/[MITgcm]/www.ecco-group.org/ecco_2011_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2011_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.24 by dimitri, Wed Jan 25 09:19:17 2012 UTC revision 1.32 by heimbach, Sun Jun 17 04:12:06 2012 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:
3  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">
4  Superparameterization in ocean modeling: application to deep  Super-parameterization in ocean modeling: Application to deep
5  convection.</a> Ocean Modeling, in press.  convection.</a> Ocean Modelling, 36, 90-101, doi:10.1016/j.ocemod.2010.10.003.
6  </li></ul>  </li></ul>
7    
8  <ul><li>  <ul><li>
# Line 45  Geochemistry Geophysics Geosystems, 12, Line 45  Geochemistry Geophysics Geosystems, 12,
45  P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:  P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:
46  Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and  Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and
47  Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II  Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II
48  (special issue on the AMOC), in press, doi:10.1016/j.dsr2.2010.10.065  (Topical issue on "Climate and the AMOC"), 58(17-18), 1858-1879, doi:10.1016/j.dsr2.2010.10.065.
49  </li></ul>  </li></ul>
50    
51  <ul><li>  <ul><li>
# Line 57  J. Geophys. Res., 116, C12020, doi:10.10 Line 57  J. Geophys. Res., 116, C12020, doi:10.10
57  </li></ul>  </li></ul>
58    
59  <ul><li>  <ul><li>
60    I. Cerovecki, L.D. Talley, and M.R. Mazloff, 2011:
61    A Comparison of Southern Ocean Air-Sea Buoyancy Flux from an Ocean State Estimate with Five Other Products.
62    J. Clim., 24(24), 6283-6306, <a href="http://dx.doi.org/10.1175/2011JCLI3858.1">doi:10.1175/2011JCLI3858.1</a>
63    </li></ul>
64    
65    <ul><li>
66  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:
67  <a href="http://ecco2.org/manuscripts/2011/NguyenJGR2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/NguyenJGR2011.pdf">
68  Arctic ice-ocean simulation with optimized model parameters: approach  Arctic ice-ocean simulation with optimized model parameters: approach
# Line 65  doi:10.1029/2010JC006573 Line 71  doi:10.1029/2010JC006573
71  </li></ul>  </li></ul>
72    
73  <ul><li>  <ul><li>
74    Piecuch, C. G., and R. M. Ponte, 2011: Mechanisms of interannual steric sea level variability, Geophys. Res. Lett., 38, L15605, doi:10.1029/2011GL048440.
75    </li></ul>
76    
77    <ul><li>
78    Rampal, P., J. Weiss, C. Dubois & J.-M. Campin 2011: IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline, J. Geophys. Res., vol. 116, C00D07, doi:10.1029/2011JC007110.
79    </li></ul>
80    
81    <ul><li>
82    Roquet, F., C. Wunsch, and G. Madec, 2011: On the patterns of wind-power input to the ocean circulation. J. Phys. Oceanogr., 41, 2328-2342, <a href="http://dx.doi.org/10.1175/JPO-D-11-024.1">doi:10.1175/JPO-D-11-024.1</a>.
83    </ul></li>
84    
85    <ul><li>
86  G. Spreen, R. Kwok, and D. Menemenlis, 2011:  G. Spreen, R. Kwok, and D. Menemenlis, 2011:
87  <a href="http://ecco2.org/manuscripts/2011/Spreen2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/Spreen2011.pdf">
88  Trends in Arctic sea ice drift and role of wind forcing:  Trends in Arctic sea ice drift and role of wind forcing:
# Line 79  Ocean.</a> Estuaries and Coasts, doi:10. Line 97  Ocean.</a> Estuaries and Coasts, doi:10.
97  </li></ul>  </li></ul>
98    
99  <ul><li>  <ul><li>
100    R. Tulloch, C. Hill, and O. Jahn, 2011:
101    <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etalagu11.pdf">
102    Possible spreadings of buoyant plumes and local coastline
103    sensitivities using flow syntheses from 1992 to 2007.</a> Geophysical
104    Monograph Series, 195, 245-255.
105    </li></ul>
106    
107    <ul><li>
108  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:
109  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo10.pdf">  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo11.pdf">
110  Scales, growth rates and spectral fluxes of baroclinic instability in  Scales, growth rates and spectral fluxes of baroclinic instability in
111  the ocean.</a> J. Phys. Oceanogr., in press.  the ocean.</a> J. Phys. Oceanogr., 41, 1057-1076.
112  </li></ul>  </li></ul>
113    
114  <ul><li>  <ul><li>
# Line 100  J. Geophys. Res., 116, C12021. Line 126  J. Geophys. Res., 116, C12021.
126  </li></ul>  </li></ul>
127    
128  <ul><li>  <ul><li>
 N. Vinogradova, R. Ponte, and P. Heimbach, 2011: Dynamics and forcing of sea  
 surface temperature variability on climate time scales. J. Clim., submitted.  
 </li></ul>  
   
 <ul><li>  
129  D. Volkov and L. Fu, 2011:  D. Volkov and L. Fu, 2011:
130  <a href="http://ecco2.org/manuscripts/2011/VolkovFu2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/VolkovFu2011.pdf">
131  Interannual variability of the Azores Current strength and eddy energy  Interannual variability of the Azores Current strength and eddy energy
# Line 112  in relation to atmospheric forcing.</a> Line 133  in relation to atmospheric forcing.</a>
133  </li></ul>  </li></ul>
134    
135  <ul><li>  <ul><li>
136  Wunsch, C., 2011: Covariances and linear predictability of the North Atlantic Ocean. submitted.  Wunsch, C., 2011:
137    The decadal mean circulation and Sverdrup balance.
138    J. Marine Res., 69, 417-434.
139  </li></ul>  </li></ul>
140    
141  <ul><li>  <ul><li>
142  Wunsch, C., 2011:  Y. Xu and L. Fu, 2011:
143  The decadal mean circulation and Sverdrup balance.  <a href="http://ecco2.org/manuscripts/2011/XuFu2011.pdf">
144  J. Marine Res., in press.  Global variability of the wavenumber spectrum of
145    oceanic mesoscale turbulence.</a> J. Phys. Oceanogr., 41, 802-809.
146  </li></ul>  </li></ul>
147    
148  <ul><li>  <ul><li>
149  Y. Xu and L. Fu, 2011: Global variability of the wavenumber spectrum of  Y. Xu, L. Fu, and R. Tulloch, 2011: The global characteristics of the
150  oceanic mesoscale turbulence. J. Phys. Oceanogr., in press,  wavenumber spectrum of ocean surface wind. J. Phys. Oceanogr., 41,
151  doi:10.1175/2010JPO4558.1.  1576-1582.
152  </li></ul>  </li></ul>
153    
154  <ul><li>  <ul><li>
155  L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal  L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal
156  excitation of interannual Atlantic meridional overturning circulation  excitation of interannual Atlantic meridional overturning circulation
157  variability. J. Climate, in press, doi:10.1175/2010JCLI3610.1.  variability. J. Climate, 24(2), 413-423, doi:10.1175/2010JCLI3610.1.
158  </li></ul>  </li></ul>
159    
 <ul><li>  
 L. Zanna, P. Heimbach, A. Moore and E. Tziperman, 2011. Analysis of the  
 predictability and variability of the Atlantic ocean in response to optimal  
 surface excitation.  Quart. J. Roy. Met. Soc., submitted.  
 </li></ul>  

Legend:
Removed from v.1.24  
changed lines
  Added in v.1.32

  ViewVC Help
Powered by ViewVC 1.1.22