/[MITgcm]/www.ecco-group.org/ecco_2011_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2011_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.3 by heimbach, Tue Jan 18 00:10:21 2011 UTC revision 1.25 by heimbach, Thu Jan 26 05:05:34 2012 UTC
# Line 2  Line 2 
2  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:
3  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">
4  Superparameterization in ocean modeling: application to deep  Superparameterization in ocean modeling: application to deep
5  convection.</a> Ocean Modeling, submitted.  convection.</a> Ocean Modeling, in press.
6    </li></ul>
7    
8    <ul><li>
9    A. Condron and P. Winsor, 2011:
10    <a href="http://ecco2.org/manuscripts/2011/CondronWinsor2011.pdf">
11    A subtropical fate awaited freshwater discharged from glacial Lake
12    Agassiz.</a> Geophys. Res. Lett., 38, L03705.
13  </li></ul>  </li></ul>
14    
15  <ul><li>  <ul><li>
16  X. Davis, L. Rothstein, W. Dewar, and D. Menemenlis, 2011:  X. Davis, L. Rothstein, W. Dewar, and D. Menemenlis, 2011:
17  <a href="http://ecco2.org/manuscripts/2010/DavisJcli10.pdf">  <a href="http://ecco2.org/manuscripts/2011/DavisJcli10.pdf">
18  Numerical investigations of seasonal and interannual variability of  Numerical investigations of seasonal and interannual variability of
19  North Pacific Subtropical Mode Water and its implications for Pacific  North Pacific Subtropical Mode Water and its implications for Pacific
20  climate variability.</a> J. Clim., in press.  climate variability.</a> J. Clim., 24, 2648-2665.
21    </li></ul>
22    
23    <ul><li>
24    S. Dutkiewicz, 2011:
25    <a href="http://ecco2.org/manuscripts/2011/dutkiewicz_variations.pdf">
26    Driving ecosystem and biogeochemical models with optimal state
27    estimates of the ocean circulation.</a> U.S. CLIVAR Variations, 9, 1.
28  </li></ul>  </li></ul>
29    
30  <ul><li>  <ul><li>
31  G. Forget, G. Maze, M. Buckley, and J. Marshall, 2011:  G. Forget, G. Maze, M. Buckley, and J. Marshall, 2011:
32  Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume.  Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume.
33  J. Phys. Oceanogr., in press.  J. Phys. Oceanogr., 41(2), 269-286, doi:10.1175/2010JPO4257.1
34  </li></ul>  </li></ul>
35    
36  <ul><li>  <ul><li>
37  Heimbach, P., C. Wunsch, R.M. Ponte, G. Forget, C. Hill, and J. Utke, 2011: Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II (special issue on the AMOC), in press.</li></ul>  H. Gennerich and H. Villinger, 2011:
38    <a href="http://ecco2.org/manuscripts/2011/Gennerich_2011.pdf">
39    Deciphering the ocean bottom pressure variation in the Logatchev
40    hydrothermal field at the eastern flank of the Mid-Atlantic Ridge.</a>
41    Geochemistry Geophysics Geosystems, 12, doi:10.1029/2010GC003441.
42    </li></ul>
43    
44  <ul><li>  <ul><li>
45  E. Hill, D. Enderton, P. Heimbach, and C. Hill, 2011: SPGrid: A  P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:
46  numerical grid generation program for domain decomposed geophysical  Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and
47  fluid dynamics models. Unpublished manuscript.  Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II
48    (Topical issue on "Climate and the AMOC"), 58(17-18), 1858-1879, doi:10.1016/j.dsr2.2010.10.065.
49  </li></ul>  </li></ul>
50    
51  <ul><li>  <ul><li>
52  M. Manizza, M. Follows, S. Dutkiewicz, D. Menemenlis, J. McClelland,  M. Manizza, M. Follows, S. Dutkiewicz, D. Menemenlis, J. McClelland,
53  C. Hill1, B. Peterson, R. Key, 2011:  C. Hill, B. Peterson, R. Key, 2011:
54  <a href="http://ecco2.org/manuscripts/2010/ManizzaJGR2010.pdf">  <a href="http://ecco2.org/manuscripts/2011/Manizza2011.pdf">
55  Modeling the Arctic Ocean carbon cycle and its sensitivity to the  A model of the Arctic Ocean carbon cycle.</a>
56  influence of the riverine dissolved organic carbon.</a>  J. Geophys. Res., 116, C12020, doi:10.1029/2011JC006998.
 J. Geophys. Res., submitted.  
57  </li></ul>  </li></ul>
58    
59  <ul><li>  <ul><li>
60  G. Maze, G. Forget, M. Buckley and J. Marshall, 2011: Using  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:
61  transformation and formation maps to study water mass transformation:  <a href="http://ecco2.org/manuscripts/2011/NguyenJGR2011.pdf">
62  a case study of North Atlantic Eighteen Degree water. J. Phys.  Arctic ice-ocean simulation with optimized model parameters: approach
63  Oceanogr, submitted.  and assessment.</a>  J. Geophys. Res., 116, C04025,
64    doi:10.1029/2010JC006573
65  </li></ul>  </li></ul>
66    
67  <ul><li>  <ul><li>
68  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:  Piecuch, C. G., and R. M. Ponte, 2011: Mechanisms of interannual steric sea level variability, Geophys. Res. Lett., 38, L15605, doi:10.1029/2011GL048440.
69  <a href="http://ecco2.org/manuscripts/2010/NguyenJGR10.pdf">  </li></ul>
70  Arctic ice-ocean simulation with optimized model parameters: approach  
71  and assessment.</a>  J. Geophys. Res., submitted.  <ul><li>
72    Rampal, P., J. Weiss, C. Dubois & J.-M. Campin 2011: IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline, J. Geophys. Res., vol. 116, C00D07, doi:10.1029/2011JC007110.
73    </li></ul>
74    
75    <ul><li>
76    Roquet, F., C. Wunsch, and G. Madec, 2011: On the patterns of wind-power input to the ocean circulation. J. Phys. Oceanogr., 41, 2328-2342, 10.1175/JPO-D-11-024.1.
77    </ul></li>
78    
79    <ul><li>
80    G. Spreen, R. Kwok, and D. Menemenlis, 2011:
81    <a href="http://ecco2.org/manuscripts/2011/Spreen2011.pdf">
82    Trends in Arctic sea ice drift and role of wind forcing:
83    1992-2009.</a>  Geophys. Res. Lett., 38, L19501.
84    </li></ul>
85    
86    <ul><li>
87    S. Tank, M. Manizza, R. Holmes, J. McClelland, and B. Peterson, 2011:
88    <a href="http://ecco2.org/manuscripts/2011/Tank2011.pdf">
89    The processing and impact of dissolved riverine nitrogen in the Arctic
90    Ocean.</a> Estuaries and Coasts, doi:10.1007/s12237-011-9417-3.
91  </li></ul>  </li></ul>
92    
93  <ul><li>  <ul><li>
94  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:
95  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo10.pdf">  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo10.pdf">
96  Scales, growth rates and spectral fluxes of baroclinic instability in  Scales, growth rates and spectral fluxes of baroclinic instability in
97  the ocean.</a> J. Phys. Oceanogr., submitted.  the ocean.</a> J. Phys. Oceanogr., in press.
98  </li></ul>  </li></ul>
99    
100  <ul><li>  <ul><li>
101  C. Ubelmann and L. Fu, 2011:  C. Ubelmann and L. Fu, 2011:
102  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011a.pdf">
103  Vorticity structures in the tropical Pacific from a numerical simulation.</a>  Vorticity structures in the Tropical Pacific from a numerical simulation.</a>
104  Geophys. J. Phys. Oceanogr., submitted.  J. Phys. Oceanogr., 41, 1455.
105  </li></ul>  </li></ul>
106    
107  <ul><li>  <ul><li>
108  N. Vinogradova, R. Ponte, M. Tamisiea, J. Davis, and  C. Ubelmann and L. Fu, 2011:
109  E. Hill, 2011: Effects of self-attraction and loading on annual  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011b.pdf">
110  variations of ocean bottom pressure. J. Geophys. Res., submitted.  Cyclonic eddies formed at the Pacific tropical instability wave fronts.</a>
111    J. Geophys. Res., 116, C12021.
112  </li></ul>  </li></ul>
113    
114  <ul><li>  <ul><li>
# Line 77  surface temperature variability on clima Line 117  surface temperature variability on clima
117  </li></ul>  </li></ul>
118    
119  <ul><li>  <ul><li>
120  D. Volkov and L. Fu, 2011: Mechanism for the interannual variability of the  D. Volkov and L. Fu, 2011:
121  Azores Current eddy energy. Geophys. Res. Let., submitted.  <a href="http://ecco2.org/manuscripts/2011/VolkovFu2011.pdf">
122    Interannual variability of the Azores Current strength and eddy energy
123    in relation to atmospheric forcing.</a> J. Geophys. Res., 116, C11011.
124  </li></ul>  </li></ul>
125    
126  <ul><li>  <ul><li>
127  L. Zanna, P. Heimbach, A. Moore and E. Tziperman, 2011. Analysis of the  Wunsch, C., 2011:
128  predictability and variability of the Atlantic ocean in response to optimal  The decadal mean circulation and Sverdrup balance.
129  surface excitation.  Quart. J. Roy. Met. Soc., submitted.  J. Marine Res., 69, 417-434.
130  </li></ul>  </li></ul>
131    
132    <ul><li>
133    Y. Xu and L. Fu, 2011: Global variability of the wavenumber spectrum of
134    oceanic mesoscale turbulence. J. Phys. Oceanogr., in press,
135    doi:10.1175/2010JPO4558.1.
136    </li></ul>
137    
138    <ul><li>
139    L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal
140    excitation of interannual Atlantic meridional overturning circulation
141    variability. J. Climate, 24(2), 413-423, doi:10.1175/2010JCLI3610.1.
142    </li></ul>
143    

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.25

  ViewVC Help
Powered by ViewVC 1.1.22