/[MITgcm]/www.ecco-group.org/ecco_2011_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2011_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by dimitri, Mon Jan 17 22:50:33 2011 UTC revision 1.34 by dimitri, Thu Feb 19 12:22:32 2015 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2    R. Abernathey, J. Marshall, and D. Ferreira, 2011: The dependence of Southern
3    Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41,
4    2261-2278.
5    </li></ul>
6    
7    <ul><li>
8  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:
9  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">
10  Superparameterization in ocean modeling: application to deep  Super-parameterization in ocean modeling: Application to deep
11  convection.</a> Ocean Modeling, submitted.  convection.</a> Ocean Modelling, 36, 90-101.
12    </li></ul>
13    
14    <ul><li>
15    A. Condron and P. Winsor, 2011:
16    <a href="http://ecco2.org/manuscripts/2011/CondronWinsor2011.pdf">
17    A subtropical fate awaited freshwater discharged from glacial Lake
18    Agassiz.</a> Geophys. Res. Lett., 38, L03705.
19  </li></ul>  </li></ul>
20    
21  <ul><li>  <ul><li>
22  X. Davis, L. Rothstein, W. Dewar, and D. Menemenlis, 2011:  X. Davis, L. Rothstein, W. Dewar, and D. Menemenlis, 2011:
23  <a href="http://ecco2.org/manuscripts/2010/DavisJcli10.pdf">  <a href="http://ecco2.org/manuscripts/2011/DavisJcli10.pdf">
24  Numerical investigations of seasonal and interannual variability of  Numerical investigations of seasonal and interannual variability of
25  North Pacific Subtropical Mode Water and its implications for Pacific  North Pacific Subtropical Mode Water and its implications for Pacific
26  climate variability.</a> J. Clim., in press.  climate variability.</a> J. Clim., 24, 2648-2665.
27  </li></ul>  </li></ul>
28    
29  <ul><li>  <ul><li>
30  E. Hill, D. Enderton, P. Heimbach, and C. Hill, 2011: SPGrid: A  S. Dutkiewicz, 2011:
31  numerical grid generation program for domain decomposed geophysical  <a href="http://ecco2.org/manuscripts/2011/dutkiewicz_variations.pdf">
32  fluid dynamics models. Mon. Weather Rev., submitted.  Driving ecosystem and biogeochemical models with optimal state
33    estimates of the ocean circulation.</a> U.S. CLIVAR Variations, 9, 1.
34    </li></ul>
35    
36    <ul><li>
37    G. Forget, G. Maze, M. Buckley, and J. Marshall, 2011:
38    Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume.
39    J. Phys. Oceanogr., 41, 269-286.
40    </li></ul>
41    
42    <ul><li>
43    H. Gennerich and H. Villinger, 2011:
44    <a href="http://ecco2.org/manuscripts/2011/Gennerich_2011.pdf">
45    Deciphering the ocean bottom pressure variation in the Logatchev
46    hydrothermal field at the eastern flank of the Mid-Atlantic Ridge.</a>
47    Geochemistry Geophysics Geosystems, 12, doi:10.1029/2010GC003441.
48    </li></ul>
49    
50    <ul><li>
51    P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:
52    Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and
53    Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II,
54    58, 1858-1879.
55    </li></ul>
56    
57    <ul><li>
58    G. Holloway, A. Nguyen, and Z. Wang, 2011:
59    <a href="http://ecco2.org/manuscripts/2011/Holloway2011.pdf"> Oceans and ocean
60    models as seen by current meters.</a> J. Geophys. Res., 116, C00D08.
61  </li></ul>  </li></ul>
62    
63  <ul><li>  <ul><li>
64  M. Manizza, M. Follows, S. Dutkiewicz, D. Menemenlis, J. McClelland,  M. Manizza, M. Follows, S. Dutkiewicz, D. Menemenlis, J. McClelland,
65  C. Hill1, B. Peterson, R. Key, 2011:  C. Hill, B. Peterson, R. Key, 2011:
66  <a href="http://ecco2.org/manuscripts/2010/ManizzaJGR2010.pdf">  <a href="http://ecco2.org/manuscripts/2011/Manizza2011.pdf">
67  Modeling the Arctic Ocean carbon cycle and its sensitivity to the  A model of the Arctic Ocean carbon cycle.</a>
68  influence of the riverine dissolved organic carbon.</a>  J. Geophys. Res., 116, C12020.
 J. Geophys. Res., submitted.  
69  </li></ul>  </li></ul>
70    
71  <ul><li>  <ul><li>
72  G. Maze, G. Forget, M. Buckley and J. Marshall, 2011: Using  I. Cerovecki, L.D. Talley, and M.R. Mazloff, 2011:
73  transformation and formation maps to study water mass transformation:  <a href="http://dx.doi.org/10.1175/2011JCLI3858.1"> A Comparison of Southern
74  a case study of North Atlantic Eighteen Degree water. J. Phys.  Ocean Air-Sea Buoyancy Flux from an Ocean State Estimate with Five Other
75  Oceanogr, submitted.  Products.</a> J. Clim., 24, 6283-6306.
76  </li></ul>  </li></ul>
77    
78  <ul><li>  <ul><li>
79  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:
80  <a href="http://ecco2.org/manuscripts/2010/NguyenJGR10.pdf">  <a href="http://ecco2.org/manuscripts/2011/NguyenJGR2011.pdf">
81  Arctic ice-ocean simulation with optimized model parameters: approach  Arctic ice-ocean simulation with optimized model parameters: approach
82  and assessment.</a>  J. Geophys. Res., submitted.  and assessment.</a>  J. Geophys. Res., 116, C04025.
83    </li></ul>
84    
85    <ul><li>
86    C. Piecuch and R. Ponte, 2011: Mechanisms of interannual steric sea level
87    variability, Geophys. Res. Lett., 38, L15605.
88    </li></ul>
89    
90    <ul><li>
91    P. Rampal, J. Weiss, C. Dubois, and J.-M. Campin 2011: IPCC climate models do
92    not capture Arctic sea ice drift acceleration: Consequences in terms of
93    projected sea ice thinning and decline, J. Geophys. Res., vol. 116, C00D07.
94    </li></ul>
95    
96    <ul><li>
97    F. Roquet, C. Wunsch, and G. Madec, 2011:
98    <a href="http://dx.doi.org/10.1175/JPO-D-11-024.1"> On the patterns of
99    wind-power input to the ocean circulation.</a> J. Phys. Oceanogr., 41,
100    2328-2342.
101    </ul></li>
102    
103    <ul><li>
104    G. Spreen, R. Kwok, and D. Menemenlis, 2011:
105    <a href="http://ecco2.org/manuscripts/2011/Spreen2011.pdf">
106    Trends in Arctic sea ice drift and role of wind forcing:
107    1992-2009.</a>  Geophys. Res. Lett., 38, L19501.
108    </li></ul>
109    
110    <ul><li>
111    S. Tank, M. Manizza, R. Holmes, J. McClelland, and B. Peterson, 2011:
112    <a href="http://ecco2.org/manuscripts/2011/Tank2011.pdf">
113    The processing and impact of dissolved riverine nitrogen in the Arctic
114    Ocean.</a> Estuaries and Coasts, doi:10.1007/s12237-011-9417-3.
115    </li></ul>
116    
117    <ul><li>
118    R. Tulloch, C. Hill, and O. Jahn, 2011:
119    <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etalagu11.pdf">
120    Possible spreadings of buoyant plumes and local coastline
121    sensitivities using flow syntheses from 1992 to 2007.</a> Geophysical
122    Monograph Series, 195, 245-255.
123  </li></ul>  </li></ul>
124    
125  <ul><li>  <ul><li>
126  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:
127  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo10.pdf">  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo11.pdf">
128  Scales, growth rates and spectral fluxes of baroclinic instability in  Scales, growth rates and spectral fluxes of baroclinic instability in
129  the ocean.</a> J. Phys. Oceanogr., submitted.  the ocean.</a> J. Phys. Oceanogr., 41, 1057-1076.
130    </li></ul>
131    
132    <ul><li>
133    C. Ubelmann and L. Fu, 2011:
134    <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011a.pdf">
135    Vorticity structures in the Tropical Pacific from a numerical simulation.</a>
136    J. Phys. Oceanogr., 41, 1455.
137  </li></ul>  </li></ul>
138    
139  <ul><li>  <ul><li>
140  C. Ubelmann and L. Fu, 2011:  C. Ubelmann and L. Fu, 2011:
141  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/UbelmannFu2011b.pdf">
142  Vorticity structures in the tropical Pacific from a numerical simulation.</a>  Cyclonic eddies formed at the Pacific tropical instability wave fronts.</a>
143  Geophys. J. Phys. Oceanogr., submitted.  J. Geophys. Res., 116, C12021.
144    </li></ul>
145    
146    <ul><li>
147    D. Volkov and L. Fu, 2011:
148    <a href="http://ecco2.org/manuscripts/2011/VolkovFu2011.pdf">
149    Interannual variability of the Azores Current strength and eddy energy
150    in relation to atmospheric forcing.</a> J. Geophys. Res., 116, C11011.
151  </li></ul>  </li></ul>
152    
153  <ul><li>  <ul><li>
154  N. Vinogradova, R. Ponte, M. Tamisiea, J. Davis, and  Z. Wang, G. Holloway, and C. Hannah, 2011:
155  E. Hill, 2011: Effects of self-attraction and loading on annual  <a href="http://ecco2.org/manuscripts/2011/Wang2011.pdf"> Effects of
156  variations of ocean bottom pressure. J. Geophys. Res., submitted.  parameterized eddy stress on volume, heat, and freshwater transports through
157    Fram Strait.</a> J. Geophys. Res., 116, C00D09.
158  </li></ul>  </li></ul>
159    
160  <ul><li>  <ul><li>
161  N. Vinogradova, R. Ponte, and P. Heimbach, 2011: Dynamics and forcing of sea  Y. Xu and L. Fu, 2011:
162  surface temperature variability on climate time scales. J. Clim., submitted.  <a href="http://ecco2.org/manuscripts/2011/XuFu2011.pdf">
163    Global variability of the wavenumber spectrum of
164    oceanic mesoscale turbulence.</a> J. Phys. Oceanogr., 41, 802-809.
165  </li></ul>  </li></ul>
166    
167  <ul><li>  <ul><li>
168  D. Volkov and L. Fu, 2011: Mechanism for the interannual variability of the  Y. Xu, L. Fu, and R. Tulloch, 2011: The global characteristics of the
169  Azores Current eddy energy. Geophys. Res. Let., submitted.  wavenumber spectrum of ocean surface wind. J. Phys. Oceanogr., 41,
170    1576-1582.
171  </li></ul>  </li></ul>
172    
173  <ul><li>  <ul><li>
174  L. Zanna, P. Heimbach, A. Moore and E. Tziperman, 2011. Analysis of the  L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal
175  predictability and variability of the Atlantic ocean in response to optimal  excitation of interannual Atlantic meridional overturning circulation
176  surface excitation.  Quart. J. Roy. Met. Soc., submitted.  variability. J. Climate, 24, 413-423.
177  </li></ul>  </li></ul>

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.34

  ViewVC Help
Powered by ViewVC 1.1.22