/[MITgcm]/www.ecco-group.org/ecco_2011_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2011_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.17 by dimitri, Thu Sep 1 00:28:12 2011 UTC revision 1.36 by dimitri, Wed Apr 1 16:03:42 2015 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2    R. Abernathey, J. Marshall, and D. Ferreira, 2011: The dependence of Southern
3    Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41,
4    2261-2278.
5    </li></ul>
6    
7    <ul><li>
8  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:
9  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">
10  Superparameterization in ocean modeling: application to deep  Super-parameterization in ocean modeling: Application to deep
11  convection.</a> Ocean Modeling, in press.  convection.</a> Ocean Modelling, 36, 90-101.
12    </li></ul>
13    
14    <ul><li>
15    I. Cerovecki, L.D. Talley, and M.R. Mazloff, 2011:
16    <a href="http://dx.doi.org/10.1175/2011JCLI3858.1"> A Comparison of Southern
17    Ocean Air-Sea Buoyancy Flux from an Ocean State Estimate with Five Other
18    Products.</a> J. Clim., 24, 6283-6306.
19  </li></ul>  </li></ul>
20    
21  <ul><li>  <ul><li>
# Line 30  estimates of the ocean circulation.</a> Line 43  estimates of the ocean circulation.</a>
43  <ul><li>  <ul><li>
44  G. Forget, G. Maze, M. Buckley, and J. Marshall, 2011:  G. Forget, G. Maze, M. Buckley, and J. Marshall, 2011:
45  Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume.  Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume.
46  J. Phys. Oceanogr., 41(2), 269-286, doi:10.1175/2010JPO4257.1  J. Phys. Oceanogr., 41, 269-286.
47    </li></ul>
48    
49    <ul><li>
50    H. Gennerich and H. Villinger, 2011:
51    <a href="http://ecco2.org/manuscripts/2011/Gennerich_2011.pdf">
52    Deciphering the ocean bottom pressure variation in the Logatchev
53    hydrothermal field at the eastern flank of the Mid-Atlantic Ridge.</a>
54    Geochemistry Geophysics Geosystems, 12, doi:10.1029/2010GC003441.
55  </li></ul>  </li></ul>
56    
57  <ul><li>  <ul><li>
58  P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:  P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:
59  Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and  Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and
60  Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II  Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II,
61  (special issue on the AMOC), in press, doi:10.1016/j.dsr2.2010.10.065  58, 1858-1879.
62    </li></ul>
63    
64    <ul><li>
65    G. Holloway, A. Nguyen, and Z. Wang, 2011:
66    <a href="http://ecco2.org/manuscripts/2011/Holloway2011.pdf"> Oceans and ocean
67    models as seen by current meters.</a> J. Geophys. Res., 116, C00D08.
68  </li></ul>  </li></ul>
69    
70  <ul><li>  <ul><li>
71  M. Manizza, M. Follows, S. Dutkiewicz, D. Menemenlis, J. McClelland,  M. Manizza, M. Follows, S. Dutkiewicz, D. Menemenlis, J. McClelland,
72  C. Hill, B. Peterson, R. Key, 2011:  C. Hill, B. Peterson, R. Key, 2011:
73  A model of the Arctic Ocean carbon cycle.  <a href="http://ecco2.org/manuscripts/2011/Manizza2011.pdf">
74  J. Geophys. Res., submitted.  A model of the Arctic Ocean carbon cycle.</a>
75    J. Geophys. Res., 116, C12020.
76  </li></ul>  </li></ul>
77    
78  <ul><li>  <ul><li>
79  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:
80  <a href="http://ecco2.org/manuscripts/2011/NguyenJGR2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/NguyenJGR2011.pdf">
81  Arctic ice-ocean simulation with optimized model parameters: approach  Arctic ice-ocean simulation with optimized model parameters: approach
82  and assessment.</a>  J. Geophys. Res., 116, C04025,  and assessment.</a>  J. Geophys. Res., 116, C04025.
83  doi:10.1029/2010JC006573  </li></ul>
84    
85    <ul><li>
86    C. Piecuch and R. Ponte, 2011: Mechanisms of interannual steric sea level
87    variability, Geophys. Res. Lett., 38, L15605.
88    </li></ul>
89    
90    <ul><li>
91    P. Rampal, J. Weiss, C. Dubois, and J.-M. Campin 2011: IPCC climate models do
92    not capture Arctic sea ice drift acceleration: Consequences in terms of
93    projected sea ice thinning and decline, J. Geophys. Res., vol. 116, C00D07.
94  </li></ul>  </li></ul>
95    
96  <ul><li>  <ul><li>
97    F. Roquet, C. Wunsch, and G. Madec, 2011:
98    <a href="http://dx.doi.org/10.1175/JPO-D-11-024.1"> On the patterns of
99    wind-power input to the ocean circulation.</a> J. Phys. Oceanogr., 41,
100    2328-2342.
101    </ul></li>
102    
103    <ul><li>
104  G. Spreen, R. Kwok, and D. Menemenlis, 2011:  G. Spreen, R. Kwok, and D. Menemenlis, 2011:
105  <a href="http://ecco2.org/manuscripts/2011/Spreen2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/Spreen2011.pdf">
106  Trends in Arctic sea ice drift and role of wind forcing:  Trends in Arctic sea ice drift and role of wind forcing:
107  1992-2009.</a>  Geophys. Res. Lett., in press.  1992-2009.</a>  Geophys. Res. Lett., 38, L19501.
108    </li></ul>
109    
110    <ul><li>
111    R. Tulloch, C. Hill, and O. Jahn, 2011:
112    <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etalagu11.pdf">
113    Possible spreadings of buoyant plumes and local coastline
114    sensitivities using flow syntheses from 1992 to 2007.</a> Geophysical
115    Monograph Series, 195, 245-255.
116  </li></ul>  </li></ul>
117    
118  <ul><li>  <ul><li>
119  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:
120  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo10.pdf">  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo11.pdf">
121  Scales, growth rates and spectral fluxes of baroclinic instability in  Scales, growth rates and spectral fluxes of baroclinic instability in
122  the ocean.</a> J. Phys. Oceanogr., in press.  the ocean.</a> J. Phys. Oceanogr., 41, 1057-1076.
123  </li></ul>  </li></ul>
124    
125  <ul><li>  <ul><li>
126  C. Ubelmann and L. Fu, 2011:  C. Ubelmann and L. Fu, 2011:
127  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011a.pdf">
128  Vorticity structures in the tropical Pacific from a numerical simulation.</a>  Vorticity structures in the Tropical Pacific from a numerical simulation.</a>
129  J. Phys. Oceanogr., submitted.  J. Phys. Oceanogr., 41, 1455.
130  </li></ul>  </li></ul>
131    
132  <ul><li>  <ul><li>
133  N. Vinogradova, R. Ponte, and P. Heimbach, 2011: Dynamics and forcing of sea  C. Ubelmann and L. Fu, 2011:
134  surface temperature variability on climate time scales. J. Clim., submitted.  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011b.pdf">
135    Cyclonic eddies formed at the Pacific tropical instability wave fronts.</a>
136    J. Geophys. Res., 116, C12021.
137  </li></ul>  </li></ul>
138    
139  <ul><li>  <ul><li>
140  D. Volkov and L. Fu, 2011: Mechanism for the interannual variability of the  D. Volkov and L. Fu, 2011:
141  Azores Current eddy energy. Geophys. Res. Lett., submitted.  <a href="http://ecco2.org/manuscripts/2011/VolkovFu2011.pdf">
142    Interannual variability of the Azores Current strength and eddy energy
143    in relation to atmospheric forcing.</a> J. Geophys. Res., 116, C11011.
144  </li></ul>  </li></ul>
145    
   
146  <ul><li>  <ul><li>
147  Wunsch, C., 2011: Covariances and linear predictability of the North Atlantic Ocean. submitted.  Z. Wang, G. Holloway, and C. Hannah, 2011:
148    <a href="http://ecco2.org/manuscripts/2011/Wang2011.pdf"> Effects of
149    parameterized eddy stress on volume, heat, and freshwater transports through
150    Fram Strait.</a> J. Geophys. Res., 116, C00D09.
151  </li></ul>  </li></ul>
152    
153  <ul><li>  <ul><li>
154  Wunsch, C., 2011:  Y. Xu and L. Fu, 2011:
155  The decadal mean circulation and Sverdrup balance.  <a href="http://ecco2.org/manuscripts/2011/XuFu2011.pdf">
156  J. Marine Res., in press.  Global variability of the wavenumber spectrum of
157    oceanic mesoscale turbulence.</a> J. Phys. Oceanogr., 41, 802-809.
158  </li></ul>  </li></ul>
159    
160  <ul><li>  <ul><li>
161  Y. Xu and L. Fu, 2011: Global variability of the wavenumber spectrum of  Y. Xu, L. Fu, and R. Tulloch, 2011: The global characteristics of the
162  oceanic mesoscale turbulence. J. Phys. Oceanogr., in press,  wavenumber spectrum of ocean surface wind. J. Phys. Oceanogr., 41,
163  doi:10.1175/2010JPO4558.1.  1576-1582.
164  </li></ul>  </li></ul>
165    
166  <ul><li>  <ul><li>
167  L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal  L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal
168  excitation of interannual Atlantic meridional overturning circulation  excitation of interannual Atlantic meridional overturning circulation
169  variability. J. Climate, in press, doi:10.1175/2010JCLI3610.1.  variability. J. Climate, 24, 413-423.
 </li></ul>  
   
 <ul><li>  
 L. Zanna, P. Heimbach, A. Moore and E. Tziperman, 2011. Analysis of the  
 predictability and variability of the Atlantic ocean in response to optimal  
 surface excitation.  Quart. J. Roy. Met. Soc., submitted.  
170  </li></ul>  </li></ul>

Legend:
Removed from v.1.17  
changed lines
  Added in v.1.36

  ViewVC Help
Powered by ViewVC 1.1.22