/[MITgcm]/mitgcm.org/sealion/technical_notes/gmredi/gmredi.dvi
ViewVC logotype

Annotation of /mitgcm.org/sealion/technical_notes/gmredi/gmredi.dvi

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download) (as text)
Fri Oct 5 19:02:41 2001 UTC (23 years, 9 months ago) by adcroft
Branch: MAIN
Branch point for: From_cnh
File MIME type: application/x-dvi
Initial revision

1 adcroft 1.1 ; TeX output 2001.05.20:2129x'}h! cmsl12Adcroft&Hill^{Redi/GM/GriesscrhemeintheMITOGCM9ՌXQ cmr121=u:HNG cmbx12ImplemenutationzoftheGM/Redi/GriesQꍑruscuhemeszintheMITOGCMᏍXQ ff cmr12A.Adcroft/andC.Hill,MIT +U7July/2000(V'1D(Ovuerviewb#'Therer+aretrwor+partstotheRedi/GMr parameterizationofgeostrophiceddies.'The
2     rstaimstomixtracerpropSertiesalongisenrtropes(neutralsurfaces)'bry{meansofadi usionopSeratororientedalongtheloScalisentropicsurface'(Redi).mThesecondpart,@kadiabaticallyre-arrangestracersthroughanad-'vrective uxwheretheadvrecting owisafunctionofslopSeoftheisentropic'surfaces(GM).8TheӘ rstGCMQimplemenrtationoftheRedischemewasbyCox1987inthe'GFDL<toScean<circulationmodel..Theoriginalapproacrhfailedtodistinguish'bSetrweenisopycnalsandsurfacesofloScallyreferencedpotenrtialdensity(now'calledlneutralsurfaces)whicrharepropSerisentropSesfortheocean.Aswillbe'discussedlater,italsoappSearsthattheCorximplementationissusceptible'toZacomputationalmoSde. Duetothismode,theCorxschemerequiresa'bacrkground8lateraldi usiontobSepresenttoconservetheintegrityofthe'moSdel elds.8TheGMsparameterizationwrasthenaddedtotheGFDLcoSdeinthe'formsofanon-divrergentsbSolusvrelocityV.
3     cAThesmethodde nestrwosstream-'functionsUexpressedintermsoftheisoneutralslopSessubjecttotheboundary'condition}ofzerovXalueonuppSerandlorwer}boundaries.Thehorizonrtalbolus'vreloScitiesWarethentheverticalderivXativeofthesefunctions. Hereinlies'a problemhighlighrtedbyGriesetal.,QA1997:vthebSolusveloScitiesinvolve'mrultipleXderivXativesonthepSotentialdensity eld,*Dwhichcanconsequently'givre.~risetonoise.cGriesetal.pSoinrtoutthattheGM.mbolus uxescanbe'idenrticallyiwrittenasaskew uxwhichinvolvesfewerdi erentialopSerators.'FVurther,Ncomrbining:theskew uxformulationandRedischeme,Nsubstantial'cancellationstakreplacetothepSointthatthehorizontal uxesareunmoSdi ed'fromthelateraldi usionparameterization.*x'Adcroft&Hill^{Redi/GM/GriesscrhemeintheMITOGCM9Ռ2='2D(Redizscuheme:Isopycnaldi usionb#'The>NRediscrhemedi usestracersalongisopycnalsandintroSducesatermin'thetendency(rhs)ofsucrhatracer(hereg cmmi12W)oftheform:1!",
4     cmsy10r2cmmi8SN cmbx12K2@cmbx8RedizYr|(1)'whereMisthealongisoprycnaldi usivityandKRediBSisarank2tensorthat'projectsdthegradienrtofontotheisopycnalsurface.Theunapproximated'projectiontensoris:&Nq^KRediϫ=fXURu
5    
6     cmex100URBfiUR@fdS1+Sx?SxHSyi!Sx&>SxHSy;1+SyjSyASxFiSyfjSj2|{Ycmr82fX~I1~ICfi~IA|(2)&/'Here,gSx9=UR@xHn9=@zʮandFǿSyR_=@y =@zʮareFthecompSonenrtsoftheisoneu-'tralslopSe.8Theo9 rstpSoinrttonoteisthatatypicalslopSeintheoceaninrterioris'small,"saryeoftheorder102K cmsy84 \|.AYmaximumslopSemightbSeoforder1022sand'only0dexceedssucrhinunstrati edregionswheretheslopSeisillde ned.
7     Itis'thereforejusti able,andcustomaryV,tomakrethesmallslopSeapproximation,'jSjUR<<1.8TheRediprojectiontensorthenbSecomes:&02KRediϫ=fXUR0URBfiUR@fdf1*ì0A9ySxf0*ì1A_fSySSx'+Sy=)jSj22fXV&1V&CfiV&A|(3)10'3D(GMzparameterizationb#'TheGMparameterizationaimstoparameterisethe\advrective"or\trans-'pSort">e ectofgeostrophiceddiesbrymeansofa\bolus"vrelocityV,cu2.The'divrergence9%ofthisadvective uxisaddedtothetracertendencyequation(on'therhs):ҧJrWu |(4)=8ThebSolusvrelocityisde nedas:i:u 9=@zʮFx}(5)ȿvn9 9=@zʮFy}(6)`XwR 9=@xHFx+@y Fy}(7)
8     x'Adcroft&Hill^{Redi/GM/GriesscrhemeintheMITOGCM9Ռ3='whereFxWgandFy arestream-functionswithbSoundaryconditionsFx9=URFyR_=0'onWuppSerandlorwerWboundaries.ThevirtueofcastingthebolusvrelocityWin'terms;ofthesestream-functionsisthattheyareautomaticallynon-divrergent'(@xHu2uQ+M@y vn92,=o@xz Fx4@yI{z GFyl=@zʮwR2).gɿFx C2andKFyXarespSeci edinterms'oftheisoneutralslopSesSx 3andSy :.G<Fx+S=NۿGM#Sx}(8)ÓFy+S=NۿGM#Sy}(9)'This4/istheformoftheGM3parameterizationasappliedbryDonabasaglu,'1997,inMOMvrersions1and2."'Nff cmbx123.1KcGriesffSkewFlux@'GriesDnotesthatthediscretisationofbSolusvrelocitiesinrvolvesDmultiplelay-'ersofdi erencingandinrterpSolationthatpotenrtiallyleadtonoisy eldsand'computational!moSdes.JHepoinrtedoutthatthebolus uxcanbere-written'intermsofanon-divrergent uxandaskrew- ux:'8'u Cm=fXV0VBfiV@fd~T@zʮ(GM#SxH)~A@zʮ(GM#Sy )d(@xHGM#Sx+@y GMSy)fXu1uCfiuA/Cm=fXV0VBfiV@fd@zʮ(GM#SxHW)ƛ@zʮ(GM#Sy W)d@xH(GM#SxW)+@y (GMSy)W)fX*1*Cfi*Aiӹ+fX0Bfi@fd9RܿGM#SxH@zʮ9xGM#Sy @zʮjGM#SxH@xGMSy )@yfX1CfiA'8'TheK rstvrectorisnon-divergentandthushasnoe ectonthetracer eld'andcanbSedropped.8Theremaining uxcanbewritten:.u o=URGMx5KGMr(10)'where
9     KGM͇=fXUR0URBfiUR@fdf0*ì0=)Sxf0*ì0=SySSx'+SyEC0fXXX1XXCfiXXA(11)!8'isananrti-symmetrictensor.8This}formrulationoftheGM}parameterizationinvolvesfewerderivXatives'than-theoriginalandalsoinrvolves-onlytermsthatalreadyappSearinthe'RediGmixingscrheme. P*Indeed,asomewhatfortunatecancellationbSecomesXx'Adcroft&Hill^{Redi/GM/GriesscrhemeintheMITOGCM9Ռ4='apparenrt!whenweusetheGMparameterizationinconjunctionwiththe'Rediisoneutralmixingscrheme:ݡp^kSKRedizYru o=UR(KRedi%+GMx5KGM)r(12)'IntheinstancethatGMxڹ=URthen(xpSKRedi%+GMx5KGM͇=URfXQ0QBfiQ@fd۾170S0۾071S0R2Sx0&2SyM jSj22fXek1ekCfiekA(13)'r'whicrhdi ersfromthevXariablelaplaciandi usiontensorbyonlytwonon-zero'elemenrtsinthez-row.'^'4D(VaGariablezgG cmmi12GMb#'VisbSecrkwetal., +1996,suggestwmakingtheeddycoecienrt, +GM#,awfunction'of* theEadygrorwthrate,9jfGj=p
10     ؉z
11     (RJi .Theformulainvolvesanon-dimensional'constanrt,꨿ ,andalength-scaleL:"E`GMxڹ=UR L 2fescQjōjfGj33Qmfe Ep
12     ؉z
13     (RJi3g wz >⍑'wheregtheEadygrorwthratehasbSeendepthaveraged(indicatedbytheover-'line).$CAloScalRicrhardsonnumbSerisde nedRJiUR=N@22=(@u=@z)22lԹwhich,/when'comrbinedwiththermalwindgives:"Mō1[JQmfe  RJiʹ=vD(Fu33@xu33콉fe 'P@xz E{)22fe)  _N@2#:= (/g33[fe ~>'f;cmmi6ojrn9j)22K'fe5ß  N@2>͹=ō ̇M@24Qmfe!  jfGj2N@2!'whereiM@22
14     Qisde nedM@22
15     1=/Ӎg|[fe'otjrn9j.T$SubstitutinginrtotheformulaforGM'givres:Y{{GMxڹ=UR L 2LfeT𴍍ō33M@233Qmfe^  ZNXm-z X= L 2Lfen𴍍ō33M@233Qmfe^  N@2TN#.m-z+N= L 2щfeA
16    
17     3/jSjN*z'5D(TaGap=eringzandstabilituyb#'ExpSerience-withtheGFDLmodelshorwed-thattheGMscrhemehastobe'matcrhedtotheconvectiveparameterization.\Thiswasoriginallyexpressedin#~x'Adcroft&Hill^{Redi/GM/GriesscrhemeintheMITOGCM9Ռ5='connectionwiththeinrtroSductionoftheKPPboundarylaryerscheme(Large'etal.,97)butinfact,assubsequenrtexpSeriencewiththeMITmodelhas'found,isnecessaryforanryconvectiveparameterization.8Deep~conrvectionsitesandthemixedlayerareindicatedbyhomogenized,'unstablehornearlyunstablestrati cation. TheslopSesbecomeinsucrhregions'areMin nite,vrerylargewithasignreversalorsimplyverylarge. b2FVroma'nrumericalpSointofview,largeslopSesleadtolargevXariationsinthetensor'elemenrts6(implyinglargebSolus ow)andcanbSenumericallyunstable.This'wras rstreognizedbyCox,1987,whoimplemented\slopSesclipping"inthe'isoprycnal~mixingtensor.KHere,theslopSemagnitudeissimplyrestrictedby'anuppSerlimit:pjrn9jh=*M֫q+M։fe&KT *n92nx+n92ny(14)sKSlKimh=*ōjrn9j33Qmfek  Smax5awhere꨿Smax<"isaparameter(15)
18     | n9?ڍzh=*min(zʮ;SlKim f)(16);gFJ[sxH;sy ]h=*ō33[xH;y ]33Qmfe#k  n9?nz(17)Di'Noticethatthisalgorithmassumesstablestrati cationthroughthe\min"'function.Inqthecasewherethe uidiswrellstrati ed(z <; SlKim f)thenthe'slopSesevXaluateto:s[sxH;sy ]k=URō33[xH;y ]33Qmfe#k  ʿz(18)Z'whileinthelimitedregions(z >URSlKim f)theslopSesbecome:ڟ;[sxH;sy ]ٳ8=ō [xH;y ]Qmfe61  jrn9j=Smax(19)" 'sothattheslopSemagnitudeislimited_q ꩟_fe#Ў s2nx+s2ny5=URSmaxQz.Y8EvrenusingslopSeclipping,itisnormallythecasethattheverticaldi usion'term(withcoSecienrtSK̽33 =S2׽2RAmaxQz)islargeandmustbSetime-stepped'using8animplicitproScedure(seesectionondiscretisationandcodelater).'Fig.??o$shorws]themixedlayerdepthresultingfroma)usingtheGMGscheme'withvclippingandb)noGMvscrheme(horizontaldi usion).CTheclassicresult'of zdramaticallyreducdmixedlaryers zisevidenrt.WIndeed,/thedeepconvection'sitesmetojustoneortrwomepSointseachandaremuchshallowerthanwemight'prefer./^x'Adcroft&Hill^{Redi/GM/GriesscrhemeintheMITOGCM9Ռ6=<'FigureJ1:MixedlaryerJdepthusingGMJparameterizationwitha)CorxslopSe'clippingandforcomparisonb)usinghorizonrtalconstantdi usion.'??D'Figure2:tE ectivreslopSeasafunctionof\true"slopeusinga)Corxslope'clipping,b)GKW91limiting,c)DM95limitingandd)LDD97limiting. 8This$itturnsoutisduetotheorver$zealousrestrati cationduetothe'bSolustransportparameterization.8Gerdesetal.,1991....8DanabasogluandMcWilliams,1995....8Largeetal.,1997....8Issue:8shouldGMandRedibSetapered?8cfconrvectivepaper8Issue:8isadiabticimpSortanrtintheseregions?crhangesdiscretization(V'6D(Discretisationzandco=deb#'The9Genrt-McWilliams-Rediparameterizationisimplementedthroughthe'pacrkXage\gmredi".65Therearetwonecessarycallsto\gmredi"routinesother'than0initialization;S1)tocalculatetheslopSetensorasafunctionofthecur-'renrtmoSdelstate(gmrediZff ώ)calcZff ώtensor)and2)evXaluationofthelateraland'vrertical uxesduetogradientsalongisopycnalsorbSolustransport(gm-'rediZff ώ)xtransp`ort,gmrediZff ώytransport꨹andgmredi-rtransport).8Eacrh?elementofthetensorisdiscretisedtobSeadiabaticandsothatthere'wrouldGbSeno uxifthegmredioperatorisappliedtobuoryancyV.P ToGacrheive'thiswrehavetoconsiderbSoththeseconstraintsforeachrowofthetensor,:T'Figure 3:E ectivreslopSemagnitudeat100mdepthevXaluatedusinga)Cox'slopSeclipping,$)b)GKW91limiting,c)DM95limitingandd)LDD97limiting.<zx'Adcroft&Hill^{Redi/GM/GriesscrhemeintheMITOGCM9Ռ7='eacrhrowcorrespSondingtoa'u','v'or'w'poinrtonthemodelgrid.Ggύ8ThisistheolddoScumenrtation.....8TheEcoSdethatimplemenrtstheRedi/GM/Griesschemesinvolvesan'original"coreroutineincZff ώ)tracer()thatisusedtocalculatethetendency'inԧthetracers(namelyV,'saltandpSotenrtialtemperature)andanewroutine'RediTensor()꨹thatcalculatesthetensorcompSonenrtsandGM#."ʫ'6.1KcsubroutineffRediTfensor()Y'#<x
19     3
20     cmtt10subroutineRediTensor(Temp,Salt,Kredigm,K31,K32,K33,nIter,DumpFlag) x|---in--||-------out-------|'!Input'realTemp(Nx,Ny,Nz)R!Potentialtemperature'realSalt(Nx,Ny,Nz)R!Salinity'!Output'realKredigm(Nx,Ny,Nz) T!Redi/GMeddycoefficient'realK31(Nx,Ny,Nz)"}!Redi/GM(3,1)tensorcomponent'realK32(Nx,Ny,Nz)"}!Redi/GM(3,2)tensorcomponent'realK33(Nx,Ny,Nz)"}!Redi/GM(3,3)tensorcomponent'!Auxiliaryinput'integernIter?<N!interation/time-stepnumber'logicalDumpFlag-P!flagtoindicateroutineshould``dump''8ThesubroutineRediTensor()iscalledfrommo`del()withinputargu-'menrtsſTandS׹.Q8Itreturnsthe3D-arrays$߆T cmtt12Kredigm,x͹K31,K32ŹandK33which'represenrt[GM(atTN8=SO2pSoints)andthethreecompSonentsofthebSottomrow'intheRedi/GMtensor;2SxH,2Sy絹andjSj22respSectivrelyV,allatWnpoinrts.8ThediscretisationsandalgorithmwithinRediTensor()areasfollorws.'Theroutine rstcalculatestheloScallyreferencepotenrtialdensity Wfrom'TNand)S_andcalculatesthepSotenrtialdensitygradientsinsubroutinegrad-'Sigma():Dàx'Adcroft&Hill^{Redi/GM/GriesscrhemeintheMITOGCM9Ռ8=
21     jJ]ArrarytCGrid-pSoinrt{De nitionMSigXU{x9=FuW1콉fe C'xxHn9jzV(k6)MSigYV{yR_=Fu11콉fe i'yN!y n9jzV(k6)MSigZ[W{z =Fu1콉fe `
22     'z¹[n9jzV(k6)
23     (k1=2)jzV(k6)
24     (kŹ+1=2)]2L8Notejthatz
25     5isthestaticstabilitrybSecausethepotenrtialdensitiesare'referencedtothesamereferencelevrel(Wƹ-level).8The;nextstepcalculatesthethreetensorcompSonenrtsK13,O8K23andK33'ingsubroutineKtensorWface().First,thelateralgradienrtsx oandy dare'inrterpSolatedtotheWnpoinrtsandstoredinintermediatevXariables:<[Sx=}[fe?z&fe ]ڍx xz<[Sy=}[feƟ&fe ]ڍy yaCz'Next,themagnitudeofrzʮXisstoredinaninrtermediatevXariable:biFSxy2q̹=URq USfe0 DSx YV2F+SyBV2'TheIXstrati cation(zʮ)is\crhecked"IXsuchthattheslopSevectorhasmagnitude'lessthanorequaltoSmaxandstoredinaninrtermediatevXariable: SzG=URmax3|(zʮ;Sxy2/Smax75)'Thisa7guaranrteesstabilityandatthesametimeretainsthelateralorientation'oftheslopSevrector.8Thetensorcomponenrtsarethencalculated:wK13H=!2Sx=SzwK23H=!2Sx=SzwK33H=!(Sx=Sz0) 2j+(Sy=Sz) 28FinallyV,HKredigmp(GM#)iscalculatedinsubroutineGMRediCo`ecient().'First,Kall7thegradienrtsareinterpSolatedtotheTN8=S꡹poinrtsandstoredinin-'termediatevXariables:̡SxL=ԟ&fe ]ڍxg x̡SyL=ԟ&fe ]ڍyɍ y̡SzL=ԟ&fe xZ]ڍz. z Mrx'Adcroft&Hill^{Redi/GM/GriesscrhemeintheMITOGCM9Ռ9='Again,aSnominalstrati cationisfoundbry\check"themagnitudeofthe'slopSevrectorbuthereisconvertedtoaBrunt-VVasalafrequency:4^M2?=cqcfe0 DSx YV2F+SyBV2H^N2?=cōg33Qmfe
26     4  omax$(Sz Y;M2=Smax2'ThemagnitudeoftheslopSeisthenjSjR=M2D=N2 Y.eTheEadygrorwthrateisٜ'de nedasjfGj=.q
27     .feğ ҍ(ſRJi)UR=jSjN+andiscalculatedas:'FrRií=ōM2Qmfe Y  N2R(ō3g33Qmfet  uSzt)'The'EadygrorwthrateisthenaveragedovertheuppSerlayers(abSout1100m)'and꨿GM0spSeci edfromthis2D-vXariable:aKredigm{=UR0:02(200d32)FrRi"\'6.2Kcsubroutineffinc҉ff+tracer()@'inctracer()꨹iscalledfrommo`del()andhas'@ cmti12four35newargumenrts:ҍ'subroutine,inc_tracer(...,Kredigm,K31,K32,K33,...)'real,Kredigm(Nx,Ny,Nz) Y!Eddycoefficient'real,K31(Nx,Ny,Nz)% !(3,1)tensorcoefficient'real,K32(Nx,Ny,Nz)% !(3,2)tensorcoefficient'real,K33(Nx,Ny,Nz)% !(3,3)tensorcoefficient8Withintheroutine, thelateral uxes,fluxWestandfluxSouth,inthe'Redi/GM/GriesY1scrhemeareverysimilartotheconventionalhorizontaldif-'fusion|9termsexceptthatthedi usioncoSecienrtisafunctionofspaceand'mrustbSeinterpSolatedfromtheTN8=Spoinrts:fluxWestG(W)٨8=:::A+w|fe+9Kredigm-C]x3-*@xHfluxSouthG(W)٨8=:::A+w|fe+9Kredigm-C]y2P@y 8ThepRedi/GM/Griesscrhemeaddsthreetermstothevertical ux(fluxUpper)'inthetracerequation.8Itisdiscretisesimply:C7fluxUpperz(W)UR=:::ʚ+w|fe+9Kredigm-C]z4f`:K13M.:w}fe4 @xH_n^xzkZ+K231w}feZ @y &i^yI{z2̹+K331@zʮf`'OnbSoundaries,fluxUpperissettozero.
28     X2x'Adcroft&Hill^{Redi/GM/GriesscrhemeintheMITOGCM310='7D(Outstandingzissues?b#'AsecondinnorvXationdiscussedbyGriesconcernsthenonlinearityinthe'equation˅ofstateanditsimplicationfortheevXaluationoftheisoneutral'slopSes."vHejarguesthatrshouldbewrittenrË=URo( OrS(!Q r)sothat,'forexample,thezonalslopSebecomes:㍒Sx9=ō @xH6 O@xSQmfeB7  ~9 O@zʮS] @z"F'whereh h=Fu1콉fe'o/v
29     @xv
30     [fe M'a@x /and =Fu1콉fe'o/@xv
31     [fe
32     '@xSOareloScallyevXaluated.Healsoadvrocatesavrery'complicatedBinrterpSolationschemewhichhecallsthe\triads"scheme.A~Both'ofX*theseinnorvXationsaredesignedtoovercomecomputationalmoSdesandat'thesametimemakretheschememorffeadiabatic.8Comparedltothecurrenrtimplementationout-linedabSove,theGries'innorvXations+requirestwonon-linearequationstoreplacetheequationofstate,'trwiceeasmanydi erencesbSecauseoftheexplicitexpressionswithandS׹,'anddamruchdwiderstencil(ie.
33     umruchdmorecomputation)forthe\triads"'inrterpSolation.8WVe7)harvenotimplementedtheseaspSectsofGriesschemesonthebasis'thatftheadditionalcomputationalcostsandcoSdecomplexitryV, sofar,outrweigh'theimmediatebSene ts.c-;x
34     '@ cmti12$߆T cmtt12#<x
35     3
36     cmtt10gG cmmi12Nff cmbx12}h! cmsl122@cmbx8N cmbx12K cmsy8!",
37     cmsy10;cmmi62cmmi8g cmmi12|{Ycmr8XQ ff cmr12NG cmbx12XQ cmr12u
38    
39     cmex10j

  ViewVC Help
Powered by ViewVC 1.1.22