/[MITgcm]/www.ecco-group.org/ecco_2011_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2011_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.15 by dimitri, Thu May 26 16:54:35 2011 UTC revision 1.33 by dimitri, Sat Mar 16 19:06:58 2013 UTC
# Line 1  Line 1 
1    
2    <ul><li>
3    R. Abernathey, J. Marshall, and D. Ferreira, 2011: The dependence of Southern
4    Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41,
5    2261-2278.
6    </li></ul>
7    
8  <ul><li>  <ul><li>
9  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:
10  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">
11  Superparameterization in ocean modeling: application to deep  Super-parameterization in ocean modeling: Application to deep
12  convection.</a> Ocean Modeling, in press.  convection.</a> Ocean Modelling, 36, 90-101.
13  </li></ul>  </li></ul>
14    
15  <ul><li>  <ul><li>
# Line 14  Agassiz.</a> Geophys. Res. Lett., 38, L0 Line 21  Agassiz.</a> Geophys. Res. Lett., 38, L0
21    
22  <ul><li>  <ul><li>
23  X. Davis, L. Rothstein, W. Dewar, and D. Menemenlis, 2011:  X. Davis, L. Rothstein, W. Dewar, and D. Menemenlis, 2011:
24  <a href="http://ecco2.org/manuscripts/2010/DavisJcli10.pdf">  <a href="http://ecco2.org/manuscripts/2011/DavisJcli10.pdf">
25  Numerical investigations of seasonal and interannual variability of  Numerical investigations of seasonal and interannual variability of
26  North Pacific Subtropical Mode Water and its implications for Pacific  North Pacific Subtropical Mode Water and its implications for Pacific
27  climate variability.</a> J. Clim., in press.  climate variability.</a> J. Clim., 24, 2648-2665.
28  </li></ul>  </li></ul>
29    
30  <ul><li>  <ul><li>
# Line 34  J. Phys. Oceanogr., 41(2), 269-286, doi: Line 41  J. Phys. Oceanogr., 41(2), 269-286, doi:
41  </li></ul>  </li></ul>
42    
43  <ul><li>  <ul><li>
44    H. Gennerich and H. Villinger, 2011:
45    <a href="http://ecco2.org/manuscripts/2011/Gennerich_2011.pdf">
46    Deciphering the ocean bottom pressure variation in the Logatchev
47    hydrothermal field at the eastern flank of the Mid-Atlantic Ridge.</a>
48    Geochemistry Geophysics Geosystems, 12, doi:10.1029/2010GC003441.
49    </li></ul>
50    
51    <ul><li>
52  P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:  P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:
53  Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and  Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and
54  Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II  Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II
55  (special issue on the AMOC), in press, doi:10.1016/j.dsr2.2010.10.065  (Topical issue on "Climate and the AMOC"), 58(17-18), 1858-1879, doi:10.1016/j.dsr2.2010.10.065.
56  </li></ul>  </li></ul>
57    
58  <ul><li>  <ul><li>
59  M. Manizza, M. Follows, S. Dutkiewicz, D. Menemenlis, J. McClelland,  M. Manizza, M. Follows, S. Dutkiewicz, D. Menemenlis, J. McClelland,
60  C. Hill, B. Peterson, R. Key, 2011:  C. Hill, B. Peterson, R. Key, 2011:
61  A model of the Arctic Ocean carbon cycle.  <a href="http://ecco2.org/manuscripts/2011/Manizza2011.pdf">
62  J. Geophys. Res., submitted.  A model of the Arctic Ocean carbon cycle.</a>
63    J. Geophys. Res., 116, C12020, doi:10.1029/2011JC006998.
64    </li></ul>
65    
66    <ul><li>
67    I. Cerovecki, L.D. Talley, and M.R. Mazloff, 2011:
68    A Comparison of Southern Ocean Air-Sea Buoyancy Flux from an Ocean State Estimate with Five Other Products.
69    J. Clim., 24(24), 6283-6306, <a href="http://dx.doi.org/10.1175/2011JCLI3858.1">doi:10.1175/2011JCLI3858.1</a>
70  </li></ul>  </li></ul>
71    
72  <ul><li>  <ul><li>
# Line 56  doi:10.1029/2010JC006573 Line 78  doi:10.1029/2010JC006573
78  </li></ul>  </li></ul>
79    
80  <ul><li>  <ul><li>
81  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:  Piecuch, C. G., and R. M. Ponte, 2011: Mechanisms of interannual steric sea level variability, Geophys. Res. Lett., 38, L15605, doi:10.1029/2011GL048440.
 <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo10.pdf">  
 Scales, growth rates and spectral fluxes of baroclinic instability in  
 the ocean.</a> J. Phys. Oceanogr., in press.  
82  </li></ul>  </li></ul>
83    
84  <ul><li>  <ul><li>
85  C. Ubelmann and L. Fu, 2011:  Rampal, P., J. Weiss, C. Dubois & J.-M. Campin 2011: IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline, J. Geophys. Res., vol. 116, C00D07, doi:10.1029/2011JC007110.
 <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011.pdf">  
 Vorticity structures in the tropical Pacific from a numerical simulation.</a>  
 J. Phys. Oceanogr., submitted.  
86  </li></ul>  </li></ul>
87    
88  <ul><li>  <ul><li>
89  N. Vinogradova, R. Ponte, and P. Heimbach, 2011: Dynamics and forcing of sea  Roquet, F., C. Wunsch, and G. Madec, 2011: On the patterns of wind-power input to the ocean circulation. J. Phys. Oceanogr., 41, 2328-2342, <a href="http://dx.doi.org/10.1175/JPO-D-11-024.1">doi:10.1175/JPO-D-11-024.1</a>.
90  surface temperature variability on climate time scales. J. Clim., submitted.  </ul></li>
91    
92    <ul><li>
93    G. Spreen, R. Kwok, and D. Menemenlis, 2011:
94    <a href="http://ecco2.org/manuscripts/2011/Spreen2011.pdf">
95    Trends in Arctic sea ice drift and role of wind forcing:
96    1992-2009.</a>  Geophys. Res. Lett., 38, L19501.
97  </li></ul>  </li></ul>
98    
99  <ul><li>  <ul><li>
100  D. Volkov and L. Fu, 2011: Mechanism for the interannual variability of the  S. Tank, M. Manizza, R. Holmes, J. McClelland, and B. Peterson, 2011:
101  Azores Current eddy energy. Geophys. Res. Lett., submitted.  <a href="http://ecco2.org/manuscripts/2011/Tank2011.pdf">
102    The processing and impact of dissolved riverine nitrogen in the Arctic
103    Ocean.</a> Estuaries and Coasts, doi:10.1007/s12237-011-9417-3.
104  </li></ul>  </li></ul>
105    
106    <ul><li>
107    R. Tulloch, C. Hill, and O. Jahn, 2011:
108    <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etalagu11.pdf">
109    Possible spreadings of buoyant plumes and local coastline
110    sensitivities using flow syntheses from 1992 to 2007.</a> Geophysical
111    Monograph Series, 195, 245-255.
112    </li></ul>
113    
114  <ul><li>  <ul><li>
115  Wunsch, C., 2011: Covariances and linear predictability of the North Atlantic Ocean. submitted.  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:
116    <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo11.pdf">
117    Scales, growth rates and spectral fluxes of baroclinic instability in
118    the ocean.</a> J. Phys. Oceanogr., 41, 1057-1076.
119    </li></ul>
120    
121    <ul><li>
122    C. Ubelmann and L. Fu, 2011:
123    <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011a.pdf">
124    Vorticity structures in the Tropical Pacific from a numerical simulation.</a>
125    J. Phys. Oceanogr., 41, 1455.
126    </li></ul>
127    
128    <ul><li>
129    C. Ubelmann and L. Fu, 2011:
130    <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011b.pdf">
131    Cyclonic eddies formed at the Pacific tropical instability wave fronts.</a>
132    J. Geophys. Res., 116, C12021.
133    </li></ul>
134    
135    <ul><li>
136    D. Volkov and L. Fu, 2011:
137    <a href="http://ecco2.org/manuscripts/2011/VolkovFu2011.pdf">
138    Interannual variability of the Azores Current strength and eddy energy
139    in relation to atmospheric forcing.</a> J. Geophys. Res., 116, C11011.
140  </li></ul>  </li></ul>
141    
142  <ul><li>  <ul><li>
143  Wunsch, C., 2011:  Wunsch, C., 2011:
144  The decadal mean circulation and Sverdrup balance.  The decadal mean circulation and Sverdrup balance.
145  J. Marine Res., in press.  J. Marine Res., 69, 417-434.
146  </li></ul>  </li></ul>
147    
148  <ul><li>  <ul><li>
149  Y. Xu and L. Fu, 2011: Global variability of the wavenumber spectrum of  Y. Xu and L. Fu, 2011:
150  oceanic mesoscale turbulence. J. Phys. Oceanogr., in press,  <a href="http://ecco2.org/manuscripts/2011/XuFu2011.pdf">
151  doi:10.1175/2010JPO4558.1.  Global variability of the wavenumber spectrum of
152    oceanic mesoscale turbulence.</a> J. Phys. Oceanogr., 41, 802-809.
153  </li></ul>  </li></ul>
154    
155  <ul><li>  <ul><li>
156  L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal  Y. Xu, L. Fu, and R. Tulloch, 2011: The global characteristics of the
157  excitation of interannual Atlantic meridional overturning circulation  wavenumber spectrum of ocean surface wind. J. Phys. Oceanogr., 41,
158  variability. J. Climate, in press, doi:10.1175/2010JCLI3610.1.  1576-1582.
159  </li></ul>  </li></ul>
160    
161  <ul><li>  <ul><li>
162  L. Zanna, P. Heimbach, A. Moore and E. Tziperman, 2011. Analysis of the  L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal
163  predictability and variability of the Atlantic ocean in response to optimal  excitation of interannual Atlantic meridional overturning circulation
164  surface excitation.  Quart. J. Roy. Met. Soc., submitted.  variability. J. Climate, 24(2), 413-423, doi:10.1175/2010JCLI3610.1.
165  </li></ul>  </li></ul>
166    

Legend:
Removed from v.1.15  
changed lines
  Added in v.1.33

  ViewVC Help
Powered by ViewVC 1.1.22