/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Annotation of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.20 - (hide annotations) (download) (as text)
Mon Nov 24 20:02:20 2014 UTC (9 years, 5 months ago) by heimbach
Branch: MAIN
Changes since 1.19: +51 -5 lines
File MIME type: text/html
Update refs.

1 dimitri 1.1 <ul><li>
2 dimitri 1.2 R. Abernathey, D. Ferreira, and A. Klocker, 2014: Diagnostics of eddy
3 dimitri 1.1 mixing in a circumpolar channel. Ocean Modelling, submitted.
4     </li></ul>
5    
6     <ul><li>
7 dimitri 1.17 M. Azaneu, R. Kerr, and M. Mata,
8     2014: <a href="http://ecco2.org/manuscripts/2014/Azaneu2014.pdf">
9     Assessment of the ECCO2 reanalysis on the representation of Antarctic
10     Bottom Water properties.</a> Ocean Sci. Discuss., 11, 1023-1091.
11     </li></ul>
12    
13     <ul><li>
14 dimitri 1.14 H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,
15     K. Bowman, and H. Zhang, 2014:
16     <a href="http://ecco2.org/manuscripts/2014/Brix2014.pdf"> Using
17     Green's Functions to initialize and adjust a global, eddying ocean
18     biogeochemistry general circulation model.</a> Ocean Modelling,
19 dimitri 1.1 submitted.
20     </li></ul>
21    
22     <ul><li>
23 heimbach 1.20 Buckley, M., R.M. Ponte, G. Forget, and P. Heimbach, 2014:
24     Determining the origins of advective heat transport variability in the North Atlantic.
25     J. Clim., submitted.
26     </li></ul>
27    
28     <ul><li>
29 dimitri 1.2 M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:
30 dimitri 1.1 Low-frequency SST and upper-ocean heat content variability in the North
31 heimbach 1.20 Atlantic. J. Clim., 27, 4996-5018, doi:10.1175/JCLI-D-13-00316.1.
32 dimitri 1.19 </li></ul>
33    
34     <ul><li>
35     M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014: Determining the
36     origins of advective heat transport variability in the North Atlantic. J.
37     Clim., in revision.
38 dimitri 1.1 </li></ul>
39    
40     <ul><li>
41 dimitri 1.13 A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
42     atmospheric reanalysis products for the Arctic Ocean and implications
43 dimitri 1.19 for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.
44 heimbach 1.6 </li></ul>
45    
46     <ul><li>
47 dimitri 1.18 R. Chen, G. Flerl, and C. Wunsch, 2014:
48     <a href="http://ecco2.org/manuscripts/2014/Chen2014.pdf"> A
49     description of local and nonlocal eddy-mean flow interaction in a
50     global eddy-permitting state estimate. </a> J. Phys. Oceanogr., 44,
51     2336-2352.
52     </li></ul>
53    
54     <ul><li>
55 heimbach 1.20 Dail, H. and C. Wunsch, 2014:
56     Dynamical Reconstruction of Upper-Ocean Conditions in the Last Glacial Maximum Atlantic.
57     J. Clim., 27(2), 807–823. doi:10.1175/JCLI-D-13-00211.1
58     </ul></li>
59    
60     <ul><li>
61 dimitri 1.13 G. Danabasoglu, et al., 2014: North Atlantic simulations in
62     Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part
63 heimbach 1.20 I: Mean states. Ocean Modelling, 73, 76-107, doi:10.1016/j.ocemod.2013.10.005.
64 dimitri 1.1 </li></ul>
65    
66     <ul><li>
67 heimbach 1.20 Danabasoglu, G., R. Curry, P. Heimbach, Y. Kushnir, C. Meinen, R. Msadek, M. Patterson, L. Thompson, S. Yeager, and R. Zhang, 2014:
68     2013 US AMOC Science Team Annual Report on Progress and Priorities. 162 pp.
69     <a href="https://usclivar.org/sites/default/files/amoc/2014/USAMOC_2013AnnualReport_final.pdf">US CLIVAR Report 2014-4</a>, US CLIVAR Project Office, Washington D.C., 20006.
70     </ul></li>
71    
72     <ul><li>
73     Dansereau, V., P. Heimbach, and M. Losch, 2014:
74     Simulation of sub-ice shelf melt rates in a general circulation model: velocity-dependent transfer and the role of friction.
75     J. Geophys. Res., 119(3), 1765-1790, doi:10.1002/2013JC008846.
76     </ul></li>
77    
78     <ul><li>
79 dimitri 1.13 B. Dushaw, 2014:
80     <a href="http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4881928?aemail=author">
81     Assessing the horizontal refraction of ocean acoustic tomography
82     signals using high-resolution ocean state estimates.</a>
83     Acoust. Soc. Am., 136, 122.
84 dimitri 1.12 </li></ul>
85    
86     <ul><li>
87 dimitri 1.2 B. Dushaw and D. Menemenlis, 2014:
88 dimitri 1.3 <a href="http://ecco2.org/manuscripts/2014/Dushaw2014.pdf">
89 dimitri 1.2 Antipodal acoustic thermometry: 1960, 2004.</a>
90 dimitri 1.7 Deep-Sea Res. I, 86, 1-20.
91 dimitri 1.1 </li></ul>
92    
93     <ul><li>
94 dimitri 1.14 M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2014:
95     <a href="http://ecco2.org/manuscripts/2014/Flexas2014.pdf">
96     Role of tides on the formation of the Antarctic Slope Front at the
97     Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.
98     </li></ul>
99    
100     <ul><li>
101 heimbach 1.20 Forget, G. and R.M. Ponte, 2014: The partition of regional sea level variability.
102     Prog. Oceanogr., submitted.
103     </ul></li>
104    
105     <ul><li>
106 dimitri 1.16 D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2014:
107     Quantifying the processes controlling intraseasonal mixed-layer
108     temperature variability in the tropical Indian
109     Ocean. J. Geophys. Res., revised.
110     </li></ul>
111    
112     <ul><li>
113 dimitri 1.15 D. Halpern, D. Menemenlis, and X. Wang,
114     2014: <a href="http://ecco2.org/manuscripts/2014/Halpern2014.pdf">
115     Impact of data assimilation on ECCO2 Equatorial Undercurrent and North
116     Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean
117     Tech., in press.
118     </li></ul>
119    
120     <ul><li>
121 heimbach 1.20 Heimbach, P., F. Straneo, O. Sergienko, and G. Hamilton, 2014:
122     International workshop on understanding the response of Greenlands marine-terminating glaciers to oceanic and atmospheric forcing: Challenges to improving observations, process understanding and modeling. June 4-7, 2013, Beverly, MA, USA.
123     <a href="http://www.usclivar.org/sites/default/files/documents/2014/2013GRISOWorkshopReport_v2_0.pdf">US CLIVAR Report 2014-1</a>, US CLIVAR Project Office, Washington DC, 20006.
124     </ul></li>
125    
126     <ul><li>
127 dimitri 1.2 A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
128 dimitri 1.1 Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
129 heimbach 1.20 (Special Section on Planet Earth and Big Data), 36(5), S267–S295, doi:10.1137/130925311.
130 dimitri 1.1 </li></ul>
131    
132     <ul><li>
133 heimbach 1.20 Liang, X., C. Wunsch, P. Heimbach, and G. Forget, 2014:
134     Vertical redistribution of oceanic heat. Submitted.
135     </ul></li>
136    
137     <ul><li>
138 dimitri 1.10 J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,
139 dimitri 1.11 J. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,
140     2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">
141     Carbon monitoring system flux estimation and attribution: Impact of
142     ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric
143     sources and sinks.</a> Tellus B, 66, 22486.
144 dimitri 1.10 </li></ul>
145    
146     <ul><li>
147 dimitri 1.8 M. Losch, V. Strass, B. Cisewski, C. Klaas, and R. Bellerby, 2014:
148     <a href="http://ecco2.org/manuscripts/2014/Losch2014.pdf">
149     Ocean state estimation from hydrography and velocity observations
150     during EIFEX with a regional biogeochemical ocean circulation
151     model.</a> J. Mar. Syst., 129, 437-451.
152     </li></ul>
153    
154     <ul><li>
155 dimitri 1.14 L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,
156     C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,
157     2014: Quantifying the observability of CO2 flux uncertainty in
158     atmospheric CO2 records using products from NASA's Carbon Monitoring
159     Flux Pilot Project. J. Geophys. Res., submitted.
160 dimitri 1.13 </li></ul>
161    
162     <ul><li>
163 dimitri 1.19 C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2014: Vertical
164     structure of ocean pressure fluctuations with application
165     to satellite-gravimetric observations. J. Atmos. Oce. Tech., in revision.
166     </li></ul>
167    
168     <ul><li>
169 dimitri 1.14 C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
170 dimitri 1.19 level change. J. Clim., 27, 824-834.
171     </li></ul>
172    
173     <ul><li>
174     R. Ponte, and C. Piecuch, 2014: Interannual bottom pressure signals
175     in the Australian-Antarctic and Bellingshausen Basins. J. Phys. Oceanogr.,
176     44, 1456-1465.
177 heimbach 1.5 </li></ul>
178    
179     <ul><li>
180 heimbach 1.20 Sciascia, R., C. Cenedese, D. Nicoli, P. Heimbach, and F. Straneo, 2014:
181     Impact of periodic intermediary flows on submarine melting of a Greenland glacier.
182     J. Geophys. Res., in press, doi:10.1002/2014JC009953.
183     </ul></li>
184    
185     <ul><li>
186 dimitri 1.18 H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,
187     M. Schodlok, and A. Khazendar,
188     2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">
189     Sensitivity of the dynamics of Pine Island Glacier, West Antarctica,
190     to climate forcing for the next 50 years.</a> The Cryosphere, 8,
191     1699-1710.
192     </li></ul>
193    
194     <ul><li>
195 dimitri 1.2 G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2014: Sea ice
196 dimitri 1.1 deformation in a coupled ocean-sea ice model and in satellite remote
197     sensing data. J. Geophys. Res., submitted.
198     </li></ul>
199    
200     <ul><li>
201 dimitri 1.19 N. Vinogradova, R. Ponte, I. Fukumori, and O. Wang, 2014:
202     Estimating satellite salinity errors for assimilation of Aquarius and SMOS
203     data into climate models. J. Geophys. Res., 119.
204     </li></ul>
205    
206     <ul><li>
207     N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,
208     and J. Davis, 2014: Dynamic adjustment of the ocean circulation to
209     self-attraction and loading effects, J. Phys. Oceanogr., in revision.
210     </li></ul>
211    
212     <ul><li>
213 dimitri 1.2 C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
214 heimbach 1.20 ocean variability, J. Phys. Oceanogr., 44, 944-966, doi:10.1175/JPO-D-13-0113.1.
215 dimitri 1.1 </li></ul>
216    
217     <ul><li>
218 dimitri 1.13 C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
219 heimbach 1.20 Abyssal Ocean. J. Phys. Oceanogr., 44(8), 2013-2030, doi:10.1175/JPO-D-13-096.1.
220 dimitri 1.1 </li></ul>
221 heimbach 1.4
222     <ul><li>
223 dimitri 1.13 S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and
224     I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent
225     vertical mixing using seasonally averaged observations from the
226     TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.
227 heimbach 1.4 </li></ul>
228    
229 dimitri 1.11 <ul><li>
230     V. Zemskova, B. White, and A. Scotti, 2014: Available potential energy
231     and the general circulation: Partitioning wind, buoyancy forcing, and
232     irreversible mixing. J. Phys. Oceanogr., submitted.
233     </li></ul>

  ViewVC Help
Powered by ViewVC 1.1.22