  mixing in a circumpolar channel. Ocean M
4  </li></ul>  </li></ul>
5    
6  <ul><li>  <ul><li>
7  H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang, K. Bowman,  M. Azaneu, R. Kerr, and M. Mata,
8  and H. Zhang, 2014: Using Green's Functions to initialize and adjust a global,  2014: <a href="http://ecco2.org/manuscripts/2014/Azaneu2014.pdf">
9  eddying ocean biogeochemistry general circulation model. Ocean Modelling,  Assessment of the ECCO2 reanalysis on the representation of Antarctic
10    Bottom Water properties.</a> Ocean Sci. Discuss., 11, 1023-1091.
11    </li></ul>
12    
13    <ul><li>
14    H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,
15    K. Bowman, and H. Zhang, 2014:
16    <a href="http://ecco2.org/manuscripts/2014/Brix2014.pdf"> Using
17    Green's Functions to initialize and adjust a global, eddying ocean
18    biogeochemistry general circulation model.</a> Ocean Modelling,
19  submitted.  submitted.
20  </li></ul>  </li></ul>
21    
22  <ul><li>  <ul><li>
23  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:
24  Low-frequency SST and upper-ocean heat content variability in the North  Low-frequency SST and upper-ocean heat content variability in the North
25  Atlantic. J. Clim., in revision.  Atlantic. J. Clim., 27, 4996-5018, doi:10.1175/JCLI-D-13-00316.1.
26    </li></ul>
27    
28    <ul><li>
29    M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014: Determining the
30    origins of advective heat transport variability in the North Atlantic. J.
31    Clim., in revision.
32  </li></ul>  </li></ul>
33    
34  <ul><li>  <ul><li>
35  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of atmospheric reanalysis products for the Arctic Ocean and implications for uncertainties in air-sea fluxes, Journal of Climate, in revision.  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
36    atmospheric reanalysis products for the Arctic Ocean and implications
37    for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.
38  </li></ul>  </li></ul>
39    
40  <ul><li>  <ul><li>
41  G. Danabasoglu, et al., 2014: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean states. Ocean Modelling, 73, 76-107.  R. Chen, G. Flerl, and C. Wunsch, 2014:
42    <a href="http://ecco2.org/manuscripts/2014/Chen2014.pdf"> A
43    description of local and nonlocal eddy-mean flow interaction in a
44    global eddy-permitting state estimate. </a> J. Phys. Oceanogr., 44,
45    2336-2352.
46    </li></ul>
47    
48    <ul><li>
49    H. Dail and C. Wunsch, 2014: Dynamical Reconstruction of Upper-Ocean
50    Conditions in the Last Glacial Maximum Atlantic.  J. Clim., 27, 807–823.
51    </ul></li>
52    
53    <ul><li>
54    G. Danabasoglu, et al., 2014: North Atlantic simulations in Coordinated
55    Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean
56    states. Ocean Modelling, 73, 76-107.
57    </li></ul>
58    
59    <ul><li>
60    G. Danabasoglu, R. Curry, P. Heimbach, Y. Kushnir, C. Meinen, R. Msadek,
61    M. Patterson, L. Thompson, S. Yeager, and R. Zhang, 2014: 2013 US AMOC Science
62    Team Annual Report on Progress and Priorities. 162 pp. <a
63    href="https://usclivar.org/sites/default/files/amoc/2014/USAMOC_2013AnnualReport_final.pdf">
64    US CLIVAR Report 2014-4</a>, US CLIVAR Project Office, Washington D.C., 20006.
65    </ul></li>
66    
67    <ul><li>
68    V. Dansereau, P. Heimbach, and M. Losch, 2014: Simulation of sub-ice shelf
69    melt rates in a general circulation model: velocity-dependent transfer and the
70    role of friction.  J. Geophys. Res., 119, 1765-1790.
71    </ul></li>
72    
73    <ul><li>
74    B. Dushaw, 2014:
75    <a href="http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4881928?aemail=author">
76    Assessing the horizontal refraction of ocean acoustic tomography
77    signals using high-resolution ocean state estimates.</a>
78    Acoust. Soc. Am., 136, 122.
79  </li></ul>  </li></ul>
80    
81  <ul><li>  <ul><li>
# Line 32  Deep-Sea Res. I, 86, 1-20. Line 86  Deep-Sea Res. I, 86, 1-20.
86  </li></ul>  </li></ul>
87    
88  <ul><li>  <ul><li>
89    M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2014:
90    <a href="http://ecco2.org/manuscripts/2014/Flexas2014.pdf">
91    Role of tides on the formation of the Antarctic Slope Front at the
92    Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.
93    </li></ul>
94    
95    <ul><li>
96    G. Forget and R.M. Ponte, 2014: The partition of regional sea level
97    variability.  Prog. Oceanogr., submitted.
98    </ul></li>
99    
100    <ul><li>
101    D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2014:
102    Quantifying the processes controlling intraseasonal mixed-layer
103    temperature variability in the tropical Indian
104    Ocean. J. Geophys. Res., in press.
105    </li></ul>
106    
107    <ul><li>
108    D. Halpern, D. Menemenlis, and X. Wang,
109    2014: <a href="http://ecco2.org/manuscripts/2014/Halpern2014.pdf">
110    Impact of data assimilation on ECCO2 Equatorial Undercurrent and North
111    Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean
112    Tech., in press.
113    </li></ul>
114    
115    <ul><li>
116    P. Heimbach, F. Straneo, O. Sergienko, and G. Hamilton, 2014:
117    International workshop on understanding the response of Greenlands marine-terminating glaciers to oceanic and atmospheric forcing: Challenges to improving observations, process understanding and modeling. June 4-7, 2013, Beverly, MA, USA.
118    <a href="http://www.usclivar.org/sites/default/files/documents/2014/2013GRISOWorkshopReport_v2_0.pdf">US CLIVAR Report 2014-1</a>, US CLIVAR Project Office, Washington DC, 20006.
119    </ul></li>
120    
121    <ul><li>
122  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
123  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
124  (Special Section on Planet Earth and Big Data), submitted.  (Special Section on Planet Earth and Big Data), 36(5), S267–S295, doi:10.1137/130925311.
125  </li></ul>  </li></ul>
126    
127  <ul><li>  <ul><li>
128    X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2014:
129    Vertical redistribution of oceanic heat. Submitted.
130    </ul></li>
131    
132    <ul><li>
133  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,
134  D. Menemenlis, L. Ott, S. Pawson, R. Nassar, D. Jones, and J. Collatz,  J. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,
135  Carbon Monitoring System Flux estimation and attribution (CMS-Flux):  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">
136  Impact of ACOS-GOSAT XCO2 sampling on the inference of terrestrial  Carbon monitoring system flux estimation and attribution: Impact of
137  biospheric sources and sinks, Tellus B, in press.  ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric
138    sources and sinks.</a> Tellus B, 66, 22486.
139  </li></ul>  </li></ul>
140    
141  <ul><li>  <ul><li>
# Line 54  model.</a> J. Mar. Syst., 129, 437-451. Line 147  model.</a> J. Mar. Syst., 129, 437-451.
147  </li></ul>  </li></ul>
148    
149  <ul><li>  <ul><li>
150  C. Piecuch and R. Ponte, 2014:  Mechanisms of global mean steric sea level change.  J. Clim., in press.  L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,
151    C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,
152    2014: Quantifying the observability of CO2 flux uncertainty in
153    atmospheric CO2 records using products from NASA's Carbon Monitoring
154    Flux Pilot Project. J. Geophys. Res., in press.
155    </li></ul>
156    
157    <ul><li>
158    C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2014: Vertical
159    structure  of ocean pressure fluctuations with application
160    to satellite-gravimetric observations. J. Atmos. Oce. Tech., in revision.
161    </li></ul>
162    
163    <ul><li>
164    C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
165    level change.  J. Clim., 27, 824-834.
166    </li></ul>
167    
168    <ul><li>
169    R. Ponte, and C. Piecuch, 2014: Interannual bottom pressure signals
170    in the Australian-Antarctic and Bellingshausen Basins. J. Phys. Oceanogr.,
171    44, 1456-1465.
172    </li></ul>
173    
174    <ul><li>
175    R. Sciascia, C. Cenedese, D. Nicoli, P. Heimbach, and F. Straneo, 2014: Impact
176    of periodic intermediary flows on submarine melting of a Greenland glacier.
177    J. Geophys. Res., 119, 7078-7098.
178    </ul></li>
179    
180    <ul><li>
181    H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,
182    M. Schodlok, and A. Khazendar,
183    2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">
184    Sensitivity of the dynamics of Pine Island Glacier, West Antarctica,
185    to climate forcing for the next 50 years.</a> The Cryosphere, 8,
186    1699-1710.
187  </li></ul>  </li></ul>
188    
189  <ul><li>  <ul><li>
# Line 64  sensing data. J. Geophys. Res., submitte Line 193  sensing data. J. Geophys. Res., submitte
193  </li></ul>  </li></ul>
194    
195  <ul><li>  <ul><li>
196    N. Vinogradova,  R. Ponte, I. Fukumori, and O. Wang, 2014:
197    Estimating satellite salinity errors for assimilation of Aquarius and SMOS
198    data into climate models. J. Geophys. Res., 119.
199    </li></ul>
200    
201    <ul><li>
202    N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,
203    and J. Davis, 2014: Dynamic adjustment of the ocean circulation to
204    self-attraction and loading effects, J. Phys. Oceanogr., in revision.
205    </li></ul>
206    
207    <ul><li>
208    J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis, 2014: A new river
209    discharge and river temperature data set for the pan-Arctic region. Ocean
210    Modelling, in press.
211    </li></ul>
212    
213    <ul><li>
214  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
215  ocean variability, J. Phys. Oceanogr., 44, 944-966.  ocean variability, J. Phys. Oceanogr., 44, 944-966, doi:10.1175/JPO-D-13-0113.1.
216  </li></ul>  </li></ul>
217    
218  <ul><li>  <ul><li>
219  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the Abyssal Ocean. J. Phys. Oceanogr., in press.  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
220    Abyssal Ocean. J. Phys. Oceanogr., 44(8), 2013-2030, doi:10.1175/JPO-D-13-096.1.
221  </li></ul>  </li></ul>
222    
223  <ul><li>  <ul><li>
224  S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent vertical mixing using seasonally averaged observations from the TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.  S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and
225    I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent
226    vertical mixing using seasonally averaged observations from the
227    TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.
228  </li></ul>  </li></ul>
229    
230    <ul><li>
231    V. Zemskova, B. White, and A. Scotti, 2014: Available potential energy
232    and the general circulation: Partitioning wind, buoyancy forcing, and
233    irreversible mixing. J. Phys. Oceanogr., submitted.
234    </li></ul>

Legend:
Removed from v.1.10  
changed lines
  Added in v.1.23

  ViewVC Help
Powered by ViewVC 1.1.22