/[MITgcm]/www.ecco-group.org/ecco_2011_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2011_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.3 by heimbach, Tue Jan 18 00:10:21 2011 UTC revision 1.32 by heimbach, Sun Jun 17 04:12:06 2012 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:
3  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">
4  Superparameterization in ocean modeling: application to deep  Super-parameterization in ocean modeling: Application to deep
5  convection.</a> Ocean Modeling, submitted.  convection.</a> Ocean Modelling, 36, 90-101, doi:10.1016/j.ocemod.2010.10.003.
6    </li></ul>
7    
8    <ul><li>
9    A. Condron and P. Winsor, 2011:
10    <a href="http://ecco2.org/manuscripts/2011/CondronWinsor2011.pdf">
11    A subtropical fate awaited freshwater discharged from glacial Lake
12    Agassiz.</a> Geophys. Res. Lett., 38, L03705.
13  </li></ul>  </li></ul>
14    
15  <ul><li>  <ul><li>
16  X. Davis, L. Rothstein, W. Dewar, and D. Menemenlis, 2011:  X. Davis, L. Rothstein, W. Dewar, and D. Menemenlis, 2011:
17  <a href="http://ecco2.org/manuscripts/2010/DavisJcli10.pdf">  <a href="http://ecco2.org/manuscripts/2011/DavisJcli10.pdf">
18  Numerical investigations of seasonal and interannual variability of  Numerical investigations of seasonal and interannual variability of
19  North Pacific Subtropical Mode Water and its implications for Pacific  North Pacific Subtropical Mode Water and its implications for Pacific
20  climate variability.</a> J. Clim., in press.  climate variability.</a> J. Clim., 24, 2648-2665.
21    </li></ul>
22    
23    <ul><li>
24    S. Dutkiewicz, 2011:
25    <a href="http://ecco2.org/manuscripts/2011/dutkiewicz_variations.pdf">
26    Driving ecosystem and biogeochemical models with optimal state
27    estimates of the ocean circulation.</a> U.S. CLIVAR Variations, 9, 1.
28  </li></ul>  </li></ul>
29    
30  <ul><li>  <ul><li>
31  G. Forget, G. Maze, M. Buckley, and J. Marshall, 2011:  G. Forget, G. Maze, M. Buckley, and J. Marshall, 2011:
32  Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume.  Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume.
33  J. Phys. Oceanogr., in press.  J. Phys. Oceanogr., 41(2), 269-286, doi:10.1175/2010JPO4257.1
34  </li></ul>  </li></ul>
35    
36  <ul><li>  <ul><li>
37  Heimbach, P., C. Wunsch, R.M. Ponte, G. Forget, C. Hill, and J. Utke, 2011: Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II (special issue on the AMOC), in press.</li></ul>  H. Gennerich and H. Villinger, 2011:
38    <a href="http://ecco2.org/manuscripts/2011/Gennerich_2011.pdf">
39    Deciphering the ocean bottom pressure variation in the Logatchev
40    hydrothermal field at the eastern flank of the Mid-Atlantic Ridge.</a>
41    Geochemistry Geophysics Geosystems, 12, doi:10.1029/2010GC003441.
42    </li></ul>
43    
44  <ul><li>  <ul><li>
45  E. Hill, D. Enderton, P. Heimbach, and C. Hill, 2011: SPGrid: A  P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:
46  numerical grid generation program for domain decomposed geophysical  Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and
47  fluid dynamics models. Unpublished manuscript.  Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II
48    (Topical issue on "Climate and the AMOC"), 58(17-18), 1858-1879, doi:10.1016/j.dsr2.2010.10.065.
49  </li></ul>  </li></ul>
50    
51  <ul><li>  <ul><li>
52  M. Manizza, M. Follows, S. Dutkiewicz, D. Menemenlis, J. McClelland,  M. Manizza, M. Follows, S. Dutkiewicz, D. Menemenlis, J. McClelland,
53  C. Hill1, B. Peterson, R. Key, 2011:  C. Hill, B. Peterson, R. Key, 2011:
54  <a href="http://ecco2.org/manuscripts/2010/ManizzaJGR2010.pdf">  <a href="http://ecco2.org/manuscripts/2011/Manizza2011.pdf">
55  Modeling the Arctic Ocean carbon cycle and its sensitivity to the  A model of the Arctic Ocean carbon cycle.</a>
56  influence of the riverine dissolved organic carbon.</a>  J. Geophys. Res., 116, C12020, doi:10.1029/2011JC006998.
 J. Geophys. Res., submitted.  
57  </li></ul>  </li></ul>
58    
59  <ul><li>  <ul><li>
60  G. Maze, G. Forget, M. Buckley and J. Marshall, 2011: Using  I. Cerovecki, L.D. Talley, and M.R. Mazloff, 2011:
61  transformation and formation maps to study water mass transformation:  A Comparison of Southern Ocean Air-Sea Buoyancy Flux from an Ocean State Estimate with Five Other Products.
62  a case study of North Atlantic Eighteen Degree water. J. Phys.  J. Clim., 24(24), 6283-6306, <a href="http://dx.doi.org/10.1175/2011JCLI3858.1">doi:10.1175/2011JCLI3858.1</a>
 Oceanogr, submitted.  
63  </li></ul>  </li></ul>
64    
65  <ul><li>  <ul><li>
66  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:
67  <a href="http://ecco2.org/manuscripts/2010/NguyenJGR10.pdf">  <a href="http://ecco2.org/manuscripts/2011/NguyenJGR2011.pdf">
68  Arctic ice-ocean simulation with optimized model parameters: approach  Arctic ice-ocean simulation with optimized model parameters: approach
69  and assessment.</a>  J. Geophys. Res., submitted.  and assessment.</a>  J. Geophys. Res., 116, C04025,
70    doi:10.1029/2010JC006573
71    </li></ul>
72    
73    <ul><li>
74    Piecuch, C. G., and R. M. Ponte, 2011: Mechanisms of interannual steric sea level variability, Geophys. Res. Lett., 38, L15605, doi:10.1029/2011GL048440.
75    </li></ul>
76    
77    <ul><li>
78    Rampal, P., J. Weiss, C. Dubois & J.-M. Campin 2011: IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline, J. Geophys. Res., vol. 116, C00D07, doi:10.1029/2011JC007110.
79    </li></ul>
80    
81    <ul><li>
82    Roquet, F., C. Wunsch, and G. Madec, 2011: On the patterns of wind-power input to the ocean circulation. J. Phys. Oceanogr., 41, 2328-2342, <a href="http://dx.doi.org/10.1175/JPO-D-11-024.1">doi:10.1175/JPO-D-11-024.1</a>.
83    </ul></li>
84    
85    <ul><li>
86    G. Spreen, R. Kwok, and D. Menemenlis, 2011:
87    <a href="http://ecco2.org/manuscripts/2011/Spreen2011.pdf">
88    Trends in Arctic sea ice drift and role of wind forcing:
89    1992-2009.</a>  Geophys. Res. Lett., 38, L19501.
90    </li></ul>
91    
92    <ul><li>
93    S. Tank, M. Manizza, R. Holmes, J. McClelland, and B. Peterson, 2011:
94    <a href="http://ecco2.org/manuscripts/2011/Tank2011.pdf">
95    The processing and impact of dissolved riverine nitrogen in the Arctic
96    Ocean.</a> Estuaries and Coasts, doi:10.1007/s12237-011-9417-3.
97    </li></ul>
98    
99    <ul><li>
100    R. Tulloch, C. Hill, and O. Jahn, 2011:
101    <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etalagu11.pdf">
102    Possible spreadings of buoyant plumes and local coastline
103    sensitivities using flow syntheses from 1992 to 2007.</a> Geophysical
104    Monograph Series, 195, 245-255.
105  </li></ul>  </li></ul>
106    
107  <ul><li>  <ul><li>
108  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:
109  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo10.pdf">  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo11.pdf">
110  Scales, growth rates and spectral fluxes of baroclinic instability in  Scales, growth rates and spectral fluxes of baroclinic instability in
111  the ocean.</a> J. Phys. Oceanogr., submitted.  the ocean.</a> J. Phys. Oceanogr., 41, 1057-1076.
112  </li></ul>  </li></ul>
113    
114  <ul><li>  <ul><li>
115  C. Ubelmann and L. Fu, 2011:  C. Ubelmann and L. Fu, 2011:
116  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011a.pdf">
117  Vorticity structures in the tropical Pacific from a numerical simulation.</a>  Vorticity structures in the Tropical Pacific from a numerical simulation.</a>
118  Geophys. J. Phys. Oceanogr., submitted.  J. Phys. Oceanogr., 41, 1455.
119  </li></ul>  </li></ul>
120    
121  <ul><li>  <ul><li>
122  N. Vinogradova, R. Ponte, M. Tamisiea, J. Davis, and  C. Ubelmann and L. Fu, 2011:
123  E. Hill, 2011: Effects of self-attraction and loading on annual  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011b.pdf">
124  variations of ocean bottom pressure. J. Geophys. Res., submitted.  Cyclonic eddies formed at the Pacific tropical instability wave fronts.</a>
125    J. Geophys. Res., 116, C12021.
126    </li></ul>
127    
128    <ul><li>
129    D. Volkov and L. Fu, 2011:
130    <a href="http://ecco2.org/manuscripts/2011/VolkovFu2011.pdf">
131    Interannual variability of the Azores Current strength and eddy energy
132    in relation to atmospheric forcing.</a> J. Geophys. Res., 116, C11011.
133  </li></ul>  </li></ul>
134    
135  <ul><li>  <ul><li>
136  N. Vinogradova, R. Ponte, and P. Heimbach, 2011: Dynamics and forcing of sea  Wunsch, C., 2011:
137  surface temperature variability on climate time scales. J. Clim., submitted.  The decadal mean circulation and Sverdrup balance.
138    J. Marine Res., 69, 417-434.
139  </li></ul>  </li></ul>
140    
141  <ul><li>  <ul><li>
142  D. Volkov and L. Fu, 2011: Mechanism for the interannual variability of the  Y. Xu and L. Fu, 2011:
143  Azores Current eddy energy. Geophys. Res. Let., submitted.  <a href="http://ecco2.org/manuscripts/2011/XuFu2011.pdf">
144    Global variability of the wavenumber spectrum of
145    oceanic mesoscale turbulence.</a> J. Phys. Oceanogr., 41, 802-809.
146  </li></ul>  </li></ul>
147    
148  <ul><li>  <ul><li>
149  L. Zanna, P. Heimbach, A. Moore and E. Tziperman, 2011. Analysis of the  Y. Xu, L. Fu, and R. Tulloch, 2011: The global characteristics of the
150  predictability and variability of the Atlantic ocean in response to optimal  wavenumber spectrum of ocean surface wind. J. Phys. Oceanogr., 41,
151  surface excitation.  Quart. J. Roy. Met. Soc., submitted.  1576-1582.
152  </li></ul>  </li></ul>
153    
154    <ul><li>
155    L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal
156    excitation of interannual Atlantic meridional overturning circulation
157    variability. J. Climate, 24(2), 413-423, doi:10.1175/2010JCLI3610.1.
158    </li></ul>
159    

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.32

  ViewVC Help
Powered by ViewVC 1.1.22