/[MITgcm]/www.ecco-group.org/ecco_2011_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2011_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.27 by dimitri, Thu Jan 26 17:27:23 2012 UTC revision 1.37 by dimitri, Mon Jun 15 17:31:41 2015 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2    R. Abernathey, J. Marshall, and D. Ferreira, 2011: The dependence of Southern
3    Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41,
4    2261-2278.
5    </li></ul>
6    
7    <ul><li>
8  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:
9  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">
10  Super-parameterization in ocean modeling: Application to deep  Super-parameterization in ocean modeling: Application to deep
11  convection.</a> Ocean Modeling, 36, 90-101.  convection.</a> Ocean Modelling, 36, 90-101.
12    </li></ul>
13    
14    <ul><li>
15    I. Cerovecki, L.D. Talley, and M.R. Mazloff, 2011:
16    <a href="http://dx.doi.org/10.1175/2011JCLI3858.1"> A Comparison of Southern
17    Ocean Air-Sea Buoyancy Flux from an Ocean State Estimate with Five Other
18    Products.</a> J. Clim., 24, 6283-6306.
19  </li></ul>  </li></ul>
20    
21  <ul><li>  <ul><li>
# Line 28  estimates of the ocean circulation.</a> Line 41  estimates of the ocean circulation.</a>
41  </li></ul>  </li></ul>
42    
43  <ul><li>  <ul><li>
44    M. Follows and S. Dutkiewicz, 2011:
45    <a href="http://ocean.mit.edu/~mick/Papers/Follows-Dutkiewicz-AnnRevMarineSci-2011.pdf">
46    Modeling diverse communities of marine microbes.</a>
47    Annu. Rev. Mar. Sci., 427–451.
48    </li></ul>
49    
50    <ul><li>
51  G. Forget, G. Maze, M. Buckley, and J. Marshall, 2011:  G. Forget, G. Maze, M. Buckley, and J. Marshall, 2011:
52  Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume.  Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume.
53  J. Phys. Oceanogr., 41(2), 269-286, doi:10.1175/2010JPO4257.1  J. Phys. Oceanogr., 41, 269-286.
54  </li></ul>  </li></ul>
55    
56  <ul><li>  <ul><li>
# Line 44  Geochemistry Geophysics Geosystems, 12, Line 64  Geochemistry Geophysics Geosystems, 12,
64  <ul><li>  <ul><li>
65  P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:  P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:
66  Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and  Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and
67  Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II  Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II,
68  (Topical issue on "Climate and the AMOC"), 58(17-18), 1858-1879, doi:10.1016/j.dsr2.2010.10.065.  58, 1858-1879.
69    </li></ul>
70    
71    <ul><li>
72    G. Holloway, A. Nguyen, and Z. Wang, 2011:
73    <a href="http://ecco2.org/manuscripts/2011/Holloway2011.pdf"> Oceans and ocean
74    models as seen by current meters.</a> J. Geophys. Res., 116, C00D08.
75  </li></ul>  </li></ul>
76    
77  <ul><li>  <ul><li>
# Line 53  M. Manizza, M. Follows, S. Dutkiewicz, D Line 79  M. Manizza, M. Follows, S. Dutkiewicz, D
79  C. Hill, B. Peterson, R. Key, 2011:  C. Hill, B. Peterson, R. Key, 2011:
80  <a href="http://ecco2.org/manuscripts/2011/Manizza2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/Manizza2011.pdf">
81  A model of the Arctic Ocean carbon cycle.</a>  A model of the Arctic Ocean carbon cycle.</a>
82  J. Geophys. Res., 116, C12020, doi:10.1029/2011JC006998.  J. Geophys. Res., 116, C12020.
83  </li></ul>  </li></ul>
84    
85  <ul><li>  <ul><li>
86  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:
87  <a href="http://ecco2.org/manuscripts/2011/NguyenJGR2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/NguyenJGR2011.pdf">
88  Arctic ice-ocean simulation with optimized model parameters: approach  Arctic ice-ocean simulation with optimized model parameters: approach
89  and assessment.</a>  J. Geophys. Res., 116, C04025,  and assessment.</a>  J. Geophys. Res., 116, C04025.
 doi:10.1029/2010JC006573  
90  </li></ul>  </li></ul>
91    
92  <ul><li>  <ul><li>
93  Piecuch, C. G., and R. M. Ponte, 2011: Mechanisms of interannual steric sea level variability, Geophys. Res. Lett., 38, L15605, doi:10.1029/2011GL048440.  C. Piecuch and R. Ponte, 2011: Mechanisms of interannual steric sea level
94    variability, Geophys. Res. Lett., 38, L15605.
95  </li></ul>  </li></ul>
96    
97  <ul><li>  <ul><li>
98  Rampal, P., J. Weiss, C. Dubois & J.-M. Campin 2011: IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline, J. Geophys. Res., vol. 116, C00D07, doi:10.1029/2011JC007110.  P. Rampal, J. Weiss, C. Dubois, and J.-M. Campin 2011: IPCC climate models do
99    not capture Arctic sea ice drift acceleration: Consequences in terms of
100    projected sea ice thinning and decline, J. Geophys. Res., vol. 116, C00D07.
101  </li></ul>  </li></ul>
102    
103  <ul><li>  <ul><li>
104  Roquet, F., C. Wunsch, and G. Madec, 2011: On the patterns of wind-power input to the ocean circulation. J. Phys. Oceanogr., 41, 2328-2342, 10.1175/JPO-D-11-024.1.  F. Roquet, C. Wunsch, and G. Madec, 2011:
105    <a href="http://dx.doi.org/10.1175/JPO-D-11-024.1"> On the patterns of
106    wind-power input to the ocean circulation.</a> J. Phys. Oceanogr., 41,
107    2328-2342.
108  </ul></li>  </ul></li>
109    
110  <ul><li>  <ul><li>
# Line 84  Trends in Arctic sea ice drift and role Line 115  Trends in Arctic sea ice drift and role
115  </li></ul>  </li></ul>
116    
117  <ul><li>  <ul><li>
118  S. Tank, M. Manizza, R. Holmes, J. McClelland, and B. Peterson, 2011:  R. Tulloch, C. Hill, and O. Jahn, 2011:
119  <a href="http://ecco2.org/manuscripts/2011/Tank2011.pdf">  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etalagu11.pdf">
120  The processing and impact of dissolved riverine nitrogen in the Arctic  Possible spreadings of buoyant plumes and local coastline
121  Ocean.</a> Estuaries and Coasts, doi:10.1007/s12237-011-9417-3.  sensitivities using flow syntheses from 1992 to 2007.</a> Geophysical
122    Monograph Series, 195, 245-255.
123  </li></ul>  </li></ul>
124    
125  <ul><li>  <ul><li>
126  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:
127  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo10.pdf">  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo11.pdf">
128  Scales, growth rates and spectral fluxes of baroclinic instability in  Scales, growth rates and spectral fluxes of baroclinic instability in
129  the ocean.</a> J. Phys. Oceanogr., 41, 1057-1076.  the ocean.</a> J. Phys. Oceanogr., 41, 1057-1076.
130  </li></ul>  </li></ul>
# Line 119  in relation to atmospheric forcing.</a> Line 151  in relation to atmospheric forcing.</a>
151  </li></ul>  </li></ul>
152    
153  <ul><li>  <ul><li>
154  Wunsch, C., 2011:  Z. Wang, G. Holloway, and C. Hannah, 2011:
155  The decadal mean circulation and Sverdrup balance.  <a href="http://ecco2.org/manuscripts/2011/Wang2011.pdf"> Effects of
156  J. Marine Res., 69, 417-434.  parameterized eddy stress on volume, heat, and freshwater transports through
157    Fram Strait.</a> J. Geophys. Res., 116, C00D09.
158  </li></ul>  </li></ul>
159    
160  <ul><li>  <ul><li>
# Line 132  oceanic mesoscale turbulence.</a> J. Phy Line 165  oceanic mesoscale turbulence.</a> J. Phy
165  </li></ul>  </li></ul>
166    
167  <ul><li>  <ul><li>
168    Y. Xu, L. Fu, and R. Tulloch, 2011: The global characteristics of the
169    wavenumber spectrum of ocean surface wind. J. Phys. Oceanogr., 41,
170    1576-1582.
171    </li></ul>
172    
173    <ul><li>
174  L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal  L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal
175  excitation of interannual Atlantic meridional overturning circulation  excitation of interannual Atlantic meridional overturning circulation
176  variability. J. Climate, 24(2), 413-423, doi:10.1175/2010JCLI3610.1.  variability. J. Climate, 24, 413-423.
177  </li></ul>  </li></ul>
   

Legend:
Removed from v.1.27  
changed lines
  Added in v.1.37

  ViewVC Help
Powered by ViewVC 1.1.22