PAGE
4

A Parallel Navier-Stokes Ocean Model: Formulation and Documentation

Daniel Jamous, Chris Hill, Alistair Adcroft, John Marshall

December 1997

Massachusetts Institute of Technology

CONTENTS

3CONTENTS

INTRODUCTION
4
Chapter 1 Continuous formulation
6
1.1 The continuous equations of the model ocean
6
1.2 Boundary conditions
7
1.3 Coordinate systems
9
1.4 Hydrostatic, non-hydrostatic and quasi-hydrostatic forms
11
1.5 Finding the pressure field
12
1.5.1 Depth-averaged pressure
12
1.5.2 Surface, hydrostatic and non-hydrostatic pressure
13
1.6 Summary of solution strategies
15
1.7 Forcing and dissipation
16
1.7.1 Forcing
16
1.7.2 Dissipation
17
CHAPTER 2 Discrete formulation.
19
2.1 Temporal discretization.
19
2.2 Spatial discretization.
21
2.2.1 Volume quantities
22
2.2.2 Face quantities
24
2.2.3 Coriolis terms
25
2.2.4 Pressure gradient force
25
2.2.5 Forcing and dissipation
25
2.2.6 The C-D scheme
26
2.2.7 Conservation properties
26
2.3 The Elliptic problem
27
2.3.1 Discrete formulation
27
2.3.2 Preconditioned conjugate-gradient solution method
30
CHAPTER 3 PARALLEL IMPLEMENTATION
36
2.1 Enumeration of arrays.
36
Chapter 4 Procedures and variables
38
4.1 Procedures
38
4.1.1 Flow chart
38
4.1.2 Alphabetical list of procedures and 'include' files
40
4.2 Variables
40
Chapter 5 Getting started: practical considerations
41
5.1 Accessing the code - directory structure
41
5.2 Configuring the model and setting up a run
41
5.2.1 domain, geometry
42
5.2.2 Equation of state
42
5.2.3 Hydrostatic, quasi-hydrostatic, or non-hydrostatic regime
43
5.2.4 Momentum equations
43
5.2.5 Diagnosis of pressure
44
5.2.6 Tracer equations (temperature and salinity)
45
5.2.7 Run setup
46
5.3 Compiling, running, and restarting the code
47
5.3.1 compilation
47
5.3.2 execution
47
5.3.3 output and restart
48
5.4 Examples : description of test cases
49
5.4.1 Two-layer ocean in a rectangular basin driven by a steady wind-stress
49
5.4.2 Neutral ocean in a doubly periodic domain driven by buoyancy forcing
50
5.4.3 Exponentially stratified ocean on a wind-driven channel
50
5.4.4 Global ocean driven by realistic wind and buoyancy forcing
50
5.4.5 Model configuration for the test cases
51
APPENDICES
53
References
54

INTRODUCTION

This manual aims to provide the reader with the information necessary to carry out numerical experiments using the M.I.T GCM. The manual provides a comprehensive description of the numerical paradigm employed by the M.I.T. GCM and a description of the associated program code. Examples showing the use of the code in small process studies and for basin/planetary scale simulations are presented.

Any practical numerical rendition involves a series of compromises. Our guiding principle has been to devise methods which, as far as is possible, are competitive across a large range of scales from

, the depth of the fluid, right up to horizontal resolutions

, coarser than the Rossby radius of deformation. We did not want to make the hydrostatic assumption a-priori, since it precludes the study of many interesting small-scale phenomenon. Rather it was important to us that our approach be also well-suited to the convective, non-hydrostatic limit. We therefore adopt pressure (or height) as a vertical coordinate and employ a ‘finite volume’ approach, in which property fluxes are defined normal to the faces that define the volumes, leading to a very natural and robust discrete analogue of ‘divergence’. In the special case that the volumes are of regular shape, the arrangement of the model variables in the horizontal reduces to a ‘C’ grid, using the nomenclature of Arakawa and Lamb (1977), and so carries with it well-documented strengths and weaknesses in the treatment of gravity, inertial and Rossby wave modes (for a recent discussion see Dukowicz, 1995).

The basis for the numerical procedure employed in the M.I.T GCM is the incompressible Navier-Stokes equations. The model integrates forward the Boussinesq XE “Boussinesq” approximation to the full Navier-Stokes XE “Navier-Stokes” equation governing fluid motion. The model’s numerical integration method is arrived at by utilising the “pressure method” [Harlow and Welch, 1965; Williams, 1969; Potter, 1976]. In this scheme the continuity relation
[image: image1.wmf]0

.

=

Ñ

v

 is used to give an elliptic equation for the pressure field. Starting from these basis equations the model is formulated to allow three different solution strategies. In the non-hydrostatic - NH - mode of integration, the basis equations are stepped forward without further approximation - in particular full non-hydrostatic dynamics are retained. The hydrostatic primitive equations - HPE - mode of the model integrates an approximated form of the full equations, which assumes exact hydrostatic balance. The quasi-hydrostatic - QH - mode of integration admits additional Coriolis terms, which augment HPE with an analytically exact angular momentum principle.

The ‘kernel’ algorithm solves the incompressible Navier Stokes equations on the sphere and can be employed as an atmospheric model or as an ocean model in a geometry as complicated as that of the ocean basins with irregular coastlines and islands. The algorithm builds on ideas developed in the computational fluid community. The numerical challenge is to ensure that the evolving velocity field remains non-divergent; a ‘pressure correction’ to the velocity field is used to guarantee non-divergence. The correction step is equivalent to, and is solved as, a Poisson equation for the pressure field with Neumann boundary conditions. This Poisson inversion is the most computationally demanding part of the algorithm and, because it is not localised in space, presents the biggest challenge in mapping on to parallel computers since it demands ‘communication’ across the grid to the boundary, and hence between processors. We have devised a method for solving this Poisson equation which exploits knowledge of the dynamics (by separating the pressure field in to hydrostatic, non-hydrostatic and surface pressure components), the geometry of the ocean basin (they are much wider than they are deep) and naturally lends itself to data-parallel implementation. The model will, of course, also run on a single processor.

Much of what is here has been already described in the two reference papers on the model published in the 'Journal of Geophysical Research' [Marshall et al., 1997a,b]. The manual is organized as follows: in Chapter 1, we describe the continuous formulation of the model as well as the different solution strategies employed to find the pressure field for the HPE, QH, and NH modes. This chapter corresponds essentially to sections 3 and 4 of Marshall et al., 1997a. Chapter 2 describes the temporal and spatial discretizations used in the model and the numerical approach used to solve the Elliptic problem for the pressure field. This chapter corresponds essentially to sections 3 and 4 of Marshall et al., 1997b. Chapter 3 is not written yet and is meant to describe the parallel implementation of the model code in Fortran 90 and High Performance Fortran (HPF). A flow chart and an alphabetical list of the procedures and variables are given in Chapter 4. In Chapter 5, the most practical section of the manual, we review what you need to know to run an experiment with the M.I.T. GCM (accessing the code, configuration, compilation, description of output files etc…). We provide some examples that have been published in the literature, ranging from the convective scale up to the planetary/global scale. These examples should help the user to get more familiar with the model.

It would be nice to include an history of the model in the introduction!

Chapter 1 Continuous formulation

1.1 The continuous equations of the model ocean

The state of the ocean at any time is characterized by the distribution of currents v, potential temperature T, salinity S, pressure p and density (. The equations that govern the evolution of these fields, obtained by applying the laws of classical mechanics and thermodynamics to a Boussinesq incompressible fluid are, using height as the vertical coordinate:

[image: image2.wmf]Motion

p

t

ï

þ

ï

ý

ü

Ñ

-

=

v

G

v

¶

¶

 (1.1.1)

 (1.1.2)

 (1.1.3)

[image: image3.wmf]Salt

G

t

S

S

þ

ý

ü

=

¶

¶

 (1.1.4)

 (1.1.5)
where

 (1.1.6)
is the velocity in the lateral and vertical direction respectively. In (1.1.1),

is the pressure-gradient force, where

 (1.1.7)

is the dynamic pressure expressed in terms of (p, the deviation of the pressure from that of a resting, hydrostatically balanced ocean

 (1.1.8)
where,

is a constant reference density.
[image: image4.wmf]v

G

represents the advective, Coriolis, buoyancy, forcing and dissipative terms in the momentum equations, i.e. in vector form:

[image: image5.wmf]v

v

v

D

F

g

v

v

v

G

+

+

-

´

W

-

Ñ

-

=

ref

r

dr

2

.

 (1.1.9)

In (1.1.9), (is the angular speed of rotation of the Earth, g is gravity and Fv and Dv are the forcing and dissipative terms, respectively. The explicit expression of Gv, component by component, is given in spherical coordinates in section 1.3.

The tendencies of temperature and salt are given by

[image: image6.wmf]T

T

T

D

F

T

G

+

+

Ñ

-

=

.

v

 (1.1.10)

[image: image7.wmf]S

S

S

D

F

S

G

+

+

Ñ

-

=

.

v

 (1.1.91)
where

,

,
[image: image8.wmf]T

D

,
[image: image9.wmf]S

D

 represent the forcing and dissipative terms in the temperature and salt equations respectively.

Unlike the prognostic variables u, v, w, T and S, the pressure field must be obtained diagnostically. Taking the divergence of (1.1.1) and using the continuity equation (1.1.2), leads to a three-dimensional Elliptic equation for the pressure:

 (1.1.12)

For a given field of F, (1.1.12) must be inverted for p subject to appropriate choice of boundary conditions. This method is usually called The Pressure Method [Harlow and Welch, 1965; Williams, 1969; Potter, 1976]. In the hydrostatic primitive equations case (HPE), the 3-d problem, (1.1.12), degenerates in to a 2-d inversion:- see section 1.5.

1.2 Boundary conditions

The configuration of the ocean basin is defined by its depth H((,() and allows arbitrary specification of the coastline, bottom topography and connectedness - see Fig.1. We apply the condition of no normal flow through all solid boundaries - the coasts and the bottom:

 (1.2.1)

where n is a vector of unit length normal to the boundary. The kinematic condition (1.2.1) is also applied to the vertical velocity at the surface of the ocean in both free-surface and rigid-lid models. No-slip (

) or slip (

) conditions are employed on the tangential component of velocity
[image: image10.wmf]T

v

at all solid boundaries, depending on the form chosen for the dissipative terms in the momentum equations - see section 1.7.

Eq.(1.2.1) implies, making use of (1.1.1), that:

 (1.2.2)

presenting inhomogeneous Neumann boundary conditions to the Elliptic problem (1.1.12). As shown, for example, by Williams (1969), one can exploit classical 3D potential theory and, by introducing an appropriately chosen (-function sheet of ‘source-charge’, replace the inhomogenous boundary condition on pressure by a homogeneous one. The source term F in (1.1.12) is the divergence of the vector

. By simultaneously setting

 and
[image: image11.wmf]0

.

=

Ñ

p

n

on the boundary the following self-consistent but simpler homogenised Elliptic problem is obtained:

 (1.2.3)

where
[image: image12.wmf]v

G

~

 is a modified

 such that
[image: image13.wmf]0

~

=

.n

G

v

. As is implied by (1.2.2) the modified boundary condition becomes:

[image: image14.wmf]0

.

=

Ñ

p

n

 (1.2.4)
At the ocean bottom and side the diffusive flux of heat and salt is set to zero:

 (1.2.5)

where

 is a ‘diffusion’ coefficient normal to the boundary.

Include Fig.1 here: schematic diagram of an ocean basin showing the irregular geometry: coastlines and islands.

1.3 Coordinate systems

In this section, the explicit expression of

 in spherical coordinates is given. u, v, w the velocity components in the zonal, meridional and vertical direction respectively, are given by (see Fig.2) :

 (1.3.1)

Here (is the latitude, (the longitude, r the radial distance of the particle from the center of the earth, (is the angular speed of rotation of the Earth and D/Dt is the total derivative.

Include Fig.2 here

Fig.2. The spherical polar velocities (u,v,w), the latitude is (and the longitude (.

 are inertial, Coriolis, metric, gravitational, and forcing/ dissipation terms in the zonal, meridional and vertical directions defined by
:

[image: image15.wmf]{

}

ï

ï

ï

ï

î

ï

ï

ï

ï

í

ì

ï

ï

ï

þ

ï

ï

ï

ý

ü

+

+

W

+

W

-

-

þ

ý

ü

î

í

ì

-

-

Ñ

-

=

n

Dissipatio

Forcing

Coriolis

metric

advection

D

F

w

v

r

uv

r

uw

u

G

u

u

u

/

cos

2

sin

2

tan

.

f

f

f

v

 EMBED Equation.2
 (1.3.2)

[image: image16.wmf]{

}

ï

ï

ï

þ

ï

ï

ï

ý

ü

+

+

W

-

þ

ý

ü

î

í

ì

+

-

Ñ

-

=

v

v

v

D

F

u

r

u

r

vw

v

G

sin

2

tan

.

2

f

f

v

 EMBED Equation.2
 (1.3.3)

[image: image17.wmf]ï

ï

ï

ï

î

ï

ï

ï

ï

í

ì

ï

ï

ï

ï

ï

þ

ï

ï

ï

ï

ï

ý

ü

+

+

-

W

þ

ý

ü

î

í

ì

+

+

Ñ

-

=

buoyancy

Coriolis

D

F

g

u

r

v

u

w

G

w

w

ref

w

cos

2

+

)

(

.

2

2

r

dr

f

v

 EMBED Equation.2
 (1.3.4)

where
[image: image18.wmf]v

D

 are non-conservative forces acting on the fluid. The precise forms of the
[image: image19.wmf]v

D

’s which are available in the model are described in section 1.7.

The tendency of the temperature and salt are given by:

[image: image20.wmf]T

T

T

D

F

T

G

+

+

Ñ

-

=

.

v

 (1.3.5)

[image: image21.wmf]S

S

S

D

F

S

G

+

+

Ñ

-

=

.

v

 (1.3.6)

where

,

,
[image: image22.wmf]T

D

,
[image: image23.wmf]S

D

 are the forcing/dissipation terms in the T and S equations respectively; they are described in section 1.7.

In the above the ‘grad’ (() and ‘div’ ((.) operators are defined by, in spherical coordinates:

[image: image24.wmf]÷

÷

ø

ö

ç

ç

è

æ

º

Ñ

r

r

r

¶

¶

¶f

¶

¶l

¶

f

,

1

,

cos

1

 (1.3.7)

 (1.3.8)

A consistent Cartesian version of the model can also readily be posed - it does not carry metric terms and cos(Coriolis terms - see Appendix.

1.4 Hydrostatic, non-hydrostatic and quasi-hydrostatic forms

In the non-hydrostatic model all terms in equations (1.3.2 (1.3.4) are retained. A three dimensional elliptic equation (1.2.3) must be solved with boundary conditions (1.2.4). It is important to note that use of the full NH does not admit any new ‘fast’ waves in to the system - the incompressible condition (1.1.2) has already filtered out acoustic modes. It does, however, ensure that the gravity waves are treated accurately with an exact dispersion relation.

NH has the following energy equation:

 (1.4.1)

where

 is the three-dimensional velocity vector, Q is the buoyancy forcing, F represents the forcing/dissipation terms in the momentum equations, and

. Note that the pressure work term

 vanishes when integrated over the ocean basin if all bounding surfaces, including the upper one, are assumed rigid. NH has a complete angular momentum principle - see White and Bromley, 1995; Marshall et.al.1997a.
In HPE all the underlined terms in Eqs. (1.3.2 (1.3.4) are neglected and ‘r’ is replaced by ‘a’, the mean radius of the earth. The 3-d Elliptic problem reduces to a 2-dimensional one since once the pressure is known at one level (we choose this level to be the surface) then it can be computed at all other levels from the hydrostatic relation. An energy equation analogous to (1.4.1) is obtained except that the contribution of

to the kinetic energy is absent and, on the rhs, only the horizontal components of the frictional forces do work. In QH only the terms underlined twice in Eqs. (1.3.2 (1.3.4) are neglected and, simultaneously, the shallow atmosphere approximation is relaxed. Thus all the metric terms must be retained and the full variation of the radial position of a particle monitored. QH has good energetic credentials - they are the same as for HPE. Importantly, however, it has the same angular momentum principle as NH - see Marshall et.al., 1997a. Again in QH, the 3-d elliptic problem is reduced to a 2-d one. Strict balance between gravity and vertical pressure gradients is not imposed, however, since the 2(ucos(Coriolis term plays a role in balancing ‘g’ in (1.3.4).

1.5 Finding the pressure field

1.5.1 Depth-averaged pressure

If the ocean had a flat bottom, then (1.2.3) could readily be solved by projecting p on to the eigenfunctions of the
[image: image25.wmf]2

Ñ

 operator with boundary condition (1.2.4) applied at the (flat) upper and lower boundaries (see Marshall et al., 1997a). Here such a modal approach can not be employed because the geometry can be as complex as that of an ocean basin. However, the modal approach points to the advantage of separating out, as far as is possible, the depth-averaged pressure field.

For an arbitrary function (we can define its vertical average

 as:

 (1.5.1)

where H=H((,() is the local depth.

The vertically-averaged gradient operator is then:

 (1.5.2)

The vertical integral of the horizontal component of (1.1.1) is then, using the rule (1.5.2) :

 (1.5.3)

Since there can be no net convergence of mass over the water column, we have, assuming a rigid lid at the surface (see next chapter and appendix for the free surface case):

 (1.5.4)

At this point, and following Bryan (1969), ocean modelers often introduce a stream function for the depth-averaged flow. However, as argued by Dukowicz et al. (1993) (see also Marshall et al., 1997a), it is advantageous to couch the inversion problem in terms of pressure rather than a stream function. Applying the horizontal gradient operator to (1.5.3) and making use of (1.5.4), we obtain our desired equation for the depth-averaged pressure:

 (1.5.5)

where

 (1.5.6)

It is now clear that if the ocean has a flat bottom (H=constant) then
[image: image26.wmf]0

)

(

=

F

H

 and equation (1.5.5) does not have any pressure-dependent terms on the right-hand side and can be solved unambiguously for

. But if the depth of the basin varies from point to point one cannot solve for the depth-averaged pressure without knowledge of
[image: image27.wmf])

(

H

F

. We can, however, make progress by separating the pressure field in to hydrostatic, non-hydrostatic and surface pressure parts.

Add something about free-surface case here.

1.5.2 Surface, hydrostatic and non-hydrostatic pressure

Let us write the pressure p as a sum of three terms:

 (1.5.7)

The first term,

, only varies in the horizontal and is independent of depth. The second term is the hydrostatic pressure defined in terms of the weight of water in a vertical column above the depth z,

 (1.5.8a)

where

 (1.5.8b)

Note that (1.5.8) is a generalized statement of hydrostatic balance, balancing vertical pressure gradients with gravity and, in QH, also Coriolis and metric terms.

It should be noted that the pressure at the rigid lid,

, has a contribution from both

 and

 (by definition,

, at z=0). In the hydrostatic limit

= 0 and

 is the surface pressure.

By substituting Eq. (1.5.7) in (1.5.5) an equation for

 results:

 (1.5.9)

where

 is given by:

 (1.5.10)

In HPE and QH the (doubly) underlined terms on the rhs of (1.5.9), which depend on the non-hydrostatic pressure, are set to zero and

 is found by solving:

 (1.5.11)

The vertical velocity is obtained through integration of the continuity equation vertically:

 (1.5.12)

In NH, instead, we first solve (1.5.11) to give a provisional solution for

 and then find

 from the Elliptic equation obtained by substituting (1.5.7) in to (1.1.1), and noting, as before, that

 at each point in the fluid:

 (1.5.13a)

where

 (1.5.13b)
Eq.(1.5.13) is solved with the boundary conditions:

 (1.5.14)

If the flow is ‘close’ to hydrostatic balance then the 3-d inversion converges rapidly because

 is then only a small correction to the hydrostatic pressure field.

The solution

to (1.5.13) and (1.5.14) does not vanish at the upper surface, and so refines the pressure at z=0; it is in this sense that the

 obtained from (1.5.11) is provisional. In the interior of the fluid non-hydrostatic pressure gradients,

, drive motion:- w is found by prognostic integration of the vertical velocity equation:

 (1.5.15a)

where

 (1.5.15b)

Note that in (1.5.15), the vertical gradient of the hydrostatic pressure has been canceled out with

, Eq.(1.5.8b), rendering it suitable for prognostic integration.

1.6 Summary of solution strategies

The method of solution employed in the HPE, QH and NH models are summarized in Fig.3 below.

[image: image72.wmf]

;

[image: image73.wmf]u(i=1,j=1)

k

j

i

z

y

x

(i=1,j=1,k=1)

Computational

Domain

Computational

Axes

Physical

Axes

Rule 1: i - east, j - north, k - down.

v(i=1,j=1)

v(i=1,j=1)

u(i=1,j=1)

- T(i=1,j=1), p(i=1,j=1)...

- T(i=3,j=1), p(i=3,j=1)...

-

dudy

†

(i=2,j=2)

y

u

u

y

¶

¶

»

=

d

†

dudy

Indexing

of XY

slice of

3x4

physical

domain

Rule 2: westernmost, southernmost, uppermost.

[image: image74.wmf]u(i=1,j=1)

k

j

i

z

y

x

(i=1,j=1,k=1)

Computational

Domain

Computational

Axes

Physical

Axes

Rule 1: i - east, j - north, k - down.

v(i=1,j=1)

v(i=1,j=1)

u(i=1,j=1)

- T(i=1,j=1), p(i=1,j=1)...

- T(i=3,j=1), p(i=3,j=1)...

-

dudy

†

(i=2,j=2)

y

u

u

y

¶

¶

»

=

d

†

dudy

Indexing

of XY

slice of

3x4

physical

domain

Rule 2: westernmost, southernmost, uppermost.

 HPE and QH NH

Fig.3. Outline of hydrostatic (HPE), quasi-hydrostatic (QH) and non-hydrostatic (NH) algorithms.

There is no penalty in implementing QH over HPE except, of course, some complication that goes with the inclusion of cos(Coriolis terms and the relaxation of the shallow atmosphere approximation. But this leads to negligible increase in computation. In NH, in contrast, one additional elliptic equation - a three-dimensional one - must be inverted. However we show that this ‘overhead’ of the NH model is essentially negligible in the hydrostatic limit (as the non-hydrostatic parameter N(0 - see appendix II) resulting in a non-hydrostatic algorithm that, in the hydrostatic limit, is as computationally economic as the HPEs.

1.7 Forcing and dissipation

1.7.1 Forcing

[image: image75.wmf]In the momentum equations, the forcing comes from the action of the wind at the sea surface and is represented by a term
[image: image28.wmf]h

v

F

such that:

[image: image29.wmf]z

ref

¶

¶

=

X

F

h

v

r

1

 (1.7.1)

where X is the stress such that:

[image: image30.wmf])

,

(

)

0

(

v

u

z

t

t

=

=

X

 (1.7.2)

where
[image: image31.wmf]u

t

 and
[image: image32.wmf]v

t

 are the zonal and meridional components of the wind stress at the sea surface. Similarly, buoyancy forcing at the sea surface induce forcing terms in the temperature and salinity equations:

[image: image33.wmf]z

Q

C

F

p

ref

T

¶

¶

=

r

1

 (1.7.3)

where
[image: image34.wmf]p

C

 is the specific heat of the ocean and Q the heat flux such that:

[image: image35.wmf]0

)

0

(

Q

z

Q

=

=

 (1.7.4)

where
[image: image36.wmf]0

Q

 is the air-sea heat flux. Similarly:

[image: image37.wmf]z

e

F

S

¶

¶

=

 (1.7.5)

where e is the freshwater flux such that:

[image: image38.wmf])

(

)

0

(

P

E

S

z

e

ref

-

=

=

 (1.7.6)

where
[image: image39.wmf]ref

S

 is a (constant) reference salinity and E and P are the evaporation and precipitation rates, respectively. Often, the heat and freshwater fluxes at the sea surface are parameterized by restoring the surface temperature and salinity to observed values. In this case, terms of the form
[image: image40.wmf])

(

obs

T

T

T

-

l

,
[image: image41.wmf])

(

obs

S

S

S

-

l

, where
[image: image42.wmf]T

l

 and
[image: image43.wmf]S

l

 are relaxation time-scale constants, are added to, or replace, the surface terms in equations (1.7.3) and (1.7.5).

1.7.2 Dissipation

The forms of friction available in the model for momentum are Laplacian and biharmonic frictions:

[image: image44.wmf]v

v

v

D

V

4

4

2

2

2

h

v

h

h

z

Ñ

+

¶

¶

+

Ñ

=

u

u

u

 (1.7.7)

where
[image: image45.wmf]h

u

 and
[image: image46.wmf]v

u

 are (constant) horizontal and vertical viscosity coefficients and
[image: image47.wmf]4

u

 is the horizontal coefficient for biharmonic friction. These coefficients are the same for all velocity components.

The dissipation terms for the temperature and salinity equations have a similar form except that the diffusion tensor can be non diagonal and have varying coefficients (see appendix on the parameterization of eddy fluxes of heat and salt).

[image: image48.wmf][

]

)

,

(

)

,

(

.

4

4

,

S

T

K

S

T

D

h

S

T

Ñ

+

Ñ

Ñ

=

K

 (1.7.8)

where
[image: image49.wmf]K

 is the diffusion tensor and
[image: image50.wmf]4

K

 the horizontal coefficient for biharmonic diffusion. In the simplest case where the subgrid-scale fluxes of heat and salt are parameterized with constant horizontal and vertical diffusion coefficients,
[image: image51.wmf]K

 is reduced to a diagonal matrix with constant coefficients:

[image: image52.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

=

v

h

h

K

K

K

0

0

0

0

0

0

K

 (1.7.9)

where
[image: image53.wmf]h

K

 and
[image: image54.wmf]v

K

 are the horizontal and vertical diffusion coefficients. Different values for temperature and salinity can be specified. More physically-based parameterizations, such as Gent-McWilliams - GM - or Green-Stone - GS -, are variants on (1.7.8), (1.7.9) and are described in the appendix.

CHAPTER 2 Discrete formulation.

The continuum equations employed are discretized using a finite volume strategy. In this approach the domain to be simulated is divided into cells and the evolution of the fluid is simulated, by stepping forward discrete forms of the Navier-Stokes equations integrated over these cells. In the limit that the cells have a regular cuboid structure the model is identical to a finite difference model.

The variables are stepped forward in time using a quasi-second-order Adams-Bashforth time-stepping scheme. The pressure field, which ensures that evolving currents remain non-divergent, is found by inversion of Elliptic operators. In HPE and QH a 2-d Elliptic problem must be inverted; in NH the elliptic problem is 3-dimensional. A major objective is to make this 3-D inversion - the ‘overhead’ of NH - efficient and hence non-hydrostatic modeling affordable. The pressure field is separated in to surface pressure,

, hydrostatic pressure,

 and non-hydrostatic pressure,

 and the component parts found sequentially. In the 3-D inversion for

 a preconditioner is used which, in the hydrostatic limit, is an exact integral of the Elliptic operator, and so leads to an algorithm that seamlessly moves from non-hydrostatic to hydrostatic limits. Thus, in the hydrostatic limit, the NH is ‘fast’, competitive with the fastest ocean climate models in use today based on the HPEs. But as the resolution is increased the model dynamics asymptotes smoothly to the Navier Stokes equations.
2.1 Temporal discretization.

We write (1.1.1(1.1.4) in semi-discrete form to second order in the time step (t in which, as yet, only time is discretized, and using the notation of chapter 1 (see Fig.3):

 (2.1.1)

 (2.1.2)

 (2.1.3)

 (2.1.4)

In (2.1.1), we employ a ‘tracer’ parameter ‘q’ which takes on the value zero in the HPEs and QH, and the value unity in NH.

Given that the

’s are known at time level n, an accurate explicit form for the time-stepping which involves just two time levels is the Adams-Bashforth method (AB2) which makes use of time-levels n and n-1 thus:

 (2.1.5)

AB2 is a linear extrapolation in time to a point that is just, by an amount (, on the n+1 side of the mid-point
[image: image55.wmf]2

1

+

n

. AB2 has the advantage of being quasi-second-order in time. A computational mode exists but is damped by the (factor. Furthermore it can be implemented by evaluating the G’s only once and storing them for use on the next time-step. The code is written in a sufficiently flexible manner that other time-stepping schemes could be readily implemented.

The time-step is limited by the following condition (see for example Potter, 1976; p.69):

 if

where v is the fastest propagation velocity anywhere on the mesh of size (. Typically we set (to a value of 0.1. It should be noted that if (=0 then AB2 is unstable in the inviscid case.

The prognostic and diagnostic steps of our calculation in HPE, QH and NH are outlined in the schematic diagram below - Fig.4. We now go on to describe the spatial discretization employed and, in section 2.3, our Elliptic inversion procedure.

;

 HPE and QH NH

[image: image56.wmf]]

[

2

1

2

1

1

)

(

+

+

+

+

+

-

+

=

Ñ

D

n

NH

HY

S

n

v

n

n

p

p

p

t

q

h

h

G

v

v

h

h

 EMBED Equation.2

Fig.4. Outline of the HPE, QH and NH algorithms.

2.2 Spatial discretization.

The ocean is carved up in to a large number of ‘volumes’ which can be called ‘zones’ or ‘cells’ - see Fig.5. They take on a regular shape over the interior of the ocean but can be modified in shape when they abut a solid boundary - see Fig.5. We associate tracer quantities with these cells; the cells have a volume
[image: image57.wmf]J

V

 and six faces
[image: image58.wmf]J

A

, where ‘(’ denotes a generic tracer (such as T and S). Except where they abut a solid boundary, the faces must be chosen to coincide with our (orthogonal) coordinate system. If ‘x’, ‘y’ and ‘z’ are three orthogonal coordinates, increasing (nominally) eastward, northward and upward - see Fig.5 - the faces normal to the ‘x’ axis have area

, faces normal to the ‘y’ axis area
[image: image59.wmf]J

y

A

, and faces normal to the ‘z’ axis area
[image: image60.wmf]J

z

A

. Velocity components are always normal to the faces. The geometry of the computational domain, and the coordinate system employed within it (whether, Cartesian, spherical-polar, cylindrical etc), is set up by prescribing the volumes and surface areas of the faces of all the cells of which it is comprised.

[image: image61.wmf]J

V

J

z

A

J

y

A

J

x

A

y

x

u

v

w

Plan View

Side View

y

x

u

v

z

x

u

w

w

×

v

T,S

z

Fig.5 The faces of the cells are coincident with three orthogonal coordinate axes, sketched here for a Cartesian grid (except where the cells abut a solid boundary). Velocities are ‘face’ quantities defined normal to the faces of the cells; T, S and p are ‘volume’ quantities.

In the terminology of Arakawa and Lamb (1977), the grid used here is the 'C' grid.

2.2.1 Volume quantities

The volume or cell quantities, p, (, T and S are defined as volume averages over the cells. Prognostic equations for these quantities are found using a `finite volume’ approach i.e. by integration of the continuous equations over cells making use of Gauss’ theorem. For example, applying Gauss’ theorem to the continuity equation (1.1.2) over a cell it becomes:

 (2.2.1)

where

[image: image62.wmf](

)

[

]

[

]

W

x

E

x

x

x

u

A

u

A

u

A

J

J

J

d

-

º

and similarly for the (y and (z terms. The velocities are defined perpendicular to the faces of the cells so ensuring that divergence and gradient operators can always be naturally represented by symmetric operators. The divergence of the flux of a quantity over the cell is:

 (2.2.2)

where

 is the flux with components defined normal to the faces and
[image: image63.wmf]J

V

 is the volume of the cell. The presence of a solid boundary is indicated by setting the appropriate flux normal to the boundary to zero.

Let us now consider the discrete evaluation of the G’s for the volume quantities required for integration of (2.1.4). The flux of, say, the temperature T through a ‘u-face’ of a cell is:

where

, the temperature on the face, is given by :

the average of the temperature in the two cells to which the face is common. The divergence of the flux of T over a cell,

, required in the evaluation of

, for example, is:

 (2.2.3)

where the

 is the spatial operator in the x direction (and analogously for y and z). It can be shown that this simple average ensures that second moments of T are conserved i.e. the identity
[image: image64.wmf])

2

.(

)

.(

2

T

T

T

v

v

Ñ

=

Ñ

 is mimicked by the discrete form (2.2.3) if

 is chosen to be the arithmetic mean. In (2.2.2) and (2.2.3),
[image: image65.wmf]J

V

 is the volume of the cell in question.

2.2.2 Face quantities

It is clear from (2.2.3) that velocities only appear as averages over faces of the cells and so we choose only to define them there. To deduce appropriate discrete forms of the momentum equations, however, we associate volumes with these face quantities -

- and again use Gauss’ theorem. Let us first consider the special case in which these volumes are not shaved. Then the advecting terms that make up the

’s in Eqs. (1.3.2(1.3.4) have the form (using continuity equation (1.1.2):

 (2.2.4)

where (is the spatial-averaging operator and

 (2.2.5)

the average of the volumes of the cells on either side of the face in question.

Exactly analogous expressions are written down for

and

 in which the

average of the ‘area times velocity’ terms is replaced by, respectively,

and

.The forms (2.2.4, 2.2.5) guarantees:

-conservation of the first moment because it is written in flux form,

-conservation of the second moment because the fluxing velocities satisfy a non-divergence condition:

exactly analogous to (2.2.1).

2.2.3 Coriolis terms

Velocity components are staggered in space and so the evaluation of Coriolis terms in (1.3.2(1.3.4) involves spatial averaging:

[image: image66.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

÷

÷

ø

ö

ç

ç

è

æ

-

=

´

W

-

=

z

z

w

y

x

v

x

z

y

u

CORI

u

bV

V

u

fV

V

w

bV

v

fV

V

J

J

J

J

1

,

1

,

1

2

v

G

 (2.2.6)

where

. The above form ensures energy conservation; see, for example, Arakawa and Lamb (1977).

Spatial averaging of Coriolis has undesirable consequences - at coarse resolution the w-field can be prone to grid-scale noise. Considerable attempts have been made to ameliorate this problem - see section 2.2.6 where the 'C-D' scheme, devised by Alistair Adcroft, is described.

2.2.4 Pressure gradient force

The three components of the pressure gradient force are:

 (2.2.7)

The form (2.2.7) ensures that the discrete operator representing

, which must be inverted to find the pressure field, is a symmetric operator facilitating the use of conjugate-gradient methods - see section 2.3. It also leads to an appropriate discrete analogue of energy conservation - see section 2.2.7 and, in particular, Adcroft et al.(1997).

2.2.5 Forcing and dissipation

‘Laplacian’ diffusion terms are represented for cell quantities thus:

[image: image67.wmf](

)

(

)

(

)

T

A

T

A

T

A

V

T

z

z

y

y

x

x

d

d

d

J

J

J

J

,

,

.

1

.

K

K

Ñ

=

Ñ

Ñ

 (2.2.8a)

and for ‘face’ quantities:

[image: image68.wmf](

)

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

Ñ

=

Ñ

Ñ

u

A

u

A

u

A

V

u

z

z

z

y

y

y

x

x

x

u

d

d

d

J

J

J

u

u

,

,

.

1

.

 (2.2.8b)

where

 is given by (2.2.5).

Higher order dissipative forms are obtained by repeated application of the

operators defined above.

Include form of discrete forcing terms here.

2.2.6 The C-D scheme

The spatial averaging required in the evaluation of Coriolis terms on the ‘C’ grid is a significant disadvantage when the model is used at resolutions which are coarse relative to the Rossby radius of deformation. A checkerboard mode in the horizontal divergence field can readily be excited and implicit treatment of Coriolis terms is significantly more complicated than on unstaggered grids (such as the ‘B’ grid, for example). As shown in Adcroft (1995), however, both of these difficulties can be significantly ameliorated by use of a C-D grid in which a ‘D’ grid is used to step forward velocity components used in the evaluation of Coriolis terms.

Include the discrete equations here.

The scheme has been particularly useful in coarse-resolution studies of ocean circulation in which the horizontal resolution is many times the Rossby radius of deformation.

2.2.7 Conservation properties

The above discrete forms give the model excellent integral conservation properties. They conserve integrals of mass, heat, salt, variance of temperature and salinity and total energy, when effects of mixing and transfer across boundaries are absent. The discrete analogue of kinetic energy is:

These integral properties are not compromised by the use of shaved cells provided care is taken in the definition of control volumes for variables adjacent to the boundary (see appendix). The model does not conserve enstrophy, however.
Include section on shaved cells (maybe in appendix?)

2.3 The Elliptic problem

We now formulate the discrete analogues of the 2-d and 3-d elliptic problems for the pressure which guarantees that the velocity fields evolving from n to n+1 according to (2.1.1) and (2.1.2) satisfy the non-divergence condition (2.1.3) at step n+1. The parallel implementation of the preconditioned conjugate-gradient methods used to invert them are discussed in section 2.3.2.

2.3.1 Discrete formulation

Two-dimensional

Because of the ‘finite volume’ approach adopted in our treatment of volume quantities, in which velocities are defined normal to the faces of the cells, the divergence operator has a natural form leading to a local Elliptic operator which has a five-point stencil. By setting q=0 in the momentum equations (2.1.1) and summing them over the whole depth of the ocean, invoking the continuity equation (2.2.1) and applying boundary conditions (1.2.1), the following equation for

 results
:

[image: image69.wmf](

)

[

]

t

H

p

H

n

H

h

n

HY

n

S

h

h

D

Ñ

-

=

÷

÷

ø

ö

ç

ç

è

æ

Ñ

Ñ

+

h

v

.

S

2

1

 (2.3.1)

where

 (2.3.2)

Here

 is the discrete analogue of

, a vertical integral over the whole depth of the ocean; we sum over the vertical faces of the cells each of depth (z|k making up the column of ocean. The ‘divh’ and ‘gradh’ operators are horizontal components of (2.2.2) and (2.2.7), respectively.

Note that on the rhs of (2.3.1) we have retained a term,

which ensures that

 as the model steps forward. This ‘relaxation’ technique is often used in solving the Navier-Stokes equations- (see, for example, Williams;1969). In the present context it obviates the need to step forward barotropic equations for

 separately. In our method only the prognostic equations for interior velocities, Eq (4.1.1), are stepped forward and the horizontal divergence of the depth-integrated horizontal velocities at each time-step evaluated and used to modify the source-function to the 2-d Elliptic problem accordingly, so ‘tying together’ the velocity and the pressure field.

The Elliptic problem Eqs.(2.3.1) and (2.3.2) can be written in the concise matrix notation:

[image: image70.wmf]ï

þ

ï

ý

ü

=

=

radh

ivh

2d

2d

S

2d

G

D

A

f

p

A

H

.

 (2.3.3)

where

 is a symmetric, positive-definite matrix
 comprised of

 and

 (matrix representations of the ‘div’ and ‘grad’ operators),

 is a column vector of surface pressure elements and

 a column vector containing the elements of the rhs of (2.3.1). The system can thus be solved using a standard conjugate-gradient method, preconditioned for efficient solution on a parallel computer - see section 2.3.2.

In summary, then, because (i) the divergence constraint on the evolving velocities is applied in integral form employing Gauss’ theorem and (ii) the kinematic boundary condition v.n=0 (where n is a unit vector normal to a solid boundary) is applied at the face of a cell, then the form of (2.3.3) is unchanged, even if the face of a cell which abuts the solid boundary is inclined to coordinate surfaces. This property enables one to rather easily ‘shave’ zones which abut boundaries to improve the representation of flow over topography (see appendix).

Three-dimensional

In non-hydrostatic calculations a three-dimensional elliptic equation must also be inverted for

 to ensure that the local divergence vanishes. The appropriate discrete form can be deduced in a manner that exactly parallels that which was used to deduce (2.3.1). Taking (h.(2.1.1)+
[image: image71.wmf])

2

.

1

.

2

(

z

¶

¶

, invoking (2.1.3) and boundary conditions (1.2.1), the resulting elliptic equation can be written:

 (2.3.4)

where

, like

, is a symmetric
, positive-definite matrix representing the discrete representation of

, but now in three dimensions. Here

 and

 are (1(N) column vectors containing the source function (the discrete form of Eq.(1.5.13)) and non-hydrostatic pressure, in each of the

 cells in to which the fluid has been carved. The column vectors have singly subscripted elements

 in which the elements are first enumerated in each vertical column, and only then in the horizontal directions thus:

where i is an index increasing eastwards, j is an index increasing southwards and k increases downwards. Although huge, of size

,

 has a particularly simple form which can be exploited to devise a highly efficient method of inversion.

has 7 diagonals representing the coupling in the three space dimensions. In any particular row of the matrix, the three leading diagonals are the coefficients multiplying the pressure in the same vertical column of the fluid; the four diagonals in the wings are the coefficients multiplying pressures in cells in the same horizontal plane. The inner three diagonals can usefully be blocked and arranged as shown below:

 (2.3.5)

Here each block

 is a tri-diagonal matrix representing

and e is a diagonal matrix representing

. D and e are matrices of size

 if there are

 cells in each column of the ocean:- there are

 such blocks, one for each column of the ocean.

One further property of

 should be noted. If the vertical dimension of a cell is much smaller than its horizontal extent (as is often the case because the ocean is much shallower than it is wide) then the

 (

 and

 is dominated by the blocks D along its diagonal. The elements e are smaller than those of D by an amount

. Moreover, the tracer parameter ‘q’ always appears as a multiplier of the e matrix - see (2.3.5); thus when q is set to zero (corresponding to the hydrostatic limit),

 is comprised only of the blocks D and so can readily be inverted. Thus if we ‘precondition’ (2.3.4) by premultiplying it by a matrix which is comprised of the inverse of these blocks, that preconditioner will be an exact inverse of

 in the hydrostatic limit. These properties of

 will be exploited in our chosen method of solution.

2.3.2 Preconditioned conjugate-gradient solution method

Many standard references to preconditioned conjugate gradient methods exist - see, for example, Press et al; 1988 and references therein. We briefly outline the ‘nub’ of the method here, emphasising the use we make of preconditioners.

Our problem is to find p given A and f (see (2.3.3) and (2.3.4)), where:

 (2.3.6)

and A is a symmetric, positive-definite matrix.

In serious modelling applications the size of A is too large for direct methods to be useful in 3-dimensions and often in 2-dimensions too. Since A does not change in time, it could be inverted once and stored. However, although A is sparse, its inverse is dense and so operating with its inverse would involve N2 multiplications; an unrealistic task given that typically N >> 100000. So we adopt an iterative procedure, preconditioned conjugate gradient iteration, which exploits the sparseness of A and its diagonal dominance. The procedure involves repeated multiplication of the iterative solution by A and by another sparse matrix K, an approximate inverse of A; K is called the preconditioner.

The algorithm can be understood thus:

Let us pre-multiply Eq.(2.3.6) by a (carefully chosen) matrix K, which is an approximate inverse of A, so that

. Then (2.3.6) can be written:

where

. To the extent that |C| (0, the above suggests the following iterative scheme - 'i' is the iteration step:

where

is called the search direction and

is the residual vector. The r's and b's can be deduced from the previous iteration using the relations:

The above iterative procedure can be accelerated by choosing those search directions that minimize the magnitude of the residual vector as measured by the inner product

. Our chosen method, the conjugate gradient method
, takes a form much like the simple scheme outlined above, but the search directions are optimized. It can be written:

 (2.3.7)

Here [,] is the inner product of two vectors.

The conjugate-gradient procedure involves, at each iteration, multiplication of vectors by A and K and the evaluation of two global sums to form the inner product. The cost of the preconditioner is one operation by it per iteration.

We have designed preconditioners, K, for both the 2-d and 3-d problems, so that (i) it can be easily stored (ii) the number of operations required when multiplying by it, is as small as possible and (iii) it is a good approximation to A-1 so the iterative procedure converges rapidly. Because the true inverse is dense, our choice will be a compromise between these, sometimes conflicting, ideal properties.

Two-dimensional

At each horizontal location (2.3.3) can be written:

where the superscripts denote the center, west, east, north and south locations in the operator’s five point stencil. The leading diagonal of A2d will be comprised of the

 and the four non-zero off-diagonals will be comprised of the

. Because of the dominance of the leading diagonal, to a first approximation:

One of the simplest forms that could be chosen for

, then, is to suppose that it is a diagonal matrix comprised of elements equal to the reciprocal of the corresponding elements along the leading diagonal of A. However, this can be improved by constructing an approximate local inverse as follows.

At the five points in the stencil surrounding ‘c’ then, to the same level of approximation, we may write:

where

 denotes the point to the west etc.

Hence we can make a better approximation to

thus:

To arrive at a symmetric preconditioner we replace

 etc thus:

giving, finally, our local preconditioner for use in (2.3.7):

 EMBED Equation.2
 (2.3.8)

Although simple, (2.3.8) is highly effective, reducing the number of iterations required for convergence by, typically, a factor of four.

Three-dimensional

After considerable experimentation we have chosen a block-diagonal preconditioner, a matrix whose diagonal is made up of the inverse of the tri-diagonal matrices D defined above:

 (2.3.9)

Evaluation of the inner products to compute (and (in (2.3.7), involves forming the vector x, where

or, since

 , where D is the matrix of diagonal elements of (2.3.5).

If our ocean model has many levels, then D-1 will be dense and so storing and multiplying by D-1 is also demanding of resources. Instead, we exploit the fact that D is tri-diagonal, and use ‘LU’ decomposition to solve the preconditioning equations for x in the form:

We write D=LU where L is a lower-triangular matrix and U an upper triangular matrix which have the form:

,

and

It is easy to see, that if

 we have a system of simple equations:

and so on.

Finding the inverse of D, or solving problem Dx=r is equivalent to solving the two sets of equations:

 (2.3.10)

first for z and then for x. This is straightforward because of the triangular structure of L and U. Importantly the number of operations required to solve (2.3.10) for x scales as NZ compared to NZ2 if we had used the inverse of D directly.

The resulting preconditioner was found to be a good compromise; its use significantly reduces the number of iterations required to find a solution to (2.3.6) because it is an acceptable approximation to the inverse of A, it is sparse and, most importantly, its application requires no communication across the network in the data-parallel implementation of the algorithm.

CHAPTER 3 PARALLEL IMPLEMENTATION

Not complete yet

The current model implementation uses a conservative form of Fortran 90. The array syntax notation feature of Fortran 90 is heavily used, however, the more elaborate features of Fortran 90 such as overloading of operators, modules, array valued functions are avoided (the performance of these constructs varies widely from one compiler to another). Apart from the array notation, the only new syntax elements that experienced Fortran 77 or C programmers need to understand to work with the model, are the Fortran 90 SHIFT primitives.

2.1 Enumeration of arrays.

In the model implementation the grid cells are mapped to regular three-dimensional arrays. As shown in Fig.6 the index i is used to index the x-axis, j to index the y-axis and k to index the z-axis. The rule that coordinate (i=1,j=1,k=1) of any variable must fall within the western most, southern most and upper most cell and be as far toward the west, south and top of that cell is used throughout the code. This is illustrated in Fig.6.

Fig 3 .The discrete domain is mapped to multi-dimensional arrays using an enumeration scheme that follows the two rules illustrated. Both the major prognostic variables and the intermediate terms abide by this convention.

Chapter 4 Procedures and variables
4.1 Procedures

4.1.1 Flow chart

See below a flow chart of the code. Some procedures are not mentioned (diagnostic procedures for example).

MAIN

|----CONTROL

|

|----SET_DEFAULTS Set default values for model parameters
|
|----DATE Record date and time of run
|
|----MACHINE Record machine identifying string
|

|----READ_DATA Read file specifying model parameters
|
|----READ_TOPOGRAPHY Read land/water map
|

|----INITIALISE

|
|----INITIALISE_MASKS Set land/water masks arrays
|
|----INITIALISE_GRIDDING Set up arrays expressing geometry
|
|
|----INITIALISE_CARTESIAN_GRID

|
|
|----INITIALISE_SPHERICAL_POLAR_GRID

|
|----INITIALISE_OPERATORS Set up differencing operators
|
|----INITIALISE_FIELDS Set initial values of model variables
|
|
|----INITIALISE_U

|
|
|----INITIALISE_V

|
|
|----INITIALISE_S

|
|
|----INITIALISE_T

|
|----INITIALISE_CORIOLIS Set Coriolis term operator
|
|----INITIALISE_METRIC Set metric term operator

|
|----CG3DAI Define 3d laplacian "A matrix" operator
|
|----CG3DPI Define 3d "A matrix" preconditioner

|
|----CG2DAI Define 2d laplacian "A matrix" operator
|
|----CG2DPI Define 2d "A matrix" preconditioner
|

|----CHECK_INPUT Validate input data
|

|----PRINT_HEADING Print out run data summary page
|

|----MODEL Perform integration

|----RHO_WGRID_CALC Evaluate initial density

|

MAIN LOOP =====>

|

|----FORWARD Control explicit stepping of u, v, and w

|
|----TERMS0 Set up temporary arrays

|
|----TERMS1 needed throughout stepping

|
|----GU_CALCULATE Calculate explicit dU/dt

|
|
|----EXTERNAL_FORCING_U Add forcing

|
|----GV_CALCULATE Calculate explicit dV/dt

|
|
|----EXTERNAL_FORCING_V Add forcing

|
|----GW_CALCULATE Calculate explicit dW/dt

|

|----PFIND Diagnose pressure field

|
|----PFIND_HSTATIC Find hydrostatic pressure

|
|----PFIND_SURFACE Find surface pressure

|
|
|----CG2D 2d preconditioned conjgrad

|
|
|
|----CG2DMA Multiply by 2d laplacian

|
|
|
|----CG2DPC Precondition

|
|----PFIND_3D Find remaining pressure

|
|
|----PFIND_RHS3D Form right hand side

|
|
|----CG3D 3d preconditioned conjgrad

|
|
|
|----CG3DMA Multiply by 3d laplacian

|
|
|
|----CG3DPC Precondition

|

|----UPDATE_VELOCITIES

|

|----EPARAM_SET_MIXING Computes 3d diffusion tensor

|

|----INC_TRACER Step forward temperarture

|
|----EXTERNAL_FORCING_TEMPERATURE Add forcing

|

|----INC_TRACER Step forward salinity

|
|----EXTERNAL_FORCING_SALINITY Add forcing

|

|----CADJTRACE Mix unstable water column

|

|----RHO_WGRID_CALC Evaluate density field

|

TO MAIN LOOP <=====|----OUT Dump out model fields
4.1.2 Alphabetical list of procedures and 'include' files

Include the list here with a brief description (indicate the 'parent' procedure).

4.2 Variables

Include an alphabetical list of variables here with the following information: type (integer, real, character etc…), units (for real variables), brief description, first occurrence in the code. Use table.

Chapter 5 Getting started: practical considerations

Notation : Fortran variable names of the code are written in italic. Subroutine and file names are written in CAPITAL LETTERS.

5.1 Accessing the code - directory structure

leave for now

5.2 Configuring the model and setting up a run

This section is meant to review the parameters that need to be set up before one can run the model. Unless noted otherwise, these parameters are Fortran variables declared in file PARAMS.h and set up in routine SET_DEFAULTS. The default values can be changed by means of a namelist. The list that follows is not exhaustive. For example, parameters related to the forcing files are expected to be user specific and are not mentioned here. Others are left to the appendices. However, we have attempted to include all the ones that will need to be set up no matter what configuration you use. For the parameters not described here, look into file PARAMS.h and routine SET_DEFAULTS. In what follows, the parameters are grouped into categories related to the geometry and the equations solved in the model.

We start with some constants describing the state of the ocean. The real variables g, Cp, RoNil represent respectively gravity (in m s-2), the specific heat (in J K-1 kg-1), and the reference density (in kg m-3) of the ocean.

The vertical coordinate used in the model is actually pressure so that the same code can be used to simulate fluid motions in the atmosphere. In the namelist, variables depending on the choice of vertical coordinate (such as vertical viscosity and diffusivity coefficients) have their vertical length expressed in meters. Later in the code, this vertical length is converted in pressure unit (this involves typically a simple multiplication or division by RoNil(g).

5.2.1 domain, geometry

· dimensions

The dimensions of the domain Nx, Ny, Nz, are declared and set in file SIZE.h. The integer variables L, M, N in the namelist must be set to the values of Nx, Ny, Nz, respectively.

· grid

The character variable gridStyle controls the type of grid. Two versions are currently available. For a Cartesian grid, set gridStyle to 'Cartesian'. Then set up the horizontal grid spacing dM (in m). For a spherical polar grid, set gridStyle to 'Spherical Polar'. Then specify the resolution along latitude and longitude dPhi and dTheta (in degrees) and the minimum latitude phiMin (in degrees). Whatever grid you choose, also specify the 1D array representing the vertical layers thickness deltaz (in m) in the namelist. Note that in the code, the layer thicknesses are expressed in pressure units (Pa) and are represented by the variable delps (equal to deltaz multiplied by RoNil(g).

· topography

The model code applies without modification to enclosed, periodic (x or y) and double periodic (x and y) domains. The geometry of the model is controlled by the topography file. A real 3D array pmask is defined having the value 1 on water and 0 on land. Periodicity is assumed by default and is suppressed by defining zero open interface areas for cells at the limits of the computational domain.

Note: The present elliptic solver procedures CG2D and CG3D assume that they are solving a single global problem. This means that all cells with non-zero volumes must interconnect, either directly or indirectly, through the surface. If disconnected basins are defined, the results are unpredictable.

5.2.2 Equation of state

Initial reference temperature and salinity profiles need to be provided to compute the perturbation density and are represented respectively by the 1D arrays ths (in oC) and ssppt (in ppt). Two forms of equation of state are available in the baseline implementation and are controlled by the character variable equationofState. If set to 'linear', then specify the constant expansion coefficients tAlpha (in K-1) and sBeta (in ppt-1) (through the variables alphaTemperature and alphaSalt in file PARAMS.h). If you set equationofState to 'polynomial', density is evaluated from a third order polynomial expansion of the full state equation. The polynomial coefficients are read from a file called POLY3D.COEFFS. Any other arbitrary formulae for deriving density can readily be plugged into the model.

5.2.3 Hydrostatic, quasi-hydrostatic, or non-hydrostatic regime

The logical variable nonHydrostatic controls whether or not you want the model to run in a nonhydrostatic regime (NH) as described in the first two chapters of this manual. If nonHydrostatic is set to .TRUE., the model will step forward for the vertical velocity and solve a 3D elliptic equation for the pressure. Note that the vertical velocity can still be diagnosed from the continuity equation if the logical variable stepW is set to .FALSE. In the nonhydrostatic regime, you also need to set up the logical variable buoyancy that controls whether or not you want to include the buoyancy term in the vertical momentum equation. The distinction between hydrostatic (HPE) and quasi-hydrostatic (QH) regime is controlled by the logical variable verticalCoriolis (see next section, momentum equations).
5.2.4 Momentum equations

Unless noted otherwise, what follows is not applicable to the vertical velocity w if the variable nonHydrostatic has been set to .FALSE. (HPE or QH regime).

The logical variable momentumStepping controls whether or not you want to step forward for the velocity components u, v and w. If set to .TRUE., the following parameters have to be specified.

· advection terms

If you want to include these terms in the momentum equations, set the logical variable momentumAdvection to .TRUE.. A centered second-order advection scheme is then used.

· metric terms

If you want to include these terms in the momentum equations, set the logical variable metricTerms to .TRUE.. Note that all the metric terms are included. This choice is to be made only if the grid is spherical polar (the variable is automatically set to .FALSE. if the grid is Cartesian).

· Coriolis terms

If you want to include these terms in the momentum equations, set the logical variable Coriolis to .TRUE.. If this is the case, also set the real variable raja and the logical variable verticalCoriolis. The former is a number between 0 and 1 that controls the "C-D scheme" (see chapter 2). If raja is set to a value greater than 0., horizontal velocity components stepped forward on a 'D' grid are used in the evaluation of the Coriolis terms with a weight given by raja. If raja is set to 0., the Coriolis terms are estimated using the 'C' grid velocity components only. The variable verticalCoriolis controls whether or not you want to include the cos (latitude) terms in the zonal and vertical momentum equations (I think the name verticalCoriolis is misleading. The additional terms appear both in the zonal and vertical momentum equations. I would suggest to replace the name verticalCoriolis by cosphiCoriolis). If verticalCoriolis is set to .TRUE. and nonHydrostatic to .FALSE., the model is in the quasi-hydrostatic (QH) regime. If the grid is Cartesian, you have to specify the Coriolis parameter dependence on latitude with the character variable CoriolisPlane. If this variable is set to 'betaplane', set the reference Coriolis parameter fcori (in s-1) and its derivative with respect to latitude beta (in m-1 s-1) (Note : the Beta plane formulation is not available yet). If CoriolisPlane is set to 'fplane', only fcori needs to be set. Note that you can set up a non-rotating problem on a Cartesian grid by simply setting fcori to 0.

· dissipation terms

If you want to include these terms in the momentum equations, set the logical variable momentumDiffusion to .TRUE.. If this is the case, specify the horizontal and vertical viscosity coefficients CAPUV and RKPUV respectively in the namelist (in m2 s-1). Note that in the code, these variables are called a2MomXY and a2MomZ and that the unit of the latter is Pa2.s-1 (multiplication by [RoNil(g]2). If you also want to include biharmonic diffusion terms in the momentum equations, set the logical variable momBhDiffusion to .TRUE.. Then, set the value of the horizontal biharmonic diffusion coefficient C4PUV (in m4 s-1) in the namelist. Note that in the code, this variable is called a4MomXY.

· forcing terms

This section only applies to the horizontal velocity components.

If you want to include these terms in the momentum equations, set the logical variable momentumForcing to .TRUE.. Then, additional terms will be added to the internally induced tendency terms calculated by the model. It is assumed that you have wind data available (or that you have prescribed an analytical forcing) and a routine that estimates the forcing terms at each time step.

· boundary conditions

Slip or no-slip conditions on side walls and at the bottom and top are controlled by logical variables freeslipSide, freeSlipBottom and freeSlipTop, respectively. If these variables are set to .TRUE., free slip boundary conditions are applied (otherwise no-slip conditions are applied).

5.2.5 Diagnosis of pressure

The logical variable pressureStepping controls whether or not you want to solve for the pressure field. If you do, the following parameters need to be specified :

· hydrostatic pressure

The logical variable seperatePh controls whether or not you want to calculate the hydrostatic pressure anomaly. If you do, then specify the surface boundary condition with the character variable phSurfBC. Two options are available : the hydrostatic pressure anomaly is set to zero at the surface (phSurfBC='zero') or is set to the density of the first layer times half the layer depth (phSurfBC='topBoxPhIntegralofRho').

· surface pressure

The logical variable seperatePs controls whether or not you want to solve for the surface pressure. If you do, the real constant variables freeSurfFac, psGam, uDivAlpha, and gBaro need to be set up and control whether or not you want to have a rigid lid or an implicit free surface. For a rigid lid, set freeSurfFac, psGam, uDivAlpha, and gBaro to 0., 1., 0., and g (gravity) respectively. To control the operation of the 2D iterative solver routine CG2D, specify the values of the variables toler2d, max2dIt, freqCheckToler2d, divhMax, divhMin. Finally, the logical variable stericEffect controls whether or not you want to include a steric anomaly in surface elevation. If you do, then specify the value of variable rhorefSurf, reference density for surface layers.

· non hydrostatic pressure

This part is relevant only if the variable nonHydrostatic has been set to .TRUE. (see section 5.2.3). Then specify the values of the variables toler3d, max3dIt, freqCheckToler3d, divMax, divMin that control the operation of the 3D iterative solver routine CG3D. Furthermore, the logical variable findD2pnhDZ2 controls whether or not you want to solve the Dirichlet problem for the vertical gradient of nonhydrostatic pressure.

5.2.6 Tracer equations (temperature and salinity)

This section also applies to other tracers (if necessary). The logical variable tempStepping (saltStepping) controls whether or not you want to step forward for temperature (salinity). If you do, it is assumed that you have data defining initial conditions (or you can specify initial vertical profiles through the variables ths and ssppt, see section 5.2.3). Moreover, the following parameters need to be specified.

· advection terms

If you want to include these terms in the temperature (salinity) equation, set the logical variable tempAdvection (saltAdvection) to .TRUE.. If this is the case, choose the tracer advection scheme with the character variable TradvecScheme. Two options are available : 'upstream' or 'centered'. (Note : in the current version, TradvecScheme is not declared in PARAMS.h but is a local variable of routine INC_TRACER). In the current version, the advection scheme is common to all tracers.

· dissipation terms

If you want to include diffusion terms in the temperature (salinity) equation, set the logical variable tempDiffusion (saltDiffusion) to .TRUE.. Then, choose the tracer diffusion scheme with the character variable TrdifScheme. Several options are available. Here, we only consider the case of constant horizontal and vertical diffusivity coefficients. For other cases, see appendix to know what parameters need to be set up. So, if TrdifScheme is set to 'constant', the variables CAPTH (CAPS) and RKPTH (RKPS) in the namelist need to be set and represent the horizontal and vertical diffusivity coefficients, respectively (in m2 s-1). Note that in the code, the variables are named a2TempXY (a2SaltXY) and a2TempZ (a2SaltZ) and that the latter is expressed in Pa2 s-1. If you also want to include biharmonic diffusion terms in the temperature (salinity) equation, set the logical variable tempBhdiffusion (saltBhdiffusion) to .TRUE.. Then, set the value of the horizontal biharmonic diffusion coefficient C4PTH (C4PS) in the namelist (in m4 s-1). Note that in the code, the variable is named a4TempXY (a4SaltXY).

· forcing terms

If you want to include these terms in the momentum equations, set the logical variable tempForcing (saltForcing) to .TRUE.. Then, additional terms will be added to the internally induced tendency terms calculated by the model. It is assumed that you have air-sea heat and freshwater fluxes data available (or that you have prescribed an analytical forcing) and a routine that estimates the forcing terms at each time step.

· convective adjustment

The logical variable ConvectiveAdjustment controls whether or not you want the static instabilities to be dealt with by a convective adjustment scheme. If you do, specify the value of variable CadjFreq, frequency (in s) with which the convective adjustment scheme is applied. For details about the scheme, see appendix.

5.2.7 Run setup

· run duration

The starting time, ending time and time step of an integration need to be set up with the integer variables IPUSTTTMP, IENDSECTMP and IDELT in the namelist (in s). Note that in the code, these parameters are real variables named startTime, endTime and delt. If the starting time is non-zero, the model will try to read in a set of checkpoint files from a previous integration (see section 5.3 for a description of the checkpoint files).

· forcing controls

Certain parameters related to the reading of the forcing files might need to be set up (for example after a restart). In general, this will depend on the particular user configuration. Therefore, this is not extended any further.

· output

Real constant variables defining frequencies (in s) with which output files are written on disk need to be set up. dStateFreq is the frequency with which the state of the model is saved. dPUFreq is the frequency with which pick-up files (suitable to restart an integration) are saved. dCkptFreq is the frequency with which "rolling" checkpoint files are saved. See section 5.3.3 for a description of the output files.

5.3 Compiling, running, and restarting the code

5.3.1 compilation

Type make wherever you are. There is a good chance it will work! To set the precision, look into utility r8 (in directory ProgUtils). This utility is called by the makefile to "preprocess" the procedures of the code converting all the 'REAL' statements into 'REAL*4' or 'REAL*8'. The makefile will create an executable named MITGCM. Use the UNIX command 'size' to know how much memory is required to execute the code on a single processor.

5.3.2 execution

First, we review the input files needed to run the model :

· namelist (file named DATA),

· topography (file named PMASK.SUN.B),

· polynomial coefficients (file named POLY3D.COEFFS) if the full equation of state is used,

and if necessary :

· initial temperature and salinity,

· wind data,

· heat and freshwater fluxes data.

If you want to restart the code, pick-up files are also needed (see next section). To run the code, type MITGCM < DATA > OUTPUT. The building of scripts to make the submission and execution of the code more automatic is left to the user at this point.

5.3.3 output and restart

Depending upon the values of the various frequencies mentioned in section 5.2.7, output files describing the state of the model will be written on disk. The name of these files is written in the following way : "XXX.0000nIter", where XXX is a capital letter or a group of capital letters indicating the quantity being saved (for example U for the zonal velocity) and nIter is a chain of figures indicating the instant (in number of time steps) at which saving occurs. The maximum value for nIter is 109 and 0s will fill in the space after XXX when nIter is less than its maximum value as shown above. Below follows a list of the output files. Unless noted otherwise, the different quantities are expressed in SI units.

U

:
zonal component of velocity vector

V

:
meridional component of velocity vector

W

:
vertical component of velocity vector (in Pa s-1)

T

:
potential temperature (in oC)

S

:
salinity (in ppt)

PS

:
surface pressure (in m)

PH

:
hydrostatic pressure (in m)

PNH

:
nonhydrostatic pressure (in m)

PTOTAL
:
total pressure (PS+PH+PNH) (in m)

GTNM1
:
temperature tendency at time step n-1 (in oC s-1)

GSNM1
:
salinity tendency at time step n-1 (in ppt s-1)

GUNM1
:
zonal velocity tendency (except pressure term) at

time step n-1

GVNM1
:
meridional velocity tendency (except pressure term) at

time step n-1

GWNM1
:
vertical velocity tendency (except pressure term) at

time step n-1 (in Pa s-2)

PNM1

:
total pressure at time step n-1

UAJA

:
'D' grid zonal velocity (used in C-D scheme)

VAJA

:
'D' grid meridional velocity (used in C-D scheme)

UBXBYNM1 :
interpolated 'D' grid zonal velocity (from 'C' grid component) at time step n-1

VBYBXNM1
:
interpolated 'D' grid meridional velocity (from 'C' grid

component) at time step n-1

These are the files needed to restart an integration (pick-up files) and their output is controlled by the variable dPUFreq (see section 5.2.7). Of course, if you are stepping forward other quantities (other tracer, ice…), they will need to be output along with the files above. The variable dStateFreq controls the output of the quantities U, V, W, T, S, PTOTAL only, from which most diagnostics can be made. Rolling checkpoint files, the output of which are controlled by the variable dCkptFreq, are the same as the ones above (pick-up files) but are named differently. Their name end with the suffix 'ckptA' or 'ckptB' instead of '0000nIter'. They can be used to restart the model but are overwritten every other time they are output to save disk space during long integrations.

5.4 Examples : description of test cases

First, we describe briefly each case. Refer to the references for more detail.

5.4.1 Two-layer ocean in a rectangular basin driven by a steady wind-stress
This case corresponds to the numerical experiments of Holland and Lin (1975). In this study, the authors explore the generation of mesoscale eddies and their contribution to the oceanic circulation. Their model has two homogeneous layers on a simple closed rectangular basin 1000 km (1000 km with a flat bottom at 5 km depth, and is forced by a steady wind-stress that varies in a simple sinusoidal manner with latitude and has an amplitude of 0.1 Pa. The horizontal resolution is 20 km on a (-plane. For sufficiently small viscosity values, the model, spun up from rest, exhibits mesoscale eddies and eventually reaches a statistical steady state. Analysis of the energy budget shows that the eddies are generated by baroclinic instability.

The configuration given in 5.4.5 corresponds to the preliminary experiment described in Holland and Lin (1975). In our height-coordinate model, quasi reduced-gravity conditions can be configurated by prescribing an initial temperature profile mimicking the reduced-gravity used in Holland and Lin set-up.

5.4.2 Neutral ocean in a doubly periodic domain driven by buoyancy forcing
This case corresponds to the numerical experiment of Jones and Marshall (1993) done with the present code. In this study, the authors explore open ocean deep convection. The model has dimensions 32 km (32 km (2 km and 19 levels on the vertical. Periodic boundary conditions are applied on the x and y directions. The horizontal and vertical resolutions are 250 m and 100 m, respectively. The model is initialized with a homogeneous, resting ocean governed by a linear equation of state without salt. Constant cooling corresponding to a heat loss of 800 W m-2 is induced over a disk of radius 8 km at the center of the domain and over a depth of 200 m from the surface. The model is run in the nonhydrostatic mode and convective plumes develop. These plumes efficiently mix the water column and generate a dense chimney of fluid, which subsequently breaks up through the mechanism of baroclinic instability to form spinning cones.

The configuration given hereafter corresponds to the reference simulation of Jones and Marshall (1993).

5.4.3 Exponentially stratified ocean on a wind-driven channel
This case corresponds to the wind-driven channel experiment of Visbeck et. al. (1997) done with the present code. In this study, the authors compare eddy-resolving 3D simulations with 2D simulations in which the eddies are parameterized in order to test and assess different schemes for specifying eddy transfer coefficients. The model has dimensions 1500 km (500 km (4.5 km on a f-plane. The grid spacing is 10 km on the horizontal and varies on the vertical from 25 m in the upper layers to 400 m at depth (20 vertical levels). Periodic conditions are applied at the meridional boundaries. The model is initialized with an exponential temperature profile of scale depth 900 m and is forced by a cosine wind stress of maximum strength 0.2 Pa at the channel center. After six years or so, a steady state is reached where the input of potential energy by the wind is balanced by release of potential energy due to baroclinic eddies.

5.4.4 Global ocean driven by realistic wind and buoyancy forcing
This case corresponds to an-going study of the large-scale global ocean circulation. The spherical domain extends from 80oS to 80oN in latitude and a realistic topography is used. The horizontal resolution is 4 o and the vertical grid spacing varies from 25 m in the upper layers to 500 m at depth (20 vertical levels). The full equation of state is employed. The model is initialized with the Levitus climatology and forced by climatological forcing, namely the ….

5.4.5 Model configuration for the test cases

The parameter values are summarized on Table 5.1.

Table 5.1 Model configuration for the test cases. "(" indicate not applicable or that the model results are not sensitive to the values chosen.

2-layer
convection
Channel
Global 4 deg

Nx

Ny

Nz-1
100

100

2
132

132

19
150

50

20
90

40

20

gridStyle
'cartesian'
'cartesian'
'cartesian'
'spherical

polar'

dm (km)
20
0.25
10
(

dphi

dTheta

phiMin (deg)
(
(
(
4

4

-80

deltaz (min)

(max) (m)
1000

4000
100
25

400
25

500

Geometry

Topography
rectangular box

flat bottom
squareboxd-periodic

flat bottom
channel

s-periodic

flat bottom
sphere

realistic topo

EquationofState

ths (oC)

ssppt (ppt)

tAlpha (K-1)

sBeta (ppt-1)
'linear'

20 - 10

0

?

0
'linear'

?
0

2 (10-4

0
'linear'

exponential

?

2 (10-4

?
'polynomial'

0

0

(
(

nonHydrostatic
.FALSE.
.TRUE.
.FALSE.
.FALSE.

momentumStepping
.TRUE.
.TRUE.
.TRUE.
.TRUE.

momentumAdvection
.TRUE.
.TRUE.
.TRUE.
.TRUE.

metricTerms
(
(
(
.TRUE.

Coriolis
.TRUE.
.TRUE.
.TRUE.
.TRUE.

VerticalCoriolis
.FALSE.
.FALSE.
.FALSE.
?

raja
0
0
0
?

CoriolisPlane
'betaplane'
'fPlane'
'fPlane'
(

fcori (s-1)
7.3 (10-5
10-4
10-4
(

beta (m-1 s-1)
2 (10-11
(
(
(

MomentumDiffusion
.TRUE.
.TRUE.
.TRUE.
.TRUE.

CAPUV

RKPUV (m2 s-1)
330

0
5

0.2
?

10-3
?

?

MomBhDiffusion
.FALSE.
.FALSE.
?
?

C4PUV (m4 s-1)
(
(
?
?

MomentumForcing
.TRUE.

cosine wind

0.1 Pa
.FALSE.
.TRUE.

cosine wind

0.2 Pa
.TRUE.

wind data

FreeslipSide

FreeslipBottom

FreeslipTop
.TRUE.

.TRUE.

.TRUE.
?

?

?
?

?

?
?

?

?

PressureStepping
.TRUE.
.TRUE.
.TRUE.
.TRUE.

SeparatePh
.TRUE.
.TRUE.
.TRUE.
.TRUE.

phSurfBC
'zero'
'zero'
'zero'
'zero'

SeparatePs
.TRUE.
.TRUE.
.TRUE.
.TRUE.

rigid lid
yes
yes
yes
no

toler2d

max2dIt

FreqCheckToler2d

divHmax

divHmin

stericEffect
.FALSE.
.FALSE.
.FALSE.
?

rhorefsurf
(
(
(
?

toler3d

max3dIt

FreqCheckToler3d

divmax

divmin
(

(
(

findD2pnhDZ2
(
?
(
(

Initial condition
see ths
see ths
see ths
Levitus data

TempStepping
.TRUE.
.TRUE.
.TRUE.
.TRUE.

TempAdvection
.TRUE.
.TRUE.
.TRUE.
.TRUE.

TradvecScheme
'centered'
'centered'
'centered'
'centered'

TempDiffusion
.TRUE.
.TRUE.
.TRUE.
.TRUE.

TrdifScheme
'constant'
'constant'
'constant'
'GM'

CAPTH

RKPTH (m2 s-1)
?

?
5

0.2
0

10-5
(

tempBhdiffusion
.FALSE.
.FALSE.
.TRUE.
.FALSE.

C4PTH (m4s-1)
(
(
1010
(

tempForcing
.FALSE.
.TRUE.

constant

cooling

800 W m-2
.FALSE.
.TRUE.

heat and

freshwater

fluxes data

convectiveAdjustment
?
?
?
.TRUE.

cadjFreq
?
?
?
?

Idelt (s)
1200
60
?
3600

APPENDICES

Not written yet

References

Adcroft, A. (1995) Numerical algorithms for use in a dynamical model of the ocean. Ph.D. thesis, Imperial College, London.

Adcroft, A., Hill, C., and Marshall, J. (1997) Representation of topography by shaved cells in a height coordinate ocean model. Mon. Weather Rev., 125, 2293-2315.

Arakawa, A., and Lamb, V. (1977) Computational design of the basic dynamical processes of the UCLA General Circulation Model. Methods Comput. Phys., 17, 174-267.

Bryan, K. (1969) A numerical model for the study of the circulation of the world ocean. J. Comput. Phys., 4, 347-376.

Dukowicz, J. K., Smith, R. D., and Malone, R. C. (1993) A reformulation and implementation of the Bryan-Cox-Semtner ocean model on the connection machine. J. Atmos. Oceanic Technol., 10, 195-208.

Dukowicz, J. K. (1995) I don't have this one!
Harlow, F. H., and Welch, J. E. (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids, 8, 2182-2189.

Holland, W. R., and Lin, L. B. (1975) On the generation of mesoscale eddies and their contribution to the oceanic general circulation I. A preliminary numerical experiment. J. Phys. Oceanogr., 5, 642-657.

Jones, H., and Marshall, J. (1993) Convection with rotation in a neutral ocean: a study of open-ocean deep convection. J. Phys. Oceanogr., 23, 1009-1039.

Marshall, J., Hill, C., Perelman, L., and Adcroft, A. (1997a) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 5733-5752.

Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C. (1997b) A finite volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 5753-5766.

Potter, D. (1976) Computational Physics, John Wiley, New York.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vettering, W. T. (1986) Numerical Recipes, Cambridge University Press, New York.

Visbeck, M., Marshall, J., Haine, T., and Spall, M. (1997) Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381-402.

White, A. A., and Bromley, R. A. (1995) Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force. Q. J. R. Meteorol. Soc., 121, 399-418.

Williams, G. P. (1969) Numerical integrations of the three-dimensional Navier-Stokes equations for incompressible flow. J. Fluid Mech., 37, 727-750.

� EMBED Equation.3 ���

� EMBED PowerPoint.Show.8 ���

� In the hydrostatic primitive equations (HPE) all underlined terms in (1.3.2), (1.3.3) and (1.3.4) are omitted; the singly-underlined terms are included the quasi-hydrostatic model (QH). The fully non-hydrostatic model (NH) includes all terms.

�Since solid boundaries always coincide with the faces of zones, the imposition of boundary conditions in the formulation of the Elliptic problem presents no problem even in the case of shaved cells; the non-divergence condition (2.2.1) is applied to the zone adjacent to the wall noting that the component of velocity normal to the solid boundary is identically zero. It is readily seen that the inhomogeneous Neumann boundary condition on pressure at the wall of the continuous problem never explicitly enters in to the discrete problem. Rather, information about the boundary is contained in the ‘source function’ in the zone adjacent to the boundary in a manner which is exactly analogous to the continuous problem; there inhomogeneous conditions are replaced with homogeneous conditions together with an interior (function sheet of ‘source’ adjacent to the boundary - see the discussion in section 3.2 of Marshall et al. 1997a. Note also that Eqs.(2.3.1) and (2.3.2) above are discrete forms of the continuous equations Eqs.(1.5.9) and (1.5.10) of section 1.5.

� � EMBED Equation.2 ���has five diagonals corresponding to the coupling of the central point with surrounding points along the four ‘arms’ of the horizontal (2 operator.

� If the ocean column is made up of cells stacked up on top of one-another which do not have equal heights (z, then A is not symmetric, but it can easily be symmetrized by pre-multiplying it with a symmetrization matrix W, where

� EMBED Equation.2 ���

� The name ‘conjugate gradient’ stems from the property that � EMBED Equation.2 ���; the search directions on consecutive iterations are conjugate to one another.

_898095926.unknown

_898097467.unknown

_898169173.unknown

_919671148.unknown

_943428113.unknown

_943435301.unknown

_943712942.unknown

_944035342.unknown

_944035624.unknown

_944035636.unknown

_944035653.unknown

_944035580.unknown

_944035454.unknown

_944035311.unknown

_944035329.unknown

_943714007.unknown

_943714341.unknown

_943714523.unknown

_943713166.unknown

_943435965.unknown

_943703546.unknown

_943712126.unknown

_943435996.unknown

_943435589.unknown

_943435782.unknown

_943435527.unknown

_943431855.unknown

_943433200.unknown

_943433324.unknown

_943433349.unknown

_943433264.unknown

_943432363.unknown

_943432534.unknown

_943431931.unknown

_943428542.unknown

_943431059.unknown

_943431474.unknown

_943430818.unknown

_943430851.unknown

_943430162.unknown

_943430073.unknown

_943428177.unknown

_943428331.unknown

_943428160.unknown

_943276497.unknown

_943427621.unknown

_943427938.unknown

_943428088.unknown

_943427781.unknown

_943427134.unknown

_943427274.unknown

_943427294.unknown

_943427152.unknown

_943276570

_943340352.unknown

_943425990.unknown

_943340070.unknown

_943276545.unknown

_919671400.unknown

_943276062.unknown

_943276295.unknown

_919678608.ppt

u(i=1,j=1)

z

y

x

(i=1,j=1,k=1)

Computational

Domain

Computational

Axes

Physical

Axes

Rule 1: i - east, j - north, k - down.

v(i=1,j=1)

v(i=1,j=1)

u(i=1,j=1)

- T(i=1,j=1), p(i=1,j=1)...

- T(i=3,j=1), p(i=3,j=1)...

- dudy†(i=2,j=2)

†dudy

Indexing

of XY

slice of

3x4

physical

domain

Rule 2: westernmost, southernmost, uppermost.

k

j

i

y

u

u

y

¶

¶

»

=

d

_919671330.unknown

_898260247.unknown

_919626635.unknown

_919663166.unknown

_919669514.ppt

Plan View

Side View

×

T,S

J

V

J

z

A

J

y

A

J

x

A

z

y

x

u

v

w

UNKNOWN-0.unknown

UNKNOWN-1.unknown

UNKNOWN-2.unknown

UNKNOWN-3.unknown

UNKNOWN-4.unknown

UNKNOWN-5.unknown

_919627161.unknown

_919627191.unknown

_919627117.unknown

_919240264.unknown

_919240309.unknown

_919626630.unknown

_917417677.unknown

_898276524.unknown

_898191138.unknown

_898259417.unknown

_898260246.unknown

_898191139.unknown

_898191594.unknown

_898169192.unknown

_898097475.unknown

_898167540.unknown

_898168058.unknown

_898167944.unknown

_898097478.unknown

_898097480

_898097477.unknown

_898097471.unknown

_898097473.unknown

_898097474.unknown

_898097472.unknown

_898097469.unknown

_898097470.unknown

_898097468.unknown

_898096617.unknown

_898097459.unknown

_898097463.unknown

_898097465.unknown

_898097466.unknown

_898097464.unknown

_898097461.unknown

_898097462.unknown

_898097460.unknown

_898097450.unknown

_898097454.unknown

_898097457.unknown

_898097458.unknown

_898097455.unknown

_898097452.unknown

_898097453.unknown

_898097451.unknown

_898097442.unknown

_898097446.unknown

_898097448.unknown

_898097449.unknown

_898097447.unknown

_898097444.unknown

_898097445.unknown

_898097443.unknown

_898097200.unknown

_898097202.unknown

_898097440.unknown

_898097441.unknown

_898097203.unknown

_898097201

_898097198.unknown

_898097199.unknown

_898097197.unknown

_898097196.unknown

_898095949.unknown

_898095972.unknown

_898095976.unknown

_898096615.unknown

_898096616.unknown

_898096613.unknown

_898096614.unknown

_898096612.unknown

_898095975.unknown

_898095967.unknown

_898095970.unknown

_898095971.unknown

_898095969.unknown

_898095963.unknown

_898095965.unknown

_898095958.unknown

_898095959.unknown

_898095942.unknown

_898095947

_898095948.unknown

_898095946

_898095928.unknown

_898095940.unknown

_898095927.unknown

_897308216.unknown

_897308234.unknown

_897308246.unknown

_897308250.unknown

_897471881.unknown

_898095924.unknown

_898095925.unknown

_897471904.unknown

_897471911.unknown

_897471894.unknown

_897308254.unknown

_897308255.unknown

_897308252.unknown

_897308253.unknown

_897308248.unknown

_897308249.unknown

_897308247.unknown

_897308241.unknown

_897308244.unknown

_897308245.unknown

_897308242.unknown

_897308237.unknown

_897308238.unknown

_897308236.unknown

_897308224.unknown

_897308229.unknown

_897308231.unknown

_897308232.unknown

_897308230.unknown

_897308226.unknown

_897308227.unknown

_897308225.unknown

_897308220.unknown

_897308222.unknown

_897308223.unknown

_897308221.unknown

_897308218.unknown

_897308219.unknown

_897308217.unknown

_897308176.unknown

_897308193.unknown

_897308201.unknown

_897308210.unknown

_897308214.unknown

_897308215.unknown

_897308212.unknown

_897308207.unknown

_897308209.unknown

_897308205.unknown

_897308197.unknown

_897308199.unknown

_897308200.unknown

_897308198.unknown

_897308195.unknown

_897308196.unknown

_897308194.unknown

_897308185.unknown

_897308189.unknown

_897308191.unknown

_897308192.unknown

_897308190.unknown

_897308187.unknown

_897308188.unknown

_897308186.unknown

_897308180.unknown

_897308183.unknown

_897308184.unknown

_897308181.unknown

_897308178.unknown

_897308179.unknown

_897308177.unknown

_862737565.unknown

_897303768.unknown

_897308172

_897308174.unknown

_897308175.unknown

_897308173.unknown

_897303894.unknown

_897308170

_897308171

_897308168

_897308169.unknown

_897308167.unknown

_897303845.unknown

_868766814.unknown

_870157938.unknown

_870157940.unknown

_869568084.unknown

_869568245.unknown

_869567943.unknown

_863378057.unknown

_866381503.unknown

_868766702.unknown

_863378325.unknown

_863379009.unknown

_862738748.unknown

_862939603.unknown

_862941207.unknown

_862739333.unknown

_862738378.unknown

_861778243.unknown

_862639879.unknown

_862641134.unknown

_862647725.unknown

_862737564.unknown

_862647698.unknown

_862641048.unknown

_862044151.unknown

_862044153.unknown

_862044144.unknown

_862044148.unknown

_861779220.unknown

_861705209.unknown

_861708164.unknown

_861778241.unknown

_861778242.unknown

_861778238.unknown

_861707464.unknown

_861704814.unknown

_861705027.unknown

_861704528.unknown

