/[MITgcm]/www.ecco-group.org/ecco_2011_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2011_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.8 by dimitri, Tue Jan 25 16:25:05 2011 UTC revision 1.38 by dimitri, Mon Aug 3 04:04:24 2015 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2    R. Abernathey, J. Marshall, and D. Ferreira, 2011: The dependence of Southern
3    Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41,
4    2261-2278.
5    </li></ul>
6    
7    <ul><li>
8  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:
9  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">
10  Superparameterization in ocean modeling: application to deep  Super-parameterization in ocean modeling: Application to deep
11  convection.</a> Ocean Modeling, in press.  convection.</a> Ocean Modelling, 36, 90-101.
12    </li></ul>
13    
14    <ul><li>
15    I. Cerovecki, L.D. Talley, and M.R. Mazloff, 2011:
16    <a href="http://dx.doi.org/10.1175/2011JCLI3858.1"> A Comparison of Southern
17    Ocean Air-Sea Buoyancy Flux from an Ocean State Estimate with Five Other
18    Products.</a> J. Clim., 24, 6283-6306.
19  </li></ul>  </li></ul>
20    
21  <ul><li>  <ul><li>
22  A. Condron and P. Winsor, 2011: A subtropical fate awaited freshwater  A. Condron and P. Winsor, 2011:
23  discharged from glacial Lake Agassiz. Geophys. Res. Let., in press,  <a href="http://ecco2.org/manuscripts/2011/CondronWinsor2011.pdf">
24  doi:10.1029/2010GL046011.  A subtropical fate awaited freshwater discharged from glacial Lake
25    Agassiz.</a> Geophys. Res. Lett., 38, L03705.
26  </li></ul>  </li></ul>
27    
28  <ul><li>  <ul><li>
29  X. Davis, L. Rothstein, W. Dewar, and D. Menemenlis, 2011:  X. Davis, L. Rothstein, W. Dewar, and D. Menemenlis, 2011:
30  <a href="http://ecco2.org/manuscripts/2010/DavisJcli10.pdf">  <a href="http://ecco2.org/manuscripts/2011/DavisJcli10.pdf">
31  Numerical investigations of seasonal and interannual variability of  Numerical investigations of seasonal and interannual variability of
32  North Pacific Subtropical Mode Water and its implications for Pacific  North Pacific Subtropical Mode Water and its implications for Pacific
33  climate variability.</a> J. Clim., in press.  climate variability.</a> J. Clim., 24, 2648-2665.
34    </li></ul>
35    
36    <ul><li>
37    S. Dutkiewicz, 2011:
38    <a href="http://ecco2.org/manuscripts/2011/dutkiewicz_variations.pdf">
39    Driving ecosystem and biogeochemical models with optimal state
40    estimates of the ocean circulation.</a> U.S. CLIVAR Variations, 9, 1.
41    </li></ul>
42    
43    <ul><li>
44    M. Follows and S. Dutkiewicz, 2011:
45    <a href="http://ocean.mit.edu/~mick/Papers/Follows-Dutkiewicz-AnnRevMarineSci-2011.pdf">
46    Modeling diverse communities of marine microbes.</a>
47    Annu. Rev. Mar. Sci., 427–451.
48  </li></ul>  </li></ul>
49    
50  <ul><li>  <ul><li>
51  G. Forget, G. Maze, M. Buckley, and J. Marshall, 2011:  G. Forget, G. Maze, M. Buckley, and J. Marshall, 2011:
52  Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume.  Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume.
53  J. Phys. Oceanogr., in press.  J. Phys. Oceanogr., 41, 269-286.
54    </li></ul>
55    
56    <ul><li>
57    H. Gennerich and H. Villinger, 2011:
58    <a href="http://ecco2.org/manuscripts/2011/Gennerich_2011.pdf">
59    Deciphering the ocean bottom pressure variation in the Logatchev
60    hydrothermal field at the eastern flank of the Mid-Atlantic Ridge.</a>
61    Geochemistry Geophysics Geosystems, 12, doi:10.1029/2010GC003441.
62  </li></ul>  </li></ul>
63    
64  <ul><li>  <ul><li>
65  P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:  P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:
66  Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and  Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and
67  Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II  Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II,
68  (special issue on the AMOC), in press.  58, 1858-1879.
69  </li></ul>  </li></ul>
70    
71  <ul><li>  <ul><li>
72  E. Hill, D. Enderton, P. Heimbach, and C. Hill, 2011: SPGrid: A  G. Holloway, A. Nguyen, and Z. Wang, 2011:
73  numerical grid generation program for domain decomposed geophysical  <a href="http://ecco2.org/manuscripts/2011/Holloway2011.pdf"> Oceans and ocean
74  fluid dynamics models. Unpublished manuscript.  models as seen by current meters.</a> J. Geophys. Res., 116, C00D08.
75  </li></ul>  </li></ul>
76    
77  <ul><li>  <ul><li>
78  M. Manizza, M. Follows, S. Dutkiewicz, D. Menemenlis, J. McClelland,  M. Manizza, M. Follows, S. Dutkiewicz, D. Menemenlis, J. McClelland,
79  C. Hill1, B. Peterson, R. Key, 2011:  C. Hill, B. Peterson, R. Key, 2011:
80  <a href="http://ecco2.org/manuscripts/2010/ManizzaJGR2010.pdf">  <a href="http://ecco2.org/manuscripts/2011/Manizza2011.pdf">
81  Modeling the Arctic Ocean carbon cycle and its sensitivity to the  A model of the Arctic Ocean carbon cycle.</a>
82  influence of the riverine dissolved organic carbon.</a>  J. Geophys. Res., 116, C12020.
83  J. Geophys. Res., submitted.  </li></ul>
84    
85    <ul><li>
86    A. Nguyen, D. Menemenlis, and R. Kwok, 2011:
87    <a href="http://ecco2.org/manuscripts/2011/NguyenJGR2011.pdf">
88    Arctic ice-ocean simulation with optimized model parameters: approach
89    and assessment.</a>  J. Geophys. Res., 116, C04025.
90  </li></ul>  </li></ul>
91    
92  <ul><li>  <ul><li>
93  G. Maze, G. Forget, M. Buckley and J. Marshall, 2011: Using  C. Piecuch and R. Ponte, 2011: Mechanisms of interannual steric sea level
94  transformation and formation maps to study water mass transformation:  variability, Geophys. Res. Lett., 38, L15605.
 a case study of North Atlantic Eighteen Degree water. J. Phys.  
 Oceanogr, submitted.  
95  </li></ul>  </li></ul>
96    
97  <ul><li>  <ul><li>
98  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:  P. Rampal, J. Weiss, C. Dubois, and J.-M. Campin 2011: IPCC climate models do
99  <a href="http://ecco2.org/manuscripts/2010/NguyenJGR10.pdf">  not capture Arctic sea ice drift acceleration: Consequences in terms of
100  Arctic ice-ocean simulation with optimized model parameters: approach  projected sea ice thinning and decline, J. Geophys. Res., vol. 116, C00D07.
101  and assessment.</a>  J. Geophys. Res., in press.  </li></ul>
102    
103    <ul><li>
104    F. Roquet, C. Wunsch, and G. Madec, 2011:
105    <a href="http://dx.doi.org/10.1175/JPO-D-11-024.1"> On the patterns of
106    wind-power input to the ocean circulation.</a> J. Phys. Oceanogr., 41,
107    2328-2342.
108    </ul></li>
109    
110    <ul><li>
111    G. Spreen, R. Kwok, and D. Menemenlis, 2011:
112    <a href="http://ecco2.org/manuscripts/2011/Spreen2011.pdf">
113    Trends in Arctic sea ice drift and role of wind forcing:
114    1992-2009.</a>  Geophys. Res. Lett., 38, L19501.
115  </li></ul>  </li></ul>
116    
117  <ul><li>  <ul><li>
118  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:
119  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo10.pdf">  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo11.pdf">
120  Scales, growth rates and spectral fluxes of baroclinic instability in  Scales, growth rates and spectral fluxes of baroclinic instability in
121  the ocean.</a> J. Phys. Oceanogr., in press.  the ocean.</a> J. Phys. Oceanogr., 41, 1057-1076.
122  </li></ul>  </li></ul>
123    
124  <ul><li>  <ul><li>
125  C. Ubelmann and L. Fu, 2011:  C. Ubelmann and L. Fu, 2011:
126  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011a.pdf">
127  Vorticity structures in the tropical Pacific from a numerical simulation.</a>  Vorticity structures in the Tropical Pacific from a numerical simulation.</a>
128  Geophys. J. Phys. Oceanogr., submitted.  J. Phys. Oceanogr., 41, 1455.
129  </li></ul>  </li></ul>
130    
131  <ul><li>  <ul><li>
132  N. Vinogradova, R. Ponte, M. Tamisiea, J. Davis, and  C. Ubelmann and L. Fu, 2011:
133  E. Hill, 2011: Effects of self-attraction and loading on annual  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011b.pdf">
134  variations of ocean bottom pressure. J. Geophys. Res., submitted.  Cyclonic eddies formed at the Pacific tropical instability wave fronts.</a>
135    J. Geophys. Res., 116, C12021.
136  </li></ul>  </li></ul>
137    
138  <ul><li>  <ul><li>
139  N. Vinogradova, R. Ponte, and P. Heimbach, 2011: Dynamics and forcing of sea  D. Volkov and L. Fu, 2011:
140  surface temperature variability on climate time scales. J. Clim., submitted.  <a href="http://ecco2.org/manuscripts/2011/VolkovFu2011.pdf">
141    Interannual variability of the Azores Current strength and eddy energy
142    in relation to atmospheric forcing.</a> J. Geophys. Res., 116, C11011.
143  </li></ul>  </li></ul>
144    
145  <ul><li>  <ul><li>
146  D. Volkov and L. Fu, 2011: Mechanism for the interannual variability of the  Z. Wang, G. Holloway, and C. Hannah, 2011:
147  Azores Current eddy energy. Geophys. Res. Let., submitted.  <a href="http://ecco2.org/manuscripts/2011/Wang2011.pdf"> Effects of
148    parameterized eddy stress on volume, heat, and freshwater transports through
149    Fram Strait.</a> J. Geophys. Res., 116, C00D09.
150  </li></ul>  </li></ul>
151    
152  <ul><li>  <ul><li>
153  Y. Xu and L. Fu, 2011: Global variability of the wavenumber spectrum of  Y. Xu and L. Fu, 2011:
154  oceanic mesoscale turbulence. J. Phys. Oceanogr., in press,  <a href="http://ecco2.org/manuscripts/2011/XuFu2011.pdf">
155  doi:10.1175/2010JPO4558.1.  Global variability of the wavenumber spectrum of
156    oceanic mesoscale turbulence.</a> J. Phys. Oceanogr., 41, 802-809.
157  </li></ul>  </li></ul>
158    
159  <ul><li>  <ul><li>
160  L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal  Y. Xu, L. Fu, and R. Tulloch, 2011: The global characteristics of the
161  excitation of interannual Atlantic meridional overturning circulation  wavenumber spectrum of ocean surface wind. J. Phys. Oceanogr., 41,
162  variability. J. Climate, in press, doi:10.1175/2010JCLI3610.1.  1576-1582.
163  </li></ul>  </li></ul>
164    
165  <ul><li>  <ul><li>
166  L. Zanna, P. Heimbach, A. Moore and E. Tziperman, 2011. Analysis of the  L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal
167  predictability and variability of the Atlantic ocean in response to optimal  excitation of interannual Atlantic meridional overturning circulation
168  surface excitation.  Quart. J. Roy. Met. Soc., submitted.  variability. J. Climate, 24, 413-423.
169  </li></ul>  </li></ul>

Legend:
Removed from v.1.8  
changed lines
  Added in v.1.38

  ViewVC Help
Powered by ViewVC 1.1.22