/[MITgcm]/www.ecco-group.org/ecco_2011_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2011_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.21 by dimitri, Tue Nov 15 23:41:52 2011 UTC revision 1.38 by dimitri, Mon Aug 3 04:04:24 2015 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2    R. Abernathey, J. Marshall, and D. Ferreira, 2011: The dependence of Southern
3    Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41,
4    2261-2278.
5    </li></ul>
6    
7    <ul><li>
8  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:
9  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">
10  Superparameterization in ocean modeling: application to deep  Super-parameterization in ocean modeling: Application to deep
11  convection.</a> Ocean Modeling, in press.  convection.</a> Ocean Modelling, 36, 90-101.
12    </li></ul>
13    
14    <ul><li>
15    I. Cerovecki, L.D. Talley, and M.R. Mazloff, 2011:
16    <a href="http://dx.doi.org/10.1175/2011JCLI3858.1"> A Comparison of Southern
17    Ocean Air-Sea Buoyancy Flux from an Ocean State Estimate with Five Other
18    Products.</a> J. Clim., 24, 6283-6306.
19  </li></ul>  </li></ul>
20    
21  <ul><li>  <ul><li>
# Line 28  estimates of the ocean circulation.</a> Line 41  estimates of the ocean circulation.</a>
41  </li></ul>  </li></ul>
42    
43  <ul><li>  <ul><li>
44    M. Follows and S. Dutkiewicz, 2011:
45    <a href="http://ocean.mit.edu/~mick/Papers/Follows-Dutkiewicz-AnnRevMarineSci-2011.pdf">
46    Modeling diverse communities of marine microbes.</a>
47    Annu. Rev. Mar. Sci., 427–451.
48    </li></ul>
49    
50    <ul><li>
51  G. Forget, G. Maze, M. Buckley, and J. Marshall, 2011:  G. Forget, G. Maze, M. Buckley, and J. Marshall, 2011:
52  Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume.  Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume.
53  J. Phys. Oceanogr., 41(2), 269-286, doi:10.1175/2010JPO4257.1  J. Phys. Oceanogr., 41, 269-286.
54  </li></ul>  </li></ul>
55    
56  <ul><li>  <ul><li>
# Line 44  Geochemistry Geophysics Geosystems, 12, Line 64  Geochemistry Geophysics Geosystems, 12,
64  <ul><li>  <ul><li>
65  P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:  P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:
66  Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and  Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and
67  Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II  Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II,
68  (special issue on the AMOC), in press, doi:10.1016/j.dsr2.2010.10.065  58, 1858-1879.
69    </li></ul>
70    
71    <ul><li>
72    G. Holloway, A. Nguyen, and Z. Wang, 2011:
73    <a href="http://ecco2.org/manuscripts/2011/Holloway2011.pdf"> Oceans and ocean
74    models as seen by current meters.</a> J. Geophys. Res., 116, C00D08.
75  </li></ul>  </li></ul>
76    
77  <ul><li>  <ul><li>
# Line 53  M. Manizza, M. Follows, S. Dutkiewicz, D Line 79  M. Manizza, M. Follows, S. Dutkiewicz, D
79  C. Hill, B. Peterson, R. Key, 2011:  C. Hill, B. Peterson, R. Key, 2011:
80  <a href="http://ecco2.org/manuscripts/2011/Manizza2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/Manizza2011.pdf">
81  A model of the Arctic Ocean carbon cycle.</a>  A model of the Arctic Ocean carbon cycle.</a>
82  J. Geophys. Res., in press.  J. Geophys. Res., 116, C12020.
83  </li></ul>  </li></ul>
84    
85  <ul><li>  <ul><li>
86  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:
87  <a href="http://ecco2.org/manuscripts/2011/NguyenJGR2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/NguyenJGR2011.pdf">
88  Arctic ice-ocean simulation with optimized model parameters: approach  Arctic ice-ocean simulation with optimized model parameters: approach
89  and assessment.</a>  J. Geophys. Res., 116, C04025,  and assessment.</a>  J. Geophys. Res., 116, C04025.
90  doi:10.1029/2010JC006573  </li></ul>
91    
92    <ul><li>
93    C. Piecuch and R. Ponte, 2011: Mechanisms of interannual steric sea level
94    variability, Geophys. Res. Lett., 38, L15605.
95    </li></ul>
96    
97    <ul><li>
98    P. Rampal, J. Weiss, C. Dubois, and J.-M. Campin 2011: IPCC climate models do
99    not capture Arctic sea ice drift acceleration: Consequences in terms of
100    projected sea ice thinning and decline, J. Geophys. Res., vol. 116, C00D07.
101  </li></ul>  </li></ul>
102    
103  <ul><li>  <ul><li>
104    F. Roquet, C. Wunsch, and G. Madec, 2011:
105    <a href="http://dx.doi.org/10.1175/JPO-D-11-024.1"> On the patterns of
106    wind-power input to the ocean circulation.</a> J. Phys. Oceanogr., 41,
107    2328-2342.
108    </ul></li>
109    
110    <ul><li>
111  G. Spreen, R. Kwok, and D. Menemenlis, 2011:  G. Spreen, R. Kwok, and D. Menemenlis, 2011:
112  <a href="http://ecco2.org/manuscripts/2011/Spreen2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/Spreen2011.pdf">
113  Trends in Arctic sea ice drift and role of wind forcing:  Trends in Arctic sea ice drift and role of wind forcing:
# Line 72  Trends in Arctic sea ice drift and role Line 115  Trends in Arctic sea ice drift and role
115  </li></ul>  </li></ul>
116    
117  <ul><li>  <ul><li>
 S. Tank, M. Manizza, R. Holmes, J. McClelland, and B. Peterson, 2011:  
 <a href="http://ecco2.org/manuscripts/2011/Tank2011.pdf">  
 The processing and impact of dissolved riverine nitrogen in the Arctic  
 Ocean.</a> Estuaries and Coasts, doi:10.1007/s12237-011-9417-3.  
 </li></ul>  
   
 <ul><li>  
118  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:
119  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo10.pdf">  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo11.pdf">
120  Scales, growth rates and spectral fluxes of baroclinic instability in  Scales, growth rates and spectral fluxes of baroclinic instability in
121  the ocean.</a> J. Phys. Oceanogr., in press.  the ocean.</a> J. Phys. Oceanogr., 41, 1057-1076.
122  </li></ul>  </li></ul>
123    
124  <ul><li>  <ul><li>
125  C. Ubelmann and L. Fu, 2011:  C. Ubelmann and L. Fu, 2011:
126  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011a.pdf">
127  Vorticity structures in the tropical Pacific from a numerical simulation.</a>  Vorticity structures in the Tropical Pacific from a numerical simulation.</a>
128  J. Phys. Oceanogr., submitted.  J. Phys. Oceanogr., 41, 1455.
129  </li></ul>  </li></ul>
130    
131  <ul><li>  <ul><li>
132  N. Vinogradova, R. Ponte, and P. Heimbach, 2011: Dynamics and forcing of sea  C. Ubelmann and L. Fu, 2011:
133  surface temperature variability on climate time scales. J. Clim., submitted.  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011b.pdf">
134    Cyclonic eddies formed at the Pacific tropical instability wave fronts.</a>
135    J. Geophys. Res., 116, C12021.
136  </li></ul>  </li></ul>
137    
138  <ul><li>  <ul><li>
139  D. Volkov and L. Fu, 2011: Mechanism for the interannual variability of the  D. Volkov and L. Fu, 2011:
140  Azores Current eddy energy. Geophys. Res. Lett., submitted.  <a href="http://ecco2.org/manuscripts/2011/VolkovFu2011.pdf">
141    Interannual variability of the Azores Current strength and eddy energy
142    in relation to atmospheric forcing.</a> J. Geophys. Res., 116, C11011.
143  </li></ul>  </li></ul>
144    
   
145  <ul><li>  <ul><li>
146  Wunsch, C., 2011: Covariances and linear predictability of the North Atlantic Ocean. submitted.  Z. Wang, G. Holloway, and C. Hannah, 2011:
147    <a href="http://ecco2.org/manuscripts/2011/Wang2011.pdf"> Effects of
148    parameterized eddy stress on volume, heat, and freshwater transports through
149    Fram Strait.</a> J. Geophys. Res., 116, C00D09.
150  </li></ul>  </li></ul>
151    
152  <ul><li>  <ul><li>
153  Wunsch, C., 2011:  Y. Xu and L. Fu, 2011:
154  The decadal mean circulation and Sverdrup balance.  <a href="http://ecco2.org/manuscripts/2011/XuFu2011.pdf">
155  J. Marine Res., in press.  Global variability of the wavenumber spectrum of
156    oceanic mesoscale turbulence.</a> J. Phys. Oceanogr., 41, 802-809.
157  </li></ul>  </li></ul>
158    
159  <ul><li>  <ul><li>
160  Y. Xu and L. Fu, 2011: Global variability of the wavenumber spectrum of  Y. Xu, L. Fu, and R. Tulloch, 2011: The global characteristics of the
161  oceanic mesoscale turbulence. J. Phys. Oceanogr., in press,  wavenumber spectrum of ocean surface wind. J. Phys. Oceanogr., 41,
162  doi:10.1175/2010JPO4558.1.  1576-1582.
163  </li></ul>  </li></ul>
164    
165  <ul><li>  <ul><li>
166  L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal  L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal
167  excitation of interannual Atlantic meridional overturning circulation  excitation of interannual Atlantic meridional overturning circulation
168  variability. J. Climate, in press, doi:10.1175/2010JCLI3610.1.  variability. J. Climate, 24, 413-423.
 </li></ul>  
   
 <ul><li>  
 L. Zanna, P. Heimbach, A. Moore and E. Tziperman, 2011. Analysis of the  
 predictability and variability of the Atlantic ocean in response to optimal  
 surface excitation.  Quart. J. Roy. Met. Soc., submitted.  
169  </li></ul>  </li></ul>

Legend:
Removed from v.1.21  
changed lines
  Added in v.1.38

  ViewVC Help
Powered by ViewVC 1.1.22