/[MITgcm]/www.ecco-group.org/ecco_2011_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2011_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.25 by heimbach, Thu Jan 26 05:05:34 2012 UTC revision 1.39 by dimitri, Sat Jul 9 04:57:32 2016 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2    R. Abernathey, J. Marshall, and D. Ferreira, 2011: The dependence of Southern
3    Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41,
4    2261-2278.
5    </li></ul>
6    
7    <ul><li>
8    A. Aretxabaleta and K. Smith, 2011: Analyzing state-dependent
9    model-data comparison in multi-regime systems, Computational
10    Geosciences, 15, 627-636.
11    </li></ul>
12    
13    <ul><li>
14    C. Bizouard, F. Remus, S. Lambert, L. Seoane, and D. Gambis,
15    2011: The Earth's variable Chandler wobble, Astronomy &
16    Astrophysics, 526, doi:10.1051/0004-6361/201015894
17    </li></ul>
18    
19    <ul><li>
20  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:  J. Campin, C. Hill, H. Jones, and J. Marshall, 2011:
21  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">  <a href="http://www-paoc.mit.edu/paoc/papers/superparam.pdf">
22  Superparameterization in ocean modeling: application to deep  Super-parameterization in ocean modeling: Application to deep
23  convection.</a> Ocean Modeling, in press.  convection.</a> Ocean Modelling, 36, 90-101.
24    </li></ul>
25    
26    <ul><li>
27    I. Cerovecki, L.D. Talley, and M.R. Mazloff, 2011:
28    <a href="http://dx.doi.org/10.1175/2011JCLI3858.1"> A Comparison of Southern
29    Ocean Air-Sea Buoyancy Flux from an Ocean State Estimate with Five Other
30    Products.</a> J. Clim., 24, 6283-6306.
31  </li></ul>  </li></ul>
32    
33  <ul><li>  <ul><li>
# Line 21  climate variability.</a> J. Clim., 24, 2 Line 46  climate variability.</a> J. Clim., 24, 2
46  </li></ul>  </li></ul>
47    
48  <ul><li>  <ul><li>
49    S. Downes, A. Gnanadesikan, S. Griffies, and J. Sarmiento, 2011: Water Mass
50    Exchange in the Southern Ocean in Coupled Climate Models, J Phys Oceanogr, 41,
51    1756-1771.
52    </li></ul>
53    
54    <ul><li>
55  S. Dutkiewicz, 2011:  S. Dutkiewicz, 2011:
56  <a href="http://ecco2.org/manuscripts/2011/dutkiewicz_variations.pdf">  <a href="http://ecco2.org/manuscripts/2011/dutkiewicz_variations.pdf">
57  Driving ecosystem and biogeochemical models with optimal state  Driving ecosystem and biogeochemical models with optimal state
# Line 28  estimates of the ocean circulation.</a> Line 59  estimates of the ocean circulation.</a>
59  </li></ul>  </li></ul>
60    
61  <ul><li>  <ul><li>
62    M. Follows and S. Dutkiewicz, 2011:
63    <a href="http://ocean.mit.edu/~mick/Papers/Follows-Dutkiewicz-AnnRevMarineSci-2011.pdf">
64    Modeling diverse communities of marine microbes.</a>
65    Annu. Rev. Mar. Sci., 427–451.
66    </li></ul>
67    
68    <ul><li>
69  G. Forget, G. Maze, M. Buckley, and J. Marshall, 2011:  G. Forget, G. Maze, M. Buckley, and J. Marshall, 2011:
70  Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume.  Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume.
71  J. Phys. Oceanogr., 41(2), 269-286, doi:10.1175/2010JPO4257.1  J. Phys. Oceanogr., 41, 269-286.
72    </li></ul>
73    
74    <ul><li>
75    S. Gao, T. Qu, and I. Fukumori, 2011: Effects of mixing on the
76    subduction of South Pacific waters identified by a simulated passive
77    tracer and its adjoint. Dyn. Atmos. Oceans., 54, 45-54.
78  </li></ul>  </li></ul>
79    
80  <ul><li>  <ul><li>
# Line 42  Geochemistry Geophysics Geosystems, 12, Line 86  Geochemistry Geophysics Geosystems, 12,
86  </li></ul>  </li></ul>
87    
88  <ul><li>  <ul><li>
89    D. Halkides, T. Lee, and S. Kida, 2011: Mechanisms controlling the
90    seasonal mixed-layer temperature and salinity of the Indonesian seas.
91    Ocean Dynamics, 61, 481-495.
92    </li></ul>
93    
94    <ul><li>
95  P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:  P. Heimbach, C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011:
96  Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and  Timescales and Regions of the Sensitivity of Atlantic Meridional Volume and
97  Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II  Heat Transport Magnitudes: Toward Observing System Design. Deep Sea Res. II,
98  (Topical issue on "Climate and the AMOC"), 58(17-18), 1858-1879, doi:10.1016/j.dsr2.2010.10.065.  58, 1858-1879.
99    </li></ul>
100    
101    <ul><li>
102    G. Holloway, A. Nguyen, and Z. Wang, 2011:
103    <a href="http://ecco2.org/manuscripts/2011/Holloway2011.pdf"> Oceans and ocean
104    models as seen by current meters.</a> J. Geophys. Res., 116, C00D08.
105    </li></ul>
106    
107    <ul><li>
108    S. Jin, L. Zhang, and B. Tapley, 2011: The understanding of
109    length-of-day variations from satellite gravity and laser ranging
110    measurements. Geophysical Journal International, 184, 651-660.
111    </li></ul>
112    
113    <ul><li>
114    T. Ito, R. Hamme, and S. Emerson, 2011: Temporal and spatial variability of
115    noble gas tracers in the North Pacific. J. Geophys. Res., 116,
116    doi:10.1029/2010jc006828
117  </li></ul>  </li></ul>
118    
119  <ul><li>  <ul><li>
# Line 53  M. Manizza, M. Follows, S. Dutkiewicz, D Line 121  M. Manizza, M. Follows, S. Dutkiewicz, D
121  C. Hill, B. Peterson, R. Key, 2011:  C. Hill, B. Peterson, R. Key, 2011:
122  <a href="http://ecco2.org/manuscripts/2011/Manizza2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/Manizza2011.pdf">
123  A model of the Arctic Ocean carbon cycle.</a>  A model of the Arctic Ocean carbon cycle.</a>
124  J. Geophys. Res., 116, C12020, doi:10.1029/2011JC006998.  J. Geophys. Res., 116, C12020.
125  </li></ul>  </li></ul>
126    
127  <ul><li>  <ul><li>
128  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:  A. Nguyen, D. Menemenlis, and R. Kwok, 2011:
129  <a href="http://ecco2.org/manuscripts/2011/NguyenJGR2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/NguyenJGR2011.pdf">
130  Arctic ice-ocean simulation with optimized model parameters: approach  Arctic ice-ocean simulation with optimized model parameters: approach
131  and assessment.</a>  J. Geophys. Res., 116, C04025,  and assessment.</a>  J. Geophys. Res., 116, C04025.
132  doi:10.1029/2010JC006573  </li></ul>
133    
134    <ul><li>
135    C. Piecuch and R. Ponte, 2011: Mechanisms of interannual steric sea level
136    variability, Geophys. Res. Lett., 38, L15605.
137    </li></ul>
138    
139    <ul><li>
140    T. Qu, S. Gao, and I. Fukumori, 2011: What governs the North Atlantic
141    salinity maximum in a global GCM? Geophys. Res. Lett., 38, L07602.
142  </li></ul>  </li></ul>
143    
144  <ul><li>  <ul><li>
145  Piecuch, C. G., and R. M. Ponte, 2011: Mechanisms of interannual steric sea level variability, Geophys. Res. Lett., 38, L15605, doi:10.1029/2011GL048440.  K. Quinn and R. Ponte, 2011: Estimating high frequency ocean
146    bottom pressure variability. Geophys Res Lett, 38,
147    doi:10.1029/2010gl046537
148  </li></ul>  </li></ul>
149    
150  <ul><li>  <ul><li>
151  Rampal, P., J. Weiss, C. Dubois & J.-M. Campin 2011: IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline, J. Geophys. Res., vol. 116, C00D07, doi:10.1029/2011JC007110.  P. Rampal, J. Weiss, C. Dubois, and J.-M. Campin 2011: IPCC climate models do
152    not capture Arctic sea ice drift acceleration: Consequences in terms of
153    projected sea ice thinning and decline, J. Geophys. Res., vol. 116, C00D07.
154  </li></ul>  </li></ul>
155    
156  <ul><li>  <ul><li>
157  Roquet, F., C. Wunsch, and G. Madec, 2011: On the patterns of wind-power input to the ocean circulation. J. Phys. Oceanogr., 41, 2328-2342, 10.1175/JPO-D-11-024.1.  F. Roquet, C. Wunsch, and G. Madec, 2011:
158    <a href="http://dx.doi.org/10.1175/JPO-D-11-024.1"> On the patterns of
159    wind-power input to the ocean circulation.</a> J. Phys. Oceanogr., 41,
160    2328-2342.
161  </ul></li>  </ul></li>
162    
163  <ul><li>  <ul><li>
# Line 84  Trends in Arctic sea ice drift and role Line 168  Trends in Arctic sea ice drift and role
168  </li></ul>  </li></ul>
169    
170  <ul><li>  <ul><li>
 S. Tank, M. Manizza, R. Holmes, J. McClelland, and B. Peterson, 2011:  
 <a href="http://ecco2.org/manuscripts/2011/Tank2011.pdf">  
 The processing and impact of dissolved riverine nitrogen in the Arctic  
 Ocean.</a> Estuaries and Coasts, doi:10.1007/s12237-011-9417-3.  
 </li></ul>  
   
 <ul><li>  
171  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:  R. Tulloch, J. Marshall, C. Hill, and K. Smith, 2011:
172  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo10.pdf">  <a href="http://ocean.mit.edu/~tulloch/Publications/tulloch_etaljpo11.pdf">
173  Scales, growth rates and spectral fluxes of baroclinic instability in  Scales, growth rates and spectral fluxes of baroclinic instability in
174  the ocean.</a> J. Phys. Oceanogr., in press.  the ocean.</a> J. Phys. Oceanogr., 41, 1057-1076.
175  </li></ul>  </li></ul>
176    
177  <ul><li>  <ul><li>
# Line 112  J. Geophys. Res., 116, C12021. Line 189  J. Geophys. Res., 116, C12021.
189  </li></ul>  </li></ul>
190    
191  <ul><li>  <ul><li>
 N. Vinogradova, R. Ponte, and P. Heimbach, 2011: Dynamics and forcing of sea  
 surface temperature variability on climate time scales. J. Clim., submitted.  
 </li></ul>  
   
 <ul><li>  
192  D. Volkov and L. Fu, 2011:  D. Volkov and L. Fu, 2011:
193  <a href="http://ecco2.org/manuscripts/2011/VolkovFu2011.pdf">  <a href="http://ecco2.org/manuscripts/2011/VolkovFu2011.pdf">
194  Interannual variability of the Azores Current strength and eddy energy  Interannual variability of the Azores Current strength and eddy energy
# Line 124  in relation to atmospheric forcing.</a> Line 196  in relation to atmospheric forcing.</a>
196  </li></ul>  </li></ul>
197    
198  <ul><li>  <ul><li>
199  Wunsch, C., 2011:  Z. Wang, G. Holloway, and C. Hannah, 2011:
200  The decadal mean circulation and Sverdrup balance.  <a href="http://ecco2.org/manuscripts/2011/Wang2011.pdf"> Effects of
201  J. Marine Res., 69, 417-434.  parameterized eddy stress on volume, heat, and freshwater transports through
202    Fram Strait.</a> J. Geophys. Res., 116, C00D09.
203  </li></ul>  </li></ul>
204    
205  <ul><li>  <ul><li>
206  Y. Xu and L. Fu, 2011: Global variability of the wavenumber spectrum of  S. Williams and N. Penna, 2011: Non-tidal ocean loading
207  oceanic mesoscale turbulence. J. Phys. Oceanogr., in press,  effects on geodetic GPS heights. Geophys Res Lett, 38,
208  doi:10.1175/2010JPO4558.1.  doi:10.1029/2011gl046940
209    </li></ul>
210    
211    <ul><li>
212    X. Wu, X. Collilieux, Z. Altamimi, B. Vermeersen, R. Gross,
213    and I. Fukumori, 2011: Accuracy of the International Terrestrial
214    Reference Frame origin and Earth expansion. Geophys.  Res. Lett., 38,
215    L13304.
216    </li></ul>
217    
218    <ul><li>
219    Y. Xu and L. Fu, 2011:
220    <a href="http://ecco2.org/manuscripts/2011/XuFu2011.pdf">
221    Global variability of the wavenumber spectrum of
222    oceanic mesoscale turbulence.</a> J. Phys. Oceanogr., 41, 802-809.
223    </li></ul>
224    
225    <ul><li>
226    Y. Xu, L. Fu, and R. Tulloch, 2011: The global characteristics of the
227    wavenumber spectrum of ocean surface wind. J. Phys. Oceanogr., 41,
228    1576-1582.
229  </li></ul>  </li></ul>
230    
231  <ul><li>  <ul><li>
232  L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal  L. Zanna, P. Heimbach, A. Moore, and E. Tziperman, 2011: Optimal
233  excitation of interannual Atlantic meridional overturning circulation  excitation of interannual Atlantic meridional overturning circulation
234  variability. J. Climate, 24(2), 413-423, doi:10.1175/2010JCLI3610.1.  variability. J. Climate, 24, 413-423.
235  </li></ul>  </li></ul>
   

Legend:
Removed from v.1.25  
changed lines
  Added in v.1.39

  ViewVC Help
Powered by ViewVC 1.1.22