/[MITgcm]/www.ecco-group.org/ecco_2011_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2011_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.11 by dimitri, Mon May 2 10:07:20 2011 UTC revision 1.33 by dimitri, Sat Mar 16 19:06:58 2013 UTC
# Line 1  Line 1 
1    
2    <ul><li>
3    R. Abernathey, J. Marshall, and D. Ferreira, 2011: The dependence of Southern
4    Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41,
5    2261-2278.
6    </li></ul>
7    
8  <ul><li>  <ul><li>
9  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:
10  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">
11  Superparameterization in ocean modeling: application to deep  Super-parameterization in ocean modeling: Application to deep
12  convection.</a> Ocean Modeling, in press.  convection.</a> Ocean Modelling, 36, 90-101.
13  </li></ul>  </li></ul>
14    
15  <ul><li>  <ul><li>
# Line 14  Agassiz.</a> Geophys. Res. Lett., 38, L0 Line 21  Agassiz.</a> Geophys. Res. Lett., 38, L0
21    
22  <ul><li>  <ul><li>
23  X. Davis, L. Rothstein, W. Dewar, and D. Menemenlis, 2011:  X. Davis, L. Rothstein, W. Dewar, and D. Menemenlis, 2011:
24  <a href="http://ecco2.org/manuscripts/2010/DavisJcli10.pdf">  <a href="http://ecco2.org/manuscripts/2011/DavisJcli10.pdf">
25  Numerical investigations of seasonal and interannual variability of  Numerical investigations of seasonal and interannual variability of
26  North Pacific Subtropical Mode Water and its implications for Pacific  North Pacific Subtropical Mode Water and its implications for Pacific
27  climate variability.</a> J. Clim., in press.  climate variability.</a> J. Clim., 24, 2648-2665.
28    </li></ul>
29    
30    <ul><li>
31    S. Dutkiewicz, 2011:
32    <a href="http://ecco2.org/manuscripts/2011/dutkiewicz_variations.pdf">
33    Driving ecosystem and biogeochemical models with optimal state
34    estimates of the ocean circulation.</a> U.S. CLIVAR Variations, 9, 1.
35  </li></ul>  </li></ul>
36    
37  <ul><li>  <ul><li>
38  G. Forget, G. Maze, M. Buckley, and J. Marshall, 2011:  G. Forget, G. Maze, M. Buckley, and J. Marshall, 2011:
39  Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume.  Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume.
40  J. Phys. Oceanogr., in press.  J. Phys. Oceanogr., 41(2), 269-286, doi:10.1175/2010JPO4257.1
41  </li></ul>  </li></ul>
42    
43  <ul><li>  <ul><li>
44  P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:  H. Gennerich and H. Villinger, 2011:
45  Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and  <a href="http://ecco2.org/manuscripts/2011/Gennerich_2011.pdf">
46  Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II  Deciphering the ocean bottom pressure variation in the Logatchev
47  (special issue on the AMOC), in press.  hydrothermal field at the eastern flank of the Mid-Atlantic Ridge.</a>
48    Geochemistry Geophysics Geosystems, 12, doi:10.1029/2010GC003441.
49  </li></ul>  </li></ul>
50    
51  <ul><li>  <ul><li>
52  E. Hill, D. Enderton, P. Heimbach, and C. Hill, 2011: SPGrid: A  P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:
53  numerical grid generation program for domain decomposed geophysical  Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and
54  fluid dynamics models. Unpublished manuscript.  Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II
55    (Topical issue on "Climate and the AMOC"), 58(17-18), 1858-1879, doi:10.1016/j.dsr2.2010.10.065.
56  </li></ul>  </li></ul>
57    
58  <ul><li>  <ul><li>
59  M. Manizza, M. Follows, S. Dutkiewicz, D. Menemenlis, J. McClelland,  M. Manizza, M. Follows, S. Dutkiewicz, D. Menemenlis, J. McClelland,
60  C. Hill, B. Peterson, R. Key, 2011:  C. Hill, B. Peterson, R. Key, 2011:
61  A model of the Arctic Ocean carbon cycle.  <a href="http://ecco2.org/manuscripts/2011/Manizza2011.pdf">
62  J. Geophys. Res., submitted.  A model of the Arctic Ocean carbon cycle.</a>
63    J. Geophys. Res., 116, C12020, doi:10.1029/2011JC006998.
64  </li></ul>  </li></ul>
65    
66  <ul><li>  <ul><li>
67  G. Maze, G. Forget, M. Buckley and J. Marshall, 2011: Using  I. Cerovecki, L.D. Talley, and M.R. Mazloff, 2011:
68  transformation and formation maps to study water mass transformation:  A Comparison of Southern Ocean Air-Sea Buoyancy Flux from an Ocean State Estimate with Five Other Products.
69  a case study of North Atlantic Eighteen Degree water. J. Phys.  J. Clim., 24(24), 6283-6306, <a href="http://dx.doi.org/10.1175/2011JCLI3858.1">doi:10.1175/2011JCLI3858.1</a>
 Oceanogr, submitted.  
70  </li></ul>  </li></ul>
71    
72  <ul><li>  <ul><li>
73  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:
74  <a href="http://ecco2.org/manuscripts/2011/NguyenJGR2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/NguyenJGR2011.pdf">
75  Arctic ice-ocean simulation with optimized model parameters: approach  Arctic ice-ocean simulation with optimized model parameters: approach
76  and assessment.</a>  J. Geophys. Res., in press.  and assessment.</a>  J. Geophys. Res., 116, C04025,
77    doi:10.1029/2010JC006573
78    </li></ul>
79    
80    <ul><li>
81    Piecuch, C. G., and R. M. Ponte, 2011: Mechanisms of interannual steric sea level variability, Geophys. Res. Lett., 38, L15605, doi:10.1029/2011GL048440.
82    </li></ul>
83    
84    <ul><li>
85    Rampal, P., J. Weiss, C. Dubois & J.-M. Campin 2011: IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline, J. Geophys. Res., vol. 116, C00D07, doi:10.1029/2011JC007110.
86    </li></ul>
87    
88    <ul><li>
89    Roquet, F., C. Wunsch, and G. Madec, 2011: On the patterns of wind-power input to the ocean circulation. J. Phys. Oceanogr., 41, 2328-2342, <a href="http://dx.doi.org/10.1175/JPO-D-11-024.1">doi:10.1175/JPO-D-11-024.1</a>.
90    </ul></li>
91    
92    <ul><li>
93    G. Spreen, R. Kwok, and D. Menemenlis, 2011:
94    <a href="http://ecco2.org/manuscripts/2011/Spreen2011.pdf">
95    Trends in Arctic sea ice drift and role of wind forcing:
96    1992-2009.</a>  Geophys. Res. Lett., 38, L19501.
97    </li></ul>
98    
99    <ul><li>
100    S. Tank, M. Manizza, R. Holmes, J. McClelland, and B. Peterson, 2011:
101    <a href="http://ecco2.org/manuscripts/2011/Tank2011.pdf">
102    The processing and impact of dissolved riverine nitrogen in the Arctic
103    Ocean.</a> Estuaries and Coasts, doi:10.1007/s12237-011-9417-3.
104    </li></ul>
105    
106    <ul><li>
107    R. Tulloch, C. Hill, and O. Jahn, 2011:
108    <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etalagu11.pdf">
109    Possible spreadings of buoyant plumes and local coastline
110    sensitivities using flow syntheses from 1992 to 2007.</a> Geophysical
111    Monograph Series, 195, 245-255.
112  </li></ul>  </li></ul>
113    
114  <ul><li>  <ul><li>
115  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:
116  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo10.pdf">  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo11.pdf">
117  Scales, growth rates and spectral fluxes of baroclinic instability in  Scales, growth rates and spectral fluxes of baroclinic instability in
118  the ocean.</a> J. Phys. Oceanogr., in press.  the ocean.</a> J. Phys. Oceanogr., 41, 1057-1076.
119  </li></ul>  </li></ul>
120    
121  <ul><li>  <ul><li>
122  C. Ubelmann and L. Fu, 2011:  C. Ubelmann and L. Fu, 2011:
123  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011a.pdf">
124  Vorticity structures in the tropical Pacific from a numerical simulation.</a>  Vorticity structures in the Tropical Pacific from a numerical simulation.</a>
125  J. Phys. Oceanogr., submitted.  J. Phys. Oceanogr., 41, 1455.
126  </li></ul>  </li></ul>
127    
128  <ul><li>  <ul><li>
129  N. Vinogradova, R. Ponte, M. Tamisiea, J. Davis, and  C. Ubelmann and L. Fu, 2011:
130  E. Hill, 2011: Effects of self-attraction and loading on annual  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011b.pdf">
131  variations of ocean bottom pressure. J. Geophys. Res., submitted.  Cyclonic eddies formed at the Pacific tropical instability wave fronts.</a>
132    J. Geophys. Res., 116, C12021.
133  </li></ul>  </li></ul>
134    
135  <ul><li>  <ul><li>
136  N. Vinogradova, R. Ponte, and P. Heimbach, 2011: Dynamics and forcing of sea  D. Volkov and L. Fu, 2011:
137  surface temperature variability on climate time scales. J. Clim., submitted.  <a href="http://ecco2.org/manuscripts/2011/VolkovFu2011.pdf">
138    Interannual variability of the Azores Current strength and eddy energy
139    in relation to atmospheric forcing.</a> J. Geophys. Res., 116, C11011.
140  </li></ul>  </li></ul>
141    
142  <ul><li>  <ul><li>
143  D. Volkov and L. Fu, 2011: Mechanism for the interannual variability of the  Wunsch, C., 2011:
144  Azores Current eddy energy. Geophys. Res. Lett., submitted.  The decadal mean circulation and Sverdrup balance.
145    J. Marine Res., 69, 417-434.
146  </li></ul>  </li></ul>
147    
148  <ul><li>  <ul><li>
149  Y. Xu and L. Fu, 2011: Global variability of the wavenumber spectrum of  Y. Xu and L. Fu, 2011:
150  oceanic mesoscale turbulence. J. Phys. Oceanogr., in press,  <a href="http://ecco2.org/manuscripts/2011/XuFu2011.pdf">
151  doi:10.1175/2010JPO4558.1.  Global variability of the wavenumber spectrum of
152    oceanic mesoscale turbulence.</a> J. Phys. Oceanogr., 41, 802-809.
153  </li></ul>  </li></ul>
154    
155  <ul><li>  <ul><li>
156  L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal  Y. Xu, L. Fu, and R. Tulloch, 2011: The global characteristics of the
157  excitation of interannual Atlantic meridional overturning circulation  wavenumber spectrum of ocean surface wind. J. Phys. Oceanogr., 41,
158  variability. J. Climate, in press, doi:10.1175/2010JCLI3610.1.  1576-1582.
159  </li></ul>  </li></ul>
160    
161  <ul><li>  <ul><li>
162  L. Zanna, P. Heimbach, A. Moore and E. Tziperman, 2011. Analysis of the  L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal
163  predictability and variability of the Atlantic ocean in response to optimal  excitation of interannual Atlantic meridional overturning circulation
164  surface excitation.  Quart. J. Roy. Met. Soc., submitted.  variability. J. Climate, 24(2), 413-423, doi:10.1175/2010JCLI3610.1.
165  </li></ul>  </li></ul>
166    

Legend:
Removed from v.1.11  
changed lines
  Added in v.1.33

  ViewVC Help
Powered by ViewVC 1.1.22