/[MITgcm]/mitgcm.org/sealion/overview/equations/fulldoc.doc
ViewVC logotype

Contents of /mitgcm.org/sealion/overview/equations/fulldoc.doc

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (show annotations) (download) (as text)
Thu Oct 11 13:59:53 2001 UTC (23 years, 9 months ago) by cnh
Branch: MAIN
CVS Tags: HEAD
Changes since 1.1: +0 -0 lines
File MIME type: application/msword
FILE REMOVED
Getting rid of superfluous downlod stuff

1 аЯрЁБс>ўџ ŽУ*ўџџџ–ОП‰ l M   яЬЏ˜‘’Œ € џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџьЅСG ПTebjbjŽйŽй U]ьГьГ%Yqƒ:џџџџџџ]–––"ИА А А tŒŒŒŒШTФ,Œ=ЋРР"т,ЌŽ-:Ш-№-Н2Р}K$ЁR”ЋЋЋЋЋЋЋ$§ЌєёЎІ(ЋА 5VЩ1єН25V5V(ЋM|< < Ш-№-йРM|M|M|5Vр< RШ-(А №-Ћ$
2 4X 4д44< < 5VЋM|ЊM|ї€в0ЇtŽ "А Ћ№-D|kСЅ НŒŒk8ЄЊ^ A Parallel Navier-Stokes Ocean Model: Formulation and Documentation Daniel Jamous, Chris Hill, Alistair Adcroft, John Marshall December 1997 Massachusetts Institute of Technology CONTENTS  TOC \o "1-3" CONTENTS  PAGEREF _Toc407169603 \h 2 INTRODUCTION  PAGEREF _Toc407169604 \h 4 Chapter 1 Continuous formulation  PAGEREF _Toc407169605 \h 6 1.1 The continuous equations of the model ocean  PAGEREF _Toc407169606 \h 6 1.2 Boundary conditions  PAGEREF _Toc407169607 \h 7 1.3 Coordinate systems  PAGEREF _Toc407169608 \h 9 1.4 Hydrostatic, non-hydrostatic and quasi-hydrostatic forms  PAGEREF _Toc407169609 \h 11 1.5 Finding the pressure field  PAGEREF _Toc407169610 \h 12 1.5.1 Depth-averaged pressure  PAGEREF _Toc407169611 \h 12 1.5.2 Surface, hydrostatic and non-hydrostatic pressure  PAGEREF _Toc407169612 \h 13 1.6 Summary of solution strategies  PAGEREF _Toc407169613 \h 15 1.7 Forcing and dissipation  PAGEREF _Toc407169614 \h 16 1.7.1 Forcing  PAGEREF _Toc407169615 \h 16 1.7.2 Dissipation  PAGEREF _Toc407169616 \h 17 CHAPTER 2 Discrete formulation.  PAGEREF _Toc407169617 \h 19 2.1 Temporal discretization.  PAGEREF _Toc407169618 \h 19 2.2 Spatial discretization.  PAGEREF _Toc407169619 \h 21 2.2.1 Volume quantities  PAGEREF _Toc407169620 \h 22 2.2.2 Face quantities  PAGEREF _Toc407169621 \h 24 2.2.3 Coriolis terms  PAGEREF _Toc407169622 \h 25 2.2.4 Pressure gradient force  PAGEREF _Toc407169623 \h 25 2.2.5 Forcing and dissipation  PAGEREF _Toc407169624 \h 25 2.2.6 The C-D scheme  PAGEREF _Toc407169625 \h 26 2.2.7 Conservation properties  PAGEREF _Toc407169626 \h 26 2.3 The Elliptic problem  PAGEREF _Toc407169627 \h 27 2.3.1 Discrete formulation  PAGEREF _Toc407169628 \h 27 2.3.2 Preconditioned conjugate-gradient solution method  PAGEREF _Toc407169629 \h 30 CHAPTER 3 PARALLEL IMPLEMENTATION  PAGEREF _Toc407169630 \h 36 2.1 Enumeration of arrays.  PAGEREF _Toc407169631 \h 36 Chapter 4 Procedures and variables  PAGEREF _Toc407169632 \h 38 4.1 Procedures  PAGEREF _Toc407169633 \h 38 4.1.1 Flow chart  PAGEREF _Toc407169634 \h 38 4.1.2 Alphabetical list of procedures and 'include' files  PAGEREF _Toc407169635 \h 40 4.2 Variables  PAGEREF _Toc407169636 \h 40 Chapter 5 Getting started: practical considerations  PAGEREF _Toc407169637 \h 41 5.1 Accessing the code - directory structure  PAGEREF _Toc407169638 \h 41 5.2 Configuring the model and setting up a run  PAGEREF _Toc407169639 \h 41 5.2.1 domain, geometry  PAGEREF _Toc407169640 \h 42 5.2.2 Equation of state  PAGEREF _Toc407169641 \h 42 5.2.3 Hydrostatic, quasi-hydrostatic, or non-hydrostatic regime  PAGEREF _Toc407169642 \h 43 5.2.4 Momentum equations  PAGEREF _Toc407169643 \h 43 5.2.5 Diagnosis of pressure  PAGEREF _Toc407169644 \h 44 5.2.6 Tracer equations (temperature and salinity)  PAGEREF _Toc407169645 \h 45 5.2.7 Run setup  PAGEREF _Toc407169646 \h 46 5.3 Compiling, running, and restarting the code  PAGEREF _Toc407169647 \h 47 5.3.1 compilation  PAGEREF _Toc407169648 \h 47 5.3.2 execution  PAGEREF _Toc407169649 \h 47 5.3.3 output and restart  PAGEREF _Toc407169650 \h 48 5.4 Examples : description of test cases  PAGEREF _Toc407169651 \h 49 5.4.1 Two-layer ocean in a rectangular basin driven by a steady wind-stress  PAGEREF _Toc407169652 \h 49 5.4.2 Neutral ocean in a doubly periodic domain driven by buoyancy forcing  PAGEREF _Toc407169653 \h 49 5.4.3 Exponentially stratified ocean on a wind-driven channel  PAGEREF _Toc407169654 \h 50 5.4.4 Global ocean driven by realistic wind and buoyancy forcing  PAGEREF _Toc407169655 \h 50 5.4.5 Model configuration for the test cases  PAGEREF _Toc407169656 \h 50 APPENDICES  PAGEREF _Toc407169657 \h 53 References  PAGEREF _Toc407169658 \h 54  INTRODUCTION This manual aims to provide the reader with the information necessary to carry out numerical experiments using the M.I.T GCM. The manual provides a comprehensive description of the numerical paradigm employed by the M.I.T. GCM and a description of the associated program code. Examples showing the use of the code in small process studies and for basin/planetary scale simulations are presented. Any practical numerical rendition involves a series of compromises. Our guiding principle has been to devise methods which, as far as is possible, are competitive across a large range of scales from EMBED Equation.2 , the depth of the fluid, right up to horizontal resolutions EMBED Equation.2 , coarser than the Rossby radius of deformation. We did not want to make the hydrostatic assumption a-priori, since it precludes the study of many interesting small-scale phenomenon. Rather it was important to us that our approach be also well-suited to the convective, non-hydrostatic limit. We therefore adopt pressure (or height) as a vertical coordinate and employ a ‘finite volume’ approach, in which property fluxes are defined normal to the faces that define the volumes, leading to a very natural and robust discrete analogue of ‘divergence’. In the special case that the volumes are of regular shape, the arrangement of the model variables in the horizontal reduces to a ‘C’ grid, using the nomenclature of Arakawa and Lamb (1977), and so carries with it well-documented strengths and weaknesses in the treatment of gravity, inertial and Rossby wave modes (for a recent discussion see Dukowicz, 1995). The basis for the numerical procedure employed in the M.I.T GCM is the incompressible Navier-Stokes equations. The model integrates forward the Boussinesq XE “Boussinesq”  approximation to the full Navier-Stokes XE “Navier-Stokes”  equation governing fluid motion. The model’s numerical integration method is arrived at by utilising the “pressure method” [Harlow and Welch, 1965; Williams, 1969; Potter, 1976]. In this scheme the continuity relation  EMBED Equation.2  is used to give an elliptic equation for the pressure field. Starting from these basis equations the model is formulated to allow three different solution strategies. In the non-hydrostatic - NH - mode of integration, the basis equations are stepped forward without further approximation - in particular full non-hydrostatic dynamics are retained. The hydrostatic primitive equations - HPE - mode of the model integrates an approximated form of the full equations, which assumes exact hydrostatic balance. The quasi-hydrostatic - QH - mode of integration admits additional Coriolis terms, which augment HPE with an analytically exact angular momentum principle. The ‘kernel’ algorithm solves the incompressible Navier Stokes equations on the sphere and can be employed as an atmospheric model or as an ocean model in a geometry as complicated as that of the ocean basins with irregular coastlines and islands. The algorithm builds on ideas developed in the computational fluid community. The numerical challenge is to ensure that the evolving velocity field remains non-divergent; a ‘pressure correction’ to the velocity field is used to guarantee non-divergence. The correction step is equivalent to, and is solved as, a Poisson equation for the pressure field with Neumann boundary conditions. This Poisson inversion is the most computationally demanding part of the algorithm and, because it is not localised in space, presents the biggest challenge in mapping on to parallel computers since it demands ‘communication’ across the grid to the boundary, and hence between processors. We have devised a method for solving this Poisson equation which exploits knowledge of the dynamics (by separating the pressure field in to hydrostatic, non-hydrostatic and surface pressure components), the geometry of the ocean basin (they are much wider than they are deep) and naturally lends itself to data-parallel implementation. The model will, of course, also run on a single processor. Much of what is here has been already described in the two reference papers on the model published in the 'Journal of Geophysical Research' [Marshall et al., 1997a,b]. The manual is organized as follows: in Chapter 1, we describe the continuous formulation of the model as well as the different solution strategies employed to find the pressure field for the HPE, QH, and NH modes. This chapter corresponds essentially to sections 3 and 4 of Marshall et al., 1997a. Chapter 2 describes the temporal and spatial discretizations used in the model and the numerical approach used to solve the Elliptic problem for the pressure field. This chapter corresponds essentially to sections 3 and 4 of Marshall et al., 1997b. Chapter 3 is not written yet and is meant to describe the parallel implementation of the model code in Fortran 90 and High Performance Fortran (HPF). A flow chart and an alphabetical list of the procedures and variables are given in Chapter 4. In Chapter 5, the most practical section of the manual, we review what you need to know to run an experiment with the M.I.T. GCM (accessing the code, configuration, compilation, description of output files etc…). We provide some examples that have been published in the literature, ranging from the convective scale up to the planetary/global scale. These examples should help the user to get more familiar with the model. It would be nice to include an history of the model in the introduction! Chapter 1 Continuous formulation 1.1 The continuous equations of the model ocean The state of the ocean at any time is characterized by the distribution of currents v, potential temperature T, salinity S, pressure p and density (. The equations that govern the evolution of these fields, obtained by applying the laws of classical mechanics and thermodynamics to a Boussinesq incompressible fluid are, using height as the vertical coordinate:  EMBED Equation.2  ( SEQ ( \* ARABIC 1.1.1)  EMBED Equation.2  (1.1. SEQ ( \* ARABIC 2)  EMBED Equation.2  (1.1. SEQ ( \* ARABIC 3)  EMBED Equation.2  (1.1. SEQ ( \* ARABIC 4)  EMBED Equation.2  (1.1. SEQ ( \* ARABIC 5) where  EMBED Equation.2  (1.1. SEQ ( \* ARABIC 6) is the velocity in the lateral and vertical direction respectively. In (1.1.1),  EMBED Equation.2 is the pressure-gradient force, where  EMBED Equation.2  (1.1. SEQ ( \* ARABIC 7) is the dynamic pressure expressed in terms of (p, the deviation of the pressure from that of a resting, hydrostatically balanced ocean  EMBED Equation.2  (1.1. SEQ ( \* ARABIC 8) where, EMBED Equation.2 is a constant reference density.  EMBED Equation.2 represents the advective, Coriolis, buoyancy, forcing and dissipative terms in the momentum equations, i.e. in vector form:  EMBED Equation.3  (1.1.9) In (1.1.9), ( is the angular speed of rotation of the Earth, g is gravity and Fv and Dv are the forcing and dissipative terms, respectively. The explicit expression of Gv, component by component, is given in spherical coordinates in section 1.3. The tendencies of temperature and salt are given by  EMBED Equation.2  (1.1.10)  EMBED Equation.2  (1.1. SEQ ( \* ARABIC 91) where  EMBED Equation.2 ,  EMBED Equation.2 ,  EMBED Equation.2 ,  EMBED Equation.2  represent the forcing and dissipative terms in the temperature and salt equations respectively. Unlike the prognostic variables u, v, w, T and S, the pressure field must be obtained diagnostically. Taking the divergence of (1.1.1) and using the continuity equation (1.1.2), leads to a three-dimensional Elliptic equation for the pressure:  EMBED Equation.2  (1.1.12) For a given field of F, (1.1.12) must be inverted for p subject to appropriate choice of boundary conditions. This method is usually called The Pressure Method [Harlow and Welch, 1965; Williams, 1969; Potter, 1976]. In the hydrostatic primitive equations case (HPE), the 3-d problem, (1.1.12), degenerates in to a 2-d inversion:- see section 1.5. 1.2 Boundary conditions The configuration of the ocean basin is defined by its depth H((,() and allows arbitrary specification of the coastline, bottom topography and connectedness - see Fig.1. We apply the condition of no normal flow through all solid boundaries - the coasts and the bottom:  EMBED Equation.2  (1.2.1) where n is a vector of unit length normal to the boundary. The kinematic condition (1.2.1) is also applied to the vertical velocity at the surface of the ocean in both free-surface and rigid-lid models. No-slip ( EMBED Equation.2 ) or slip ( EMBED Equation.2 ) conditions are employed on the tangential component of velocity  EMBED Equation.2 at all solid boundaries, depending on the form chosen for the dissipative terms in the momentum equations - see section 1.7. Eq.(1.2.1) implies, making use of (1.1.1), that:  EMBED Equation.2  (1.2.2) presenting inhomogeneous Neumann boundary conditions to the Elliptic problem (1.1.12). As shown, for example, by Williams (1969), one can exploit classical 3D potential theory and, by introducing an appropriately chosen (-function sheet of ‘source-charge’, replace the inhomogenous boundary condition on pressure by a homogeneous one. The source term F in (1.1.12) is the divergence of the vector EMBED Equation . By simultaneously setting EMBED Equation  and  EMBED Equation.2 on the boundary the following self-consistent but simpler homogenised Elliptic problem is obtained:  EMBED Equation.2  (1.2.3) where  EMBED Equation.2  is a modified  EMBED Equation.2  such that  EMBED Equation.2 . As is implied by (1.2.2) the modified boundary condition becomes: EMBED Equation  (1.2.4) At the ocean bottom and side the diffusive flux of heat and salt is set to zero:  EMBED Equation.2  (1.2.5) where  EMBED Equation.2  is a ‘diffusion’ coefficient normal to the boundary. Include Fig.1 here: schematic diagram of an ocean basin showing the irregular geometry: coastlines and islands. 1.3 Coordinate systems In this section, the explicit expression of  EMBED Equation.2  in spherical coordinates is given. u, v, w the velocity components in the zonal, meridional and vertical direction respectively, are given by (see Fig.2) :  EMBED Equation.2  (1.3.1) Here ( is the latitude, ( the longitude, r the radial distance of the particle from the center of the earth, ( is the angular speed of rotation of the Earth and D/Dt is the total derivative. Include Fig.2 here Fig.2. The spherical polar velocities (u,v,w), the latitude is ( and the longitude (.  EMBED Equation.2  are inertial, Coriolis, metric, gravitational, and forcing/ dissipation terms in the zonal, meridional and vertical directions defined by:  EMBED Equation.2  EMBED Equation.2  (1.3.2)  EMBED Equation.2  EMBED Equation.2  (1.3.3)  EMBED Equation.2  EMBED Equation.2  (1.3.4) where  EMBED Equation.2  are non-conservative forces acting on the fluid. The precise forms of the  EMBED Equation.2 ’s which are available in the model are described in section 1.7. The tendency of the temperature and salt are given by:  EMBED Equation.2  (1.3.5)  EMBED Equation.2  (1.3.6) where  EMBED Equation.2 ,  EMBED Equation.2 ,  EMBED Equation.2 ,  EMBED Equation.2  are the forcing/dissipation terms in the T and S equations respectively; they are described in section 1.7. In the above the ‘grad’ (() and ‘div’ ((.) operators are defined by, in spherical coordinates:  EMBED Equation.2  (1.3.7)  EMBED Equation.2  (1.3.8) A consistent Cartesian version of the model can also readily be posed - it does not carry metric terms and cos( Coriolis terms - see Appendix. 1.4 Hydrostatic, non-hydrostatic and quasi-hydrostatic forms In the non-hydrostatic model all terms in equations (1.3.2 ( 1.3.4) are retained. A three dimensional elliptic equation (1.2.3) must be solved with boundary conditions (1.2.4). It is important to note that use of the full NH does not admit any new ‘fast’ waves in to the system - the incompressible condition (1.1.2) has already filtered out acoustic modes. It does, however, ensure that the gravity waves are treated accurately with an exact dispersion relation. NH has the following energy equation:  EMBED Equation.2  (1.4.1) where  EMBED Equation.2  is the three-dimensional velocity vector, Q is the buoyancy forcing, F represents the forcing/dissipation terms in the momentum equations, and  EMBED Equation.2 . Note that the pressure work term  EMBED Equation.2  vanishes when integrated over the ocean basin if all bounding surfaces, including the upper one, are assumed rigid. NH has a complete angular momentum principle - see White and Bromley, 1995; Marshall et.al.1997a. In HPE all the underlined terms in Eqs. (1.3.2 ( 1.3.4) are neglected and ‘r’ is replaced by ‘a’, the mean radius of the earth. The 3-d Elliptic problem reduces to a 2-dimensional one since once the pressure is known at one level (we choose this level to be the surface) then it can be computed at all other levels from the hydrostatic relation. An energy equation analogous to (1.4.1) is obtained except that the contribution of EMBED Equation.2 to the kinetic energy is absent and, on the rhs, only the horizontal components of the frictional forces do work. In QH only the terms underlined twice in Eqs. (1.3.2 ( 1.3.4) are neglected and, simultaneously, the shallow atmosphere approximation is relaxed. Thus all the metric terms must be retained and the full variation of the radial position of a particle monitored. QH has good energetic credentials - they are the same as for HPE. Importantly, however, it has the same angular momentum principle as NH - see Marshall et.al., 1997a. Again in QH, the 3-d elliptic problem is reduced to a 2-d one. Strict balance between gravity and vertical pressure gradients is not imposed, however, since the 2(ucos( Coriolis term plays a role in balancing ‘g’ in (1.3.4). 1.5 Finding the pressure field 1.5.1 Depth-averaged pressure If the ocean had a flat bottom, then (1.2.3) could readily be solved by projecting p on to the eigenfunctions of the  EMBED Equation.3  operator with boundary condition (1.2.4) applied at the (flat) upper and lower boundaries (see Marshall et al., 1997a). Here such a modal approach can not be employed because the geometry can be as complex as that of an ocean basin. However, the modal approach points to the advantage of separating out, as far as is possible, the depth-averaged pressure field. For an arbitrary function ( we can define its vertical average  EMBED Equation.2  as:  EMBED Equation.2  (1.5.1) where H=H((,() is the local depth. The vertically-averaged gradient operator is then: EMBED Equation  (1.5.2) The vertical integral of the horizontal component of (1.1.1) is then, using the rule (1.5.2) :  EMBED Equation.2  (1.5.3) Since there can be no net convergence of mass over the water column, we have, assuming a rigid lid at the surface (see next chapter and appendix for the free surface case):  EMBED Equation.2  (1.5.4) At this point, and following Bryan (1969), ocean modelers often introduce a stream function for the depth-averaged flow. However, as argued by Dukowicz et al. (1993) (see also Marshall et al., 1997a), it is advantageous to couch the inversion problem in terms of pressure rather than a stream function. Applying the horizontal gradient operator to (1.5.3) and making use of (1.5.4), we obtain our desired equation for the depth-averaged pressure:  EMBED Equation.2  (1.5.5) where  EMBED Equation.2  (1.5.6) It is now clear that if the ocean has a flat bottom (H=constant) then  EMBED Equation.3  and equation (1.5.5) does not have any pressure-dependent terms on the right-hand side and can be solved unambiguously for  EMBED Equation.2 . But if the depth of the basin varies from point to point one cannot solve for the depth-averaged pressure without knowledge of  EMBED Equation.3 . We can, however, make progress by separating the pressure field in to hydrostatic, non-hydrostatic and surface pressure parts. Add something about free-surface case here. 1.5.2 Surface, hydrostatic and non-hydrostatic pressure Let us write the pressure p as a sum of three terms: EMBED Equation  (1.5.7) The first term, EMBED Equation.2 , only varies in the horizontal and is independent of depth. The second term is the hydrostatic pressure defined in terms of the weight of water in a vertical column above the depth z,  EMBED Equation.2  (1.5.8a) where  EMBED Equation.2  (1.5.8b) Note that (1.5.8) is a generalized statement of hydrostatic balance, balancing vertical pressure gradients with gravity and, in QH, also Coriolis and metric terms. It should be noted that the pressure at the rigid lid, EMBED Equation.2 , has a contribution from both EMBED Equation.2  and EMBED Equation.2  (by definition, EMBED Equation.2 , at z=0). In the hydrostatic limit EMBED Equation.2 = 0 and EMBED Equation.2  is the surface pressure. By substituting Eq. (1.5.7) in (1.5.5) an equation for EMBED Equation.2  results: EMBED Equation  (1.5.9) where  EMBED Equation.2  is given by: EMBED Equation  (1.5.10) In HPE and QH the (doubly) underlined terms on the rhs of (1.5.9), which depend on the non-hydrostatic pressure, are set to zero and EMBED Equation.2  is found by solving:  EMBED Equation.2  (1.5.11) The vertical velocity is obtained through integration of the continuity equation vertically:  EMBED Equation.2  (1.5.12) In NH, instead, we first solve (1.5.11) to give a provisional solution for EMBED Equation.2  and then find EMBED Equation.2  from the Elliptic equation obtained by substituting (1.5.7) in to (1.1.1), and noting, as before, that  EMBED Equation.2  at each point in the fluid:  EMBED Equation.2  (1.5.13a) where  EMBED Equation.2  (1.5.13b) Eq.(1.5.13) is solved with the boundary conditions:  EMBED Equation.2  (1.5.14) If the flow is ‘close’ to hydrostatic balance then the 3-d inversion converges rapidly because  EMBED Equation.2  is then only a small correction to the hydrostatic pressure field. The solution  EMBED Equation.2 to (1.5.13) and (1.5.14) does not vanish at the upper surface, and so refines the pressure at z=0; it is in this sense that the  EMBED Equation.2  obtained from (1.5.11) is provisional. In the interior of the fluid non-hydrostatic pressure gradients, EMBED Equation.2 , drive motion:- w is found by prognostic integration of the vertical velocity equation:  EMBED Equation.2  (1.5.15a) where  EMBED Equation.2  (1.5.15b) Note that in (1.5.15), the vertical gradient of the hydrostatic pressure has been canceled out with  EMBED Equation.2 , Eq.(1.5.8b), rendering it suitable for prognostic integration. 1.6 Summary of solution strategies The method of solution employed in the HPE, QH and NH models are summarized in Fig.3 below.   EMBED Equation.2  ;  EMBED Equation.2   HPE and QH NH  EMBED Equation.2   EMBED Equation.2   EMBED Equation.2   EMBED Equation.2   EMBED Equation.2   EMBED Equation.2  Fig.3. Outline of hydrostatic (HPE), quasi-hydrostatic (QH) and non-hydrostatic (NH) algorithms. There is no penalty in implementing QH over HPE except, of course, some complication that goes with the inclusion of cos( Coriolis terms and the relaxation of the shallow atmosphere approximation. But this leads to negligible increase in computation. In NH, in contrast, one additional elliptic equation - a three-dimensional one - must be inverted. However we show that this ‘overhead’ of the NH model is essentially negligible in the hydrostatic limit (as the non-hydrostatic parameter N(0 - see appendix II) resulting in a non-hydrostatic algorithm that, in the hydrostatic limit, is as computationally economic as the HPEs. 1.7 Forcing and dissipation 1.7.1 Forcing In the momentum equations, the forcing comes from the action of the wind at the sea surface and is represented by a term  EMBED Equation.3 such that:  EMBED Equation.3  (1.7.1) where X is the stress such that:  EMBED Equation.3  (1.7.2) where  EMBED Equation.3  and  EMBED Equation.3  are the zonal and meridional components of the wind stress at the sea surface. Similarly, buoyancy forcing at the sea surface induce forcing terms in the temperature and salinity equations:  EMBED Equation.3  (1.7.3) where  EMBED Equation.3  is the specific heat of the ocean and Q the heat flux such that:  EMBED Equation.3  (1.7.4) where  EMBED Equation.3  is the air-sea heat flux. Similarly:  EMBED Equation.3  (1.7.5) where e is the freshwater flux such that:  EMBED Equation.3  (1.7.6) where  EMBED Equation.3  is a (constant) reference salinity and E and P are the evaporation and precipitation rates, respectively. Often, the heat and freshwater fluxes at the sea surface are parameterized by restoring the surface temperature and salinity to observed values. In this case, terms of the form  EMBED Equation.3 ,  EMBED Equation.3 , where  EMBED Equation.3  and  EMBED Equation.3  are relaxation time-scale constants, are added to, or replace, the surface terms in equations (1.7.3) and (1.7.5). 1.7.2 Dissipation The forms of friction available in the model for momentum are Laplacian and biharmonic frictions:  EMBED Equation.3  (1.7.7) where  EMBED Equation.3  and  EMBED Equation.3  are (constant) horizontal and vertical viscosity coefficients and  EMBED Equation.3  is the horizontal coefficient for biharmonic friction. These coefficients are the same for all velocity components. The dissipation terms for the temperature and salinity equations have a similar form except that the diffusion tensor can be non diagonal and have varying coefficients (see appendix on the parameterization of eddy fluxes of heat and salt).  EMBED Equation.3  (1.7.8) where  EMBED Equation.3  is the diffusion tensor and  EMBED Equation.3  the horizontal coefficient for biharmonic diffusion. In the simplest case where the subgrid-scale fluxes of heat and salt are parameterized with constant horizontal and vertical diffusion coefficients,  EMBED Equation.3  is reduced to a diagonal matrix with constant coefficients:  EMBED Equation.3  (1.7.9) where  EMBED Equation.3  and  EMBED Equation.3  are the horizontal and vertical diffusion coefficients. Different values for temperature and salinity can be specified. More physically-based parameterizations, such as Gent-McWilliams - GM - or Green-Stone - GS -, are variants on (1.7.8), (1.7.9) and are described in the appendix. CHAPTER 2 Discrete formulation. The continuum equations employed are discretized using a finite volume strategy. In this approach the domain to be simulated is divided into cells and the evolution of the fluid is simulated, by stepping forward discrete forms of the Navier-Stokes equations integrated over these cells. In the limit that the cells have a regular cuboid structure the model is identical to a finite difference model. The variables are stepped forward in time using a quasi-second-order Adams-Bashforth time-stepping scheme. The pressure field, which ensures that evolving currents remain non-divergent, is found by inversion of Elliptic operators. In HPE and QH a 2-d Elliptic problem must be inverted; in NH the elliptic problem is 3-dimensional. A major objective is to make this 3-D inversion - the ‘overhead’ of NH - efficient and hence non-hydrostatic modeling affordable. The pressure field is separated in to surface pressure, EMBED Equation.2 , hydrostatic pressure,  EMBED Equation.2  and non-hydrostatic pressure,  EMBED Equation.2  and the component parts found sequentially. In the 3-D inversion for  EMBED Equation.2  a preconditioner is used which, in the hydrostatic limit, is an exact integral of the Elliptic operator, and so leads to an algorithm that seamlessly moves from non-hydrostatic to hydrostatic limits. Thus, in the hydrostatic limit, the NH is ‘fast’, competitive with the fastest ocean climate models in use today based on the HPEs. But as the resolution is increased the model dynamics asymptotes smoothly to the Navier Stokes equations. 2.1 Temporal discretization. We write (1.1.1(1.1.4) in semi-discrete form to second order in the time step (t in which, as yet, only time is discretized, and using the notation of chapter 1 (see Fig.3):  EMBED Equation.2  (2.1.1)  EMBED Equation.2  (2.1.2)  EMBED Equation.2  (2.1.3)  EMBED Equation.2  (2.1.4) In (2.1.1), we employ a ‘tracer’ parameter ‘q’ which takes on the value zero in the HPEs and QH, and the value unity in NH. Given that the  EMBED Equation.2 ’s are known at time level n, an accurate explicit form for the time-stepping which involves just two time levels is the Adams-Bashforth method (AB2) which makes use of time-levels n and n-1 thus:  EMBED Equation.2  (2.1.5) AB2 is a linear extrapolation in time to a point that is just, by an amount (, on the n+1 side of the mid-point EMBED Equation.2 . AB2 has the advantage of being quasi-second-order in time. A computational mode exists but is damped by the ( factor. Furthermore it can be implemented by evaluating the G’s only once and storing them for use on the next time-step. The code is written in a sufficiently flexible manner that other time-stepping schemes could be readily implemented. The time-step is limited by the following condition (see for example Potter, 1976; p.69):  EMBED Equation.2  if  EMBED Equation.2  where v is the fastest propagation velocity anywhere on the mesh of size (. Typically we set ( to a value of 0.1. It should be noted that if (=0 then AB2 is unstable in the inviscid case. The prognostic and diagnostic steps of our calculation in HPE, QH and NH are outlined in the schematic diagram below - Fig.4. We now go on to describe the spatial discretization employed and, in section 2.3, our Elliptic inversion procedure.   EMBED Equation.2 ;  EMBED Equation.2   HPE and QH NH  EMBED Equation.2   EMBED Equation.2   EMBED Equation.2  EMBED Equation.2   EMBED Equation.2   EMBED Equation.2  Fig.4. Outline of the HPE, QH and NH algorithms. 2.2 Spatial discretization. The ocean is carved up in to a large number of ‘volumes’ which can be called ‘zones’ or ‘cells’ - see Fig.5. They take on a regular shape over the interior of the ocean but can be modified in shape when they abut a solid boundary - see Fig.5. We associate tracer quantities with these cells; the cells have a volume  EMBED Equation.2  and six faces  EMBED Equation.2 , where ‘(’ denotes a generic tracer (such as T and S). Except where they abut a solid boundary, the faces must be chosen to coincide with our (orthogonal) coordinate system. If ‘x’, ‘y’ and ‘z’ are three orthogonal coordinates, increasing (nominally) eastward, northward and upward - see Fig.5 - the faces normal to the ‘x’ axis have area  EMBED Equation.2 , faces normal to the ‘y’ axis area  EMBED Equation.2 , and faces normal to the ‘z’ axis area  EMBED Equation.2 . Velocity components are always normal to the faces. The geometry of the computational domain, and the coordinate system employed within it (whether, Cartesian, spherical-polar, cylindrical etc), is set up by prescribing the volumes and surface areas of the faces of all the cells of which it is comprised.  EMBED PowerPoint.Slide.8 Fig.5 The faces of the cells are coincident with three orthogonal coordinate axes, sketched here for a Cartesian grid (except where the cells abut a solid boundary). Velocities are ‘face’ quantities defined normal to the faces of the cells; T, S and p are ‘volume’ quantities. In the terminology of Arakawa and Lamb (1977), the grid used here is the 'C' grid. 2.2.1 Volume quantities The volume or cell quantities, p, (, T and S are defined as volume averages over the cells. Prognostic equations for these quantities are found using a `finite volume’ approach i.e. by integration of the continuous equations over cells making use of Gauss’ theorem. For example, applying Gauss’ theorem to the continuity equation (1.1.2) over a cell it becomes:  EMBED Equation.2  (2.2.1) where  EMBED Equation.2  and similarly for the (y and (z terms. The velocities are defined perpendicular to the faces of the cells so ensuring that divergence and gradient operators can always be naturally represented by symmetric operators. The divergence of the flux of a quantity over the cell is:  EMBED Equation.2  (2.2.2) where  EMBED Equation.2  is the flux with components defined normal to the faces and  EMBED Equation.2  is the volume of the cell. The presence of a solid boundary is indicated by setting the appropriate flux normal to the boundary to zero. Let us now consider the discrete evaluation of the G’s for the volume quantities required for integration of (2.1.4). The flux of, say, the temperature T through a ‘u-face’ of a cell is:  EMBED Equation.2  where  EMBED Equation.2 , the temperature on the face, is given by :  EMBED Equation.2  the average of the temperature in the two cells to which the face is common. The divergence of the flux of T over a cell, EMBED Equation.2 , required in the evaluation of  EMBED Equation.2 , for example, is:  EMBED Equation.2  (2.2.3) where the  EMBED Equation.2  is the spatial operator in the x direction (and analogously for y and z). It can be shown that this simple average ensures that second moments of T are conserved i.e. the identity  EMBED Equation.2  is mimicked by the discrete form (2.2.3) if  EMBED Equation.2  is chosen to be the arithmetic mean. In (2.2.2) and (2.2.3),  EMBED Equation.2  is the volume of the cell in question. 2.2.2 Face quantities It is clear from (2.2.3) that velocities only appear as averages over faces of the cells and so we choose only to define them there. To deduce appropriate discrete forms of the momentum equations, however, we associate volumes with these face quantities -  EMBED Equation.2 - and again use Gauss’ theorem. Let us first consider the special case in which these volumes are not shaved. Then the advecting terms that make up the  EMBED Equation.2 ’s in Eqs. (1.3.2(1.3.4) have the form (using continuity equation (1.1.2):  EMBED Equation.2  (2.2.4) where ( is the spatial-averaging operator and  EMBED Equation.2  (2.2.5) the average of the volumes of the cells on either side of the face in question. Exactly analogous expressions are written down for  EMBED Equation.2 and  EMBED Equation.2  in which the  EMBED Equation.2 average of the ‘area times velocity’ terms is replaced by, respectively,  EMBED Equation.2 and  EMBED Equation.2 .The forms (2.2.4, 2.2.5) guarantees: -conservation of the first moment because it is written in flux form, -conservation of the second moment because the fluxing velocities satisfy a non-divergence condition:  EMBED Equation.2  exactly analogous to (2.2.1). 2.2.3 Coriolis terms Velocity components are staggered in space and so the evaluation of Coriolis terms in (1.3.2(1.3.4) involves spatial averaging:  EMBED Equation.2  (2.2.6) where  EMBED Equation.2 . The above form ensures energy conservation; see, for example, Arakawa and Lamb (1977). Spatial averaging of Coriolis has undesirable consequences - at coarse resolution the w-field can be prone to grid-scale noise. Considerable attempts have been made to ameliorate this problem - see section 2.2.6 where the 'C-D' scheme, devised by Alistair Adcroft, is described. 2.2.4 Pressure gradient force The three components of the pressure gradient force are:  EMBED Equation.2  (2.2.7) The form (2.2.7) ensures that the discrete operator representing  EMBED Equation.2 , which must be inverted to find the pressure field, is a symmetric operator facilitating the use of conjugate-gradient methods - see section 2.3. It also leads to an appropriate discrete analogue of energy conservation - see section 2.2.7 and, in particular, Adcroft et al.(1997). 2.2.5 Forcing and dissipation ‘Laplacian’ diffusion terms are represented for cell quantities thus:  EMBED Equation.2  (2.2.8a) and for ‘face’ quantities:  EMBED Equation.2  (2.2.8b) where EMBED Equation.2  is given by (2.2.5). Higher order dissipative forms are obtained by repeated application of the  EMBED Equation.2 operators defined above. Include form of discrete forcing terms here. 2.2.6 The C-D scheme The spatial averaging required in the evaluation of Coriolis terms on the ‘C’ grid is a significant disadvantage when the model is used at resolutions which are coarse relative to the Rossby radius of deformation. A checkerboard mode in the horizontal divergence field can readily be excited and implicit treatment of Coriolis terms is significantly more complicated than on unstaggered grids (such as the ‘B’ grid, for example). As shown in Adcroft (1995), however, both of these difficulties can be significantly ameliorated by use of a C-D grid in which a ‘D’ grid is used to step forward velocity components used in the evaluation of Coriolis terms. Include the discrete equations here. The scheme has been particularly useful in coarse-resolution studies of ocean circulation in which the horizontal resolution is many times the Rossby radius of deformation. 2.2.7 Conservation properties The above discrete forms give the model excellent integral conservation properties. They conserve integrals of mass, heat, salt, variance of temperature and salinity and total energy, when effects of mixing and transfer across boundaries are absent. The discrete analogue of kinetic energy is:  EMBED Equation.2  These integral properties are not compromised by the use of shaved cells provided care is taken in the definition of control volumes for variables adjacent to the boundary (see appendix). The model does not conserve enstrophy, however. Include section on shaved cells (maybe in appendix?) 2.3 The Elliptic problem We now formulate the discrete analogues of the 2-d and 3-d elliptic problems for the pressure which guarantees that the velocity fields evolving from n to n+1 according to (2.1.1) and (2.1.2) satisfy the non-divergence condition (2.1.3) at step n+1. The parallel implementation of the preconditioned conjugate-gradient methods used to invert them are discussed in section 2.3.2. 2.3.1 Discrete formulation Two-dimensional Because of the ‘finite volume’ approach adopted in our treatment of volume quantities, in which velocities are defined normal to the faces of the cells, the divergence operator has a natural form leading to a local Elliptic operator which has a five-point stencil. By setting q=0 in the momentum equations (2.1.1) and summing them over the whole depth of the ocean, invoking the continuity equation (2.2.1) and applying boundary conditions (1.2.1), the following equation for  EMBED Equation.2  results:  EMBED Equation.2  (2.3.1) where  EMBED Equation.2  (2.3.2)  EMBED Equation.2  Here  EMBED Equation.2  is the discrete analogue of  EMBED Equation.2 , a vertical integral over the whole depth of the ocean; we sum over the vertical faces of the cells each of depth (z|k making up the column of ocean. The ‘divh’ and ‘gradh’ operators are horizontal components of (2.2.2) and (2.2.7), respectively. Note that on the rhs of (2.3.1) we have retained a term,  EMBED Equation.2  which ensures that  EMBED Equation.2  as the model steps forward. This ‘relaxation’ technique is often used in solving the Navier-Stokes equations- (see, for example, Williams;1969). In the present context it obviates the need to step forward barotropic equations for EMBED Equation.2  separately. In our method only the prognostic equations for interior velocities, Eq (4.1.1), are stepped forward and the horizontal divergence of the depth-integrated horizontal velocities at each time-step evaluated and used to modify the source-function to the 2-d Elliptic problem accordingly, so ‘tying together’ the velocity and the pressure field. The Elliptic problem Eqs.(2.3.1) and (2.3.2) can be written in the concise matrix notation:  EMBED Equation.2  (2.3.3) where  EMBED Equation.2  is a symmetric, positive-definite matrix comprised of EMBED Equation.2  and  EMBED Equation.2  (matrix representations of the ‘div’ and ‘grad’ operators),  EMBED Equation.2  is a column vector of surface pressure elements and  EMBED Equation.2  a column vector containing the elements of the rhs of (2.3.1). The system can thus be solved using a standard conjugate-gradient method, preconditioned for efficient solution on a parallel computer - see section 2.3.2. In summary, then, because (i) the divergence constraint on the evolving velocities is applied in integral form employing Gauss’ theorem and (ii) the kinematic boundary condition v.n=0 (where n is a unit vector normal to a solid boundary) is applied at the face of a cell, then the form of (2.3.3) is unchanged, even if the face of a cell which abuts the solid boundary is inclined to coordinate surfaces. This property enables one to rather easily ‘shave’ zones which abut boundaries to improve the representation of flow over topography (see appendix). Three-dimensional In non-hydrostatic calculations a three-dimensional elliptic equation must also be inverted for  EMBED Equation.2  to ensure that the local divergence vanishes. The appropriate discrete form can be deduced in a manner that exactly parallels that which was used to deduce (2.3.1). Taking (h.(2.1.1)+ EMBED Equation.2 , invoking (2.1.3) and boundary conditions (1.2.1), the resulting elliptic equation can be written:  EMBED Equation.2  (2.3.4) where  EMBED Equation.2 , like  EMBED Equation.2 , is a symmetric, positive-definite matrix representing the discrete representation of  EMBED Equation.2 , but now in three dimensions. Here  EMBED Equation.2  and  EMBED Equation.2  are (1(N) column vectors containing the source function (the discrete form of Eq.(1.5.13)) and non-hydrostatic pressure, in each of the  EMBED Equation.2  cells in to which the fluid has been carved. The column vectors have singly subscripted elements EMBED Equation.2  in which the elements are first enumerated in each vertical column, and only then in the horizontal directions thus:  EMBED Equation.2  where i is an index increasing eastwards, j is an index increasing southwards and k increases downwards. Although huge, of size  EMBED Equation.2 ,  EMBED Equation.2  has a particularly simple form which can be exploited to devise a highly efficient method of inversion.  EMBED Equation.2 has 7 diagonals representing the coupling in the three space dimensions. In any particular row of the matrix, the three leading diagonals are the coefficients multiplying the pressure in the same vertical column of the fluid; the four diagonals in the wings are the coefficients multiplying pressures in cells in the same horizontal plane. The inner three diagonals can usefully be blocked and arranged as shown below:  EMBED Equation.2  (2.3.5) Here each block  EMBED Equation.2  is a tri-diagonal matrix representing  EMBED Equation.2 and e is a diagonal matrix representing  EMBED Equation.2 . D and e are matrices of size  EMBED Equation.2  if there are EMBED Equation.2  cells in each column of the ocean:- there are  EMBED Equation.2  such blocks, one for each column of the ocean. One further property of  EMBED Equation.2  should be noted. If the vertical dimension of a cell is much smaller than its horizontal extent (as is often the case because the ocean is much shallower than it is wide) then the  EMBED Equation.2  ( EMBED Equation.2  and  EMBED Equation.2  is dominated by the blocks D along its diagonal. The elements e are smaller than those of D by an amount  EMBED Equation.2 . Moreover, the tracer parameter ‘q’ always appears as a multiplier of the e matrix - see (2.3.5); thus when q is set to zero (corresponding to the hydrostatic limit),  EMBED Equation.2  is comprised only of the blocks D and so can readily be inverted. Thus if we ‘precondition’ (2.3.4) by premultiplying it by a matrix which is comprised of the inverse of these blocks, that preconditioner will be an exact inverse of  EMBED Equation.2  in the hydrostatic limit. These properties of  EMBED Equation.2  will be exploited in our chosen method of solution. 2.3.2 Preconditioned conjugate-gradient solution method Many standard references to preconditioned conjugate gradient methods exist - see, for example, Press et al; 1988 and references therein. We briefly outline the ‘nub’ of the method here, emphasising the use we make of preconditioners. Our problem is to find p given A and f (see (2.3.3) and (2.3.4)), where:  EMBED Equation.2  (2.3.6) and A is a symmetric, positive-definite matrix. In serious modelling applications the size of A is too large for direct methods to be useful in 3-dimensions and often in 2-dimensions too. Since A does not change in time, it could be inverted once and stored. However, although A is sparse, its inverse is dense and so operating with its inverse would involve N2 multiplications; an unrealistic task given that typically N >> 100000. So we adopt an iterative procedure, preconditioned conjugate gradient iteration, which exploits the sparseness of A and its diagonal dominance. The procedure involves repeated multiplication of the iterative solution by A and by another sparse matrix K, an approximate inverse of A; K is called the preconditioner. The algorithm can be understood thus: Let us pre-multiply Eq.(2.3.6) by a (carefully chosen) matrix K, which is an approximate inverse of A, so that  EMBED Equation.2 . Then (2.3.6) can be written:  EMBED Equation.2  where  EMBED Equation.2 . To the extent that |C| (0, the above suggests the following iterative scheme - 'i' is the iteration step:  EMBED Equation.2  where  EMBED Equation.2  is called the search direction and  EMBED Equation.2  is the residual vector. The r's and b's can be deduced from the previous iteration using the relations:  EMBED Equation.2  The above iterative procedure can be accelerated by choosing those search directions that minimize the magnitude of the residual vector as measured by the inner product  EMBED Equation.2 . Our chosen method, the conjugate gradient method, takes a form much like the simple scheme outlined above, but the search directions are optimized. It can be written:  EMBED Equation.2  (2.3.7) Here [ , ] is the inner product of two vectors. The conjugate-gradient procedure involves, at each iteration, multiplication of vectors by A and K and the evaluation of two global sums to form the inner product. The cost of the preconditioner is one operation by it per iteration. We have designed preconditioners, K, for both the 2-d and 3-d problems, so that (i) it can be easily stored (ii) the number of operations required when multiplying by it, is as small as possible and (iii) it is a good approximation to A-1 so the iterative procedure converges rapidly. Because the true inverse is dense, our choice will be a compromise between these, sometimes conflicting, ideal properties. Two-dimensional At each horizontal location (2.3.3) can be written:  EMBED Equation.2  where the superscripts denote the center, west, east, north and south locations in the operator’s five point stencil. The leading diagonal of A2d will be comprised of the  EMBED Equation.2  and the four non-zero off-diagonals will be comprised of the  EMBED Equation.2 . Because of the dominance of the leading diagonal, to a first approximation:  EMBED Equation.2  One of the simplest forms that could be chosen for  EMBED Equation.2 , then, is to suppose that it is a diagonal matrix comprised of elements equal to the reciprocal of the corresponding elements along the leading diagonal of A. However, this can be improved by constructing an approximate local inverse as follows. At the five points in the stencil surrounding ‘c’ then, to the same level of approximation, we may write:  EMBED Equation.2  where  EMBED Equation.2  denotes the point to the west etc. Hence we can make a better approximation to  EMBED Equation.2 thus:  EMBED Equation.2  To arrive at a symmetric preconditioner we replace  EMBED Equation.2  etc thus:  EMBED Equation.2  giving, finally, our local preconditioner for use in (2.3.7):  EMBED Equation.2  EMBED Equation.2  (2.3.8) Although simple, (2.3.8) is highly effective, reducing the number of iterations required for convergence by, typically, a factor of four. Three-dimensional After considerable experimentation we have chosen a block-diagonal preconditioner, a matrix whose diagonal is made up of the inverse of the tri-diagonal matrices D defined above:  EMBED Equation.2  (2.3.9) Evaluation of the inner products to compute ( and ( in (2.3.7), involves forming the vector x, where  EMBED Equation.2  or, since  EMBED Equation.2  , where D is the matrix of diagonal elements of (2.3.5).  EMBED Equation.2  If our ocean model has many levels, then D-1 will be dense and so storing and multiplying by D-1 is also demanding of resources. Instead, we exploit the fact that D is tri-diagonal, and use ‘LU’ decomposition to solve the preconditioning equations for x in the form:  EMBED Equation.2  We write D=LU where L is a lower-triangular matrix and U an upper triangular matrix which have the form: EMBED Equation , EMBED Equation  and EMBED Equation  It is easy to see, that if  EMBED Equation.2  we have a system of simple equations: EMBED Equation  and so on. Finding the inverse of D, or solving problem Dx=r is equivalent to solving the two sets of equations:  EMBED Equation.2  (2.3.10) first for z and then for x. This is straightforward because of the triangular structure of L and U. Importantly the number of operations required to solve (2.3.10) for x scales as NZ compared to NZ2 if we had used the inverse of D directly. The resulting preconditioner was found to be a good compromise; its use significantly reduces the number of iterations required to find a solution to (2.3.6) because it is an acceptable approximation to the inverse of A, it is sparse and, most importantly, its application requires no communication across the network in the data-parallel implementation of the algorithm. CHAPTER 3 PARALLEL IMPLEMENTATION Not complete yet The current model implementation uses a conservative form of Fortran 90. The array syntax notation feature of Fortran 90 is heavily used, however, the more elaborate features of Fortran 90 such as overloading of operators, modules, array valued functions are avoided (the performance of these constructs varies widely from one compiler to another). Apart from the array notation, the only new syntax elements that experienced Fortran 77 or C programmers need to understand to work with the model, are the Fortran 90 SHIFT primitives. 2.1 Enumeration of arrays. In the model implementation the grid cells are mapped to regular three-dimensional arrays. As shown in Fig.6 the index i is used to index the x-axis, j to index the y-axis and k to index the z-axis. The rule that coordinate (i=1,j=1,k=1) of any variable must fall within the western most, southern most and upper most cell and be as far toward the west, south and top of that cell is used throughout the code. This is illustrated in Fig.6. Fig 3 .The discrete domain is mapped to multi-dimensional arrays using an enumeration scheme that follows the two rules illustrated. Both the major prognostic variables and the intermediate terms abide by this convention. Chapter 4 Procedures and variables 4.1 Procedures 4.1.1 Flow chart See below a flow chart of the code. Some procedures are not mentioned (diagnostic procedures for example). MAIN |----CONTROL | |----SET_DEFAULTS Set default values for model parameters | |----DATE Record date and time of run | |----MACHINE Record machine identifying string | |----READ_DATA Read file specifying model parameters | |----READ_TOPOGRAPHY Read land/water map | |----INITIALISE | |----INITIALISE_MASKS Set land/water masks arrays | |----INITIALISE_GRIDDING Set up arrays expressing geometry | | |----INITIALISE_CARTESIAN_GRID | | |----INITIALISE_SPHERICAL_POLAR_GRID | |----INITIALISE_OPERATORS Set up differencing operators | |----INITIALISE_FIELDS Set initial values of model variables | | |----INITIALISE_U | | |----INITIALISE_V | | |----INITIALISE_S | | |----INITIALISE_T | |----INITIALISE_CORIOLIS Set Coriolis term operator | |----INITIALISE_METRIC Set metric term operator | |----CG3DAI Define 3d laplacian "A matrix" operator | |----CG3DPI Define 3d "A matrix" preconditioner | |----CG2DAI Define 2d laplacian "A matrix" operator | |----CG2DPI Define 2d "A matrix" preconditioner | |----CHECK_INPUT Validate input data | |----PRINT_HEADING Print out run data summary page | |----MODEL Perform integration |----RHO_WGRID_CALC Evaluate initial density | MAIN LOOP =====> | |----FORWARD Control explicit stepping of u, v, and w | |----TERMS0 Set up temporary arrays | |----TERMS1 needed throughout stepping | |----GU_CALCULATE Calculate explicit dU/dt | | |----EXTERNAL_FORCING_U Add forcing | |----GV_CALCULATE Calculate explicit dV/dt | | |----EXTERNAL_FORCING_V Add forcing | |----GW_CALCULATE Calculate explicit dW/dt | |----PFIND Diagnose pressure field | |----PFIND_HSTATIC Find hydrostatic pressure | |----PFIND_SURFACE Find surface pressure | | |----CG2D 2d preconditioned conjgrad | | | |----CG2DMA Multiply by 2d laplacian | | | |----CG2DPC Precondition | |----PFIND_3D Find remaining pressure | | |----PFIND_RHS3D Form right hand side | | |----CG3D 3d preconditioned conjgrad | | | |----CG3DMA Multiply by 3d laplacian | | | |----CG3DPC Precondition | |----UPDATE_VELOCITIES | |----EPARAM_SET_MIXING Computes 3d diffusion tensor | |----INC_TRACER Step forward temperarture | |----EXTERNAL_FORCING_TEMPERATURE Add forcing | |----INC_TRACER Step forward salinity | |----EXTERNAL_FORCING_SALINITY Add forcing | |----CADJTRACE Mix unstable water column | |----RHO_WGRID_CALC Evaluate density field | TO MAIN LOOP <=====|----OUT Dump out model fields 4.1.2 Alphabetical list of procedures and 'include' files Include the list here with a brief description (indicate the 'parent' procedure). 4.2 Variables Include an alphabetical list of variables here with the following information: type (integer, real, character etc…), units (for real variables), brief description, first occurrence in the code. Use table. Chapter 5 Getting started: practical considerations Notation : Fortran variable names of the code are written in italic. Subroutine and file names are written in CAPITAL LETTERS. 5.1 Accessing the code - directory structure leave for now 5.2 Configuring the model and setting up a run This section is meant to review the parameters that need to be set up before one can run the model. Unless noted otherwise, these parameters are Fortran variables declared in file PARAMS.h and set up in routine SET_DEFAULTS. The default values can be changed by means of a namelist. The list that follows is not exhaustive. For example, parameters related to the forcing files are expected to be user specific and are not mentioned here. Others are left to the appendices. However, we have attempted to include all the ones that will need to be set up no matter what configuration you use. For the parameters not described here, look into file PARAMS.h and routine SET_DEFAULTS. In what follows, the parameters are grouped into categories related to the geometry and the equations solved in the model. We start with some constants describing the state of the ocean. The real variables g, Cp, RoNil represent respectively gravity (in m s-2), the specific heat (in J K-1 kg-1), and the reference density (in kg m-3) of the ocean. The vertical coordinate used in the model is actually pressure so that the same code can be used to simulate fluid motions in the atmosphere. In the namelist, variables depending on the choice of vertical coordinate (such as vertical viscosity and diffusivity coefficients) have their vertical length expressed in meters. Later in the code, this vertical length is converted in pressure unit (this involves typically a simple multiplication or division by RoNil(g). 5.2.1 domain, geometry dimensions The dimensions of the domain Nx, Ny, Nz, are declared and set in file SIZE.h. The integer variables L, M, N in the namelist must be set to the values of Nx, Ny, Nz, respectively. grid The character variable gridStyle controls the type of grid. Two versions are currently available. For a Cartesian grid, set gridStyle to 'Cartesian'. Then set up the horizontal grid spacing dM (in m). For a spherical polar grid, set gridStyle to 'Spherical Polar'. Then specify the resolution along latitude and longitude dPhi and dTheta (in degrees) and the minimum latitude phiMin (in degrees). Whatever grid you choose, also specify the 1D array representing the vertical layers thickness deltaz (in m) in the namelist. Note that in the code, the layer thicknesses are expressed in pressure units (Pa) and are represented by the variable delps (equal to deltaz multiplied by RoNil(g). topography The model code applies without modification to enclosed, periodic (x or y) and double periodic (x and y) domains. The geometry of the model is controlled by the topography file. A real 3D array pmask is defined having the value 1 on water and 0 on land. Periodicity is assumed by default and is suppressed by defining zero open interface areas for cells at the limits of the computational domain. Note: The present elliptic solver procedures CG2D and CG3D assume that they are solving a single global problem. This means that all cells with non-zero volumes must interconnect, either directly or indirectly, through the surface. If disconnected basins are defined, the results are unpredictable. 5.2.2 Equation of state Initial reference temperature and salinity profiles need to be provided to compute the perturbation density and are represented respectively by the 1D arrays ths (in oC) and ssppt (in ppt). Two forms of equation of state are available in the baseline implementation and are controlled by the character variable equationofState. If set to 'linear', then specify the constant expansion coefficients tAlpha (in K-1) and sBeta (in ppt-1) (through the variables alphaTemperature and alphaSalt in file PARAMS.h). If you set equationofState to 'polynomial', density is evaluated from a third order polynomial expansion of the full state equation. The polynomial coefficients are read from a file called POLY3D.COEFFS. Any other arbitrary formulae for deriving density can readily be plugged into the model. 5.2.3 Hydrostatic, quasi-hydrostatic, or non-hydrostatic regime The logical variable nonHydrostatic controls whether or not you want the model to run in a nonhydrostatic regime (NH) as described in the first two chapters of this manual. If nonHydrostatic is set to .TRUE., the model will step forward for the vertical velocity and solve a 3D elliptic equation for the pressure. Note that the vertical velocity can still be diagnosed from the continuity equation if the logical variable stepW is set to .FALSE. In the nonhydrostatic regime, you also need to set up the logical variable buoyancy that controls whether or not you want to include the buoyancy term in the vertical momentum equation. The distinction between hydrostatic (HPE) and quasi-hydrostatic (QH) regime is controlled by the logical variable verticalCoriolis (see next section, momentum equations). 5.2.4 Momentum equations Unless noted otherwise, what follows is not applicable to the vertical velocity w if the variable nonHydrostatic has been set to .FALSE. (HPE or QH regime). The logical variable momentumStepping controls whether or not you want to step forward for the velocity components u, v and w. If set to .TRUE., the following parameters have to be specified. advection terms If you want to include these terms in the momentum equations, set the logical variable momentumAdvection to .TRUE.. A centered second-order advection scheme is then used. metric terms If you want to include these terms in the momentum equations, set the logical variable metricTerms to .TRUE.. Note that all the metric terms are included. This choice is to be made only if the grid is spherical polar (the variable is automatically set to .FALSE. if the grid is Cartesian). Coriolis terms If you want to include these terms in the momentum equations, set the logical variable Coriolis to .TRUE.. If this is the case, also set the real variable raja and the logical variable verticalCoriolis. The former is a number between 0 and 1 that controls the "C-D scheme" (see chapter 2). If raja is set to a value greater than 0., horizontal velocity components stepped forward on a 'D' grid are used in the evaluation of the Coriolis terms with a weight given by raja. If raja is set to 0., the Coriolis terms are estimated using the 'C' grid velocity components only. The variable verticalCoriolis controls whether or not you want to include the cos (latitude) terms in the zonal and vertical momentum equations (I think the name verticalCoriolis is misleading. The additional terms appear both in the zonal and vertical momentum equations. I would suggest to replace the name verticalCoriolis by cosphiCoriolis). If verticalCoriolis is set to .TRUE. and nonHydrostatic to .FALSE., the model is in the quasi-hydrostatic (QH) regime. If the grid is Cartesian, you have to specify the Coriolis parameter dependence on latitude with the character variable CoriolisPlane. If this variable is set to 'betaplane', set the reference Coriolis parameter fcori (in s-1) and its derivative with respect to latitude beta (in m-1 s-1) (Note : the Beta plane formulation is not available yet). If CoriolisPlane is set to 'fplane', only fcori needs to be set. Note that you can set up a non-rotating problem on a Cartesian grid by simply setting fcori to 0. dissipation terms If you want to include these terms in the momentum equations, set the logical variable momentumDiffusion to .TRUE.. If this is the case, specify the horizontal and vertical viscosity coefficients CAPUV and RKPUV respectively in the namelist (in m2 s-1). Note that in the code, these variables are called a2MomXY and a2MomZ and that the unit of the latter is Pa2.s-1 (multiplication by [RoNil(g]2). If you also want to include biharmonic diffusion terms in the momentum equations, set the logical variable momBhDiffusion to .TRUE.. Then, set the value of the horizontal biharmonic diffusion coefficient C4PUV (in m4 s-1) in the namelist. Note that in the code, this variable is called a4MomXY. forcing terms This section only applies to the horizontal velocity components. If you want to include these terms in the momentum equations, set the logical variable momentumForcing to .TRUE.. Then, additional terms will be added to the internally induced tendency terms calculated by the model. It is assumed that you have wind data available (or that you have prescribed an analytical forcing) and a routine that estimates the forcing terms at each time step. boundary conditions Slip or no-slip conditions on side walls and at the bottom and top are controlled by logical variables freeslipSide, freeSlipBottom and freeSlipTop, respectively. If these variables are set to .TRUE., free slip boundary conditions are applied (otherwise no-slip conditions are applied). 5.2.5 Diagnosis of pressure The logical variable pressureStepping controls whether or not you want to solve for the pressure field. If you do, the following parameters need to be specified : hydrostatic pressure The logical variable seperatePh controls whether or not you want to calculate the hydrostatic pressure anomaly. If you do, then specify the surface boundary condition with the character variable phSurfBC. Two options are available : the hydrostatic pressure anomaly is set to zero at the surface (phSurfBC='zero') or is set to the density of the first layer times half the layer depth (phSurfBC='topBoxPhIntegralofRho'). surface pressure The logical variable seperatePs controls whether or not you want to solve for the surface pressure. If you do, the real constant variables freeSurfFac, psGam, uDivAlpha, and gBaro need to be set up and control whether or not you want to have a rigid lid or an implicit free surface. For a rigid lid, set freeSurfFac, psGam, uDivAlpha, and gBaro to 0., 1., 0., and g (gravity) respectively. To control the operation of the 2D iterative solver routine CG2D, specify the values of the variables toler2d, max2dIt, freqCheckToler2d, divhMax, divhMin. Finally, the logical variable stericEffect controls whether or not you want to include a steric anomaly in surface elevation. If you do, then specify the value of variable rhorefSurf, reference density for surface layers. non hydrostatic pressure This part is relevant only if the variable nonHydrostatic has been set to .TRUE. (see section 5.2.3). Then specify the values of the variables toler3d, max3dIt, freqCheckToler3d, divMax, divMin that control the operation of the 3D iterative solver routine CG3D. Furthermore, the logical variable findD2pnhDZ2 controls whether or not you want to solve the Dirichlet problem for the vertical gradient of nonhydrostatic pressure. 5.2.6 Tracer equations (temperature and salinity) This section also applies to other tracers (if necessary). The logical variable tempStepping (saltStepping) controls whether or not you want to step forward for temperature (salinity). If you do, it is assumed that you have data defining initial conditions (or you can specify initial vertical profiles through the variables ths and ssppt, see section 5.2.3). Moreover, the following parameters need to be specified. advection terms If you want to include these terms in the temperature (salinity) equation, set the logical variable tempAdvection (saltAdvection) to .TRUE.. If this is the case, choose the tracer advection scheme with the character variable TradvecScheme. Two options are available : 'upstream' or 'centered'. (Note : in the current version, TradvecScheme is not declared in PARAMS.h but is a local variable of routine INC_TRACER). In the current version, the advection scheme is common to all tracers. dissipation terms If you want to include diffusion terms in the temperature (salinity) equation, set the logical variable tempDiffusion (saltDiffusion) to .TRUE.. Then, choose the tracer diffusion scheme with the character variable TrdifScheme. Several options are available. Here, we only consider the case of constant horizontal and vertical diffusivity coefficients. For other cases, see appendix to know what parameters need to be set up. So, if TrdifScheme is set to 'constant', the variables CAPTH (CAPS) and RKPTH (RKPS) in the namelist need to be set and represent the horizontal and vertical diffusivity coefficients, respectively (in m2 s-1). Note that in the code, the variables are named a2TempXY (a2SaltXY) and a2TempZ (a2SaltZ) and that the latter is expressed in Pa2 s-1. If you also want to include biharmonic diffusion terms in the temperature (salinity) equation, set the logical variable tempBhdiffusion (saltBhdiffusion) to .TRUE.. Then, set the value of the horizontal biharmonic diffusion coefficient C4PTH (C4PS) in the namelist (in m4 s-1). Note that in the code, the variable is named a4TempXY (a4SaltXY). forcing terms If you want to include these terms in the momentum equations, set the logical variable tempForcing (saltForcing) to .TRUE.. Then, additional terms will be added to the internally induced tendency terms calculated by the model. It is assumed that you have air-sea heat and freshwater fluxes data available (or that you have prescribed an analytical forcing) and a routine that estimates the forcing terms at each time step. convective adjustment The logical variable ConvectiveAdjustment controls whether or not you want the static instabilities to be dealt with by a convective adjustment scheme. If you do, specify the value of variable CadjFreq, frequency (in s) with which the convective adjustment scheme is applied. For details about the scheme, see appendix. 5.2.7 Run setup run duration The starting time, ending time and time step of an integration need to be set up with the integer variables IPUSTTTMP, IENDSECTMP and IDELT in the namelist (in s). Note that in the code, these parameters are real variables named startTime, endTime and delt. If the starting time is non-zero, the model will try to read in a set of checkpoint files from a previous integration (see section 5.3 for a description of the checkpoint files). forcing controls Certain parameters related to the reading of the forcing files might need to be set up (for example after a restart). In general, this will depend on the particular user configuration. Therefore, this is not extended any further. output Real constant variables defining frequencies (in s) with which output files are written on disk need to be set up. dStateFreq is the frequency with which the state of the model is saved. dPUFreq is the frequency with which pick-up files (suitable to restart an integration) are saved. dCkptFreq is the frequency with which "rolling" checkpoint files are saved. See section 5.3.3 for a description of the output files. 5.3 Compiling, running, and restarting the code 5.3.1 compilation Type make wherever you are. There is a good chance it will work! To set the precision, look into utility r8 (in directory ProgUtils). This utility is called by the makefile to "preprocess" the procedures of the code converting all the 'REAL' statements into 'REAL*4' or 'REAL*8'. The makefile will create an executable named MITGCM. Use the UNIX command 'size' to know how much memory is required to execute the code on a single processor. 5.3.2 execution First, we review the input files needed to run the model : namelist (file named DATA), topography (file named PMASK.SUN.B), polynomial coefficients (file named POLY3D.COEFFS) if the full equation of state is used, and if necessary : initial temperature and salinity, wind data, heat and freshwater fluxes data. If you want to restart the code, pick-up files are also needed (see next section). To run the code, type MITGCM < DATA > OUTPUT. The building of scripts to make the submission and execution of the code more automatic is left to the user at this point. 5.3.3 output and restart Depending upon the values of the various frequencies mentioned in section 5.2.7, output files describing the state of the model will be written on disk. The name of these files is written in the following way : "XXX.0000nIter", where XXX is a capital letter or a group of capital letters indicating the quantity being saved (for example U for the zonal velocity) and nIter is a chain of figures indicating the instant (in number of time steps) at which saving occurs. The maximum value for nIter is 109 and 0s will fill in the space after XXX when nIter is less than its maximum value as shown above. Below follows a list of the output files. Unless noted otherwise, the different quantities are expressed in SI units. U : zonal component of velocity vector V : meridional component of velocity vector W : vertical component of velocity vector (in Pa s-1) T : potential temperature (in oC) S : salinity (in ppt) PS : surface pressure (in m) PH : hydrostatic pressure (in m) PNH : nonhydrostatic pressure (in m) PTOTAL : total pressure (PS+PH+PNH) (in m) GTNM1 : temperature tendency at time step n-1 (in oC s-1) GSNM1 : salinity tendency at time step n-1 (in ppt s-1) GUNM1 : zonal velocity tendency (except pressure term) at time step n-1 GVNM1 : meridional velocity tendency (except pressure term) at time step n-1 GWNM1 : vertical velocity tendency (except pressure term) at time step n-1 (in Pa s-2) PNM1 : total pressure at time step n-1 UAJA : 'D' grid zonal velocity (used in C-D scheme) VAJA : 'D' grid meridional velocity (used in C-D scheme) UBXBYNM1 : interpolated 'D' grid zonal velocity (from 'C' grid component) at time step n-1 VBYBXNM1 : interpolated 'D' grid meridional velocity (from 'C' grid component) at time step n-1 These are the files needed to restart an integration (pick-up files) and their output is controlled by the variable dPUFreq (see section 5.2.7). Of course, if you are stepping forward other quantities (other tracer, ice…), they will need to be output along with the files above. The variable dStateFreq controls the output of the quantities U, V, W, T, S, PTOTAL only, from which most diagnostics can be made. Rolling checkpoint files, the output of which are controlled by the variable dCkptFreq, are the same as the ones above (pick-up files) but are named differently. Their name end with the suffix 'ckptA' or 'ckptB' instead of '0000nIter'. They can be used to restart the model but are overwritten every other time they are output to save disk space during long integrations. 5.4 Examples : description of test cases First, we describe briefly each case. Refer to the references for more detail. 5.4.1 Two-layer ocean in a rectangular basin driven by a steady wind-stress This case corresponds to the numerical experiments of Holland and Lin (1975). In this study, the authors explore the generation of mesoscale eddies and their contribution to the oceanic circulation. Their model has two homogeneous layers on a simple closed rectangular basin 1000 km ( 1000 km with a flat bottom at 5 km depth, and is forced by a steady wind-stress that varies in a simple sinusoidal manner with latitude and has an amplitude of 0.1 Pa. The horizontal resolution is 20 km on a (-plane. For sufficiently small viscosity values, the model, spun up from rest, exhibits mesoscale eddies and eventually reaches a statistical steady state. Analysis of the energy budget shows that the eddies are generated by baroclinic instability. The configuration given in 5.4.5 corresponds to the preliminary experiment described in Holland and Lin (1975). In our height-coordinate model, quasi reduced-gravity conditions can be configurated by prescribing an initial temperature profile mimicking the reduced-gravity used in Holland and Lin set-up. 5.4.2 Neutral ocean in a doubly periodic domain driven by buoyancy forcing This case corresponds to the numerical experiment of Jones and Marshall (1993) done with the present code. In this study, the authors explore open ocean deep convection. The model has dimensions 32 km ( 32 km ( 2 km and 19 levels on the vertical. Periodic boundary conditions are applied on the x and y directions. The horizontal and vertical resolutions are 250 m and 100 m, respectively. The model is initialized with a homogeneous, resting ocean governed by a linear equation of state without salt. Constant cooling corresponding to a heat loss of 800 W m-2 is induced over a disk of radius 8 km at the center of the domain and over a depth of 200 m from the surface. The model is run in the nonhydrostatic mode and convective plumes develop. These plumes efficiently mix the water column and generate a dense chimney of fluid, which subsequently breaks up through the mechanism of baroclinic instability to form spinning cones. The configuration given hereafter corresponds to the reference simulation of Jones and Marshall (1993). 5.4.3 Exponentially stratified ocean on a wind-driven channel This case corresponds to the wind-driven channel experiment of Visbeck et. al. (1997) done with the present code. In this study, the authors compare eddy-resolving 3D simulations with 2D simulations in which the eddies are parameterized in order to test and assess different schemes for specifying eddy transfer coefficients. The model has dimensions 1500 km ( 500 km ( 4.5 km on a f-plane. The grid spacing is 10 km on the horizontal and varies on the vertical from 25 m in the upper layers to 400 m at depth (20 vertical levels). Periodic conditions are applied at the meridional boundaries. The model is initialized with an exponential temperature profile of scale depth 900 m and is forced by a cosine wind stress of maximum strength 0.2 Pa at the channel center. After six years or so, a steady state is reached where the input of potential energy by the wind is balanced by release of potential energy due to baroclinic eddies. 5.4.4 Global ocean driven by realistic wind and buoyancy forcing This case corresponds to an-going study of the large-scale global ocean circulation. The spherical domain extends from 80oS to 80oN in latitude and a realistic topography is used. The horizontal resolution is 4 o and the vertical grid spacing varies from 25 m in the upper layers to 500 m at depth (20 vertical levels). The full equation of state is employed. The model is initialized with the Levitus climatology and forced by climatological forcing, namely the …. 5.4.5 Model configuration for the test cases The parameter values are summarized on Table 5.1. Table 5. SEQ Table \* ARABIC \s 1 1 Model configuration for the test cases. "(" indicate not applicable or that the model results are not sensitive to the values chosen. 2-layerconvectionChannelGlobal 4 degNx Ny Nz-1100 100 2132 132 19150 50 2090 40 20gridStyle'cartesian''cartesian''cartesian''spherical polar'dm (km)200.2510(dphi dTheta phiMin (deg) ( ( (4 4 -80deltaz (min) (max) (m)1000 400010025 40025 500Geometry Topographyrectangular box flat bottomsquareboxd-periodic flat bottomchannel s-periodic flat bottomsphere realistic topoEquationofState ths (oC) ssppt (ppt) tAlpha (K-1) sBeta (ppt-1)'linear' 20 - 10 0 ? 0'linear' ? 0 2 ( 10-4 0'linear' exponential ? 2 ( 10-4 ?'polynomial' 0 0 ( (nonHydrostatic.FALSE..TRUE..FALSE..FALSE.momentumStepping.TRUE..TRUE..TRUE..TRUE.momentumAdvection.TRUE..TRUE..TRUE..TRUE.metricTerms(((.TRUE.Coriolis.TRUE..TRUE..TRUE..TRUE.VerticalCoriolis.FALSE..FALSE..FALSE.?raja000?CoriolisPlane'betaplane''fPlane''fPlane'(fcori (s-1)7.3 ( 10-510-410-4(beta (m-1 s-1)2 ( 10-11(((MomentumDiffusion.TRUE..TRUE..TRUE..TRUE.CAPUV RKPUV (m2 s-1)330 05 0.2? 10-3? ?MomBhDiffusion.FALSE..FALSE.??C4PUV (m4 s-1)((??MomentumForcing.TRUE. cosine wind 0.1 Pa.FALSE..TRUE. cosine wind 0.2 Pa.TRUE. wind data FreeslipSide FreeslipBottom FreeslipTop.TRUE. .TRUE. .TRUE.? ? ?? ? ?? ? ?PressureStepping.TRUE..TRUE..TRUE..TRUE.SeparatePh.TRUE..TRUE..TRUE..TRUE.phSurfBC'zero''zero''zero''zero'SeparatePs.TRUE..TRUE..TRUE..TRUE.rigid lidyesyesyesnotoler2d max2dIt FreqCheckToler2d divHmax divHmin   stericEffect.FALSE..FALSE..FALSE.?rhorefsurf(((?toler3d max3dIt FreqCheckToler3d divmax divmin ( ( (findD2pnhDZ2(?((Initial conditionsee thssee thssee thsLevitus dataTempStepping.TRUE..TRUE..TRUE..TRUE.TempAdvection.TRUE..TRUE..TRUE..TRUE.TradvecScheme'centered''centered''centered''centered'TempDiffusion.TRUE..TRUE..TRUE..TRUE.TrdifScheme'constant''constant''constant''GM'CAPTH RKPTH (m2 s-1)? ?5 0.20 10-5(tempBhdiffusion.FALSE..FALSE..TRUE..FALSE.C4PTH (m4s-1)((1010(tempForcing.FALSE..TRUE. constant cooling 800 W m-2.FALSE..TRUE. heat and freshwater fluxes dataconvectiveAdjustment???.TRUE.cadjFreq????Idelt (s)120060?3600 APPENDICES Not written yet References Adcroft, A. (1995) Numerical algorithms for use in a dynamical model of the ocean. Ph.D. thesis, Imperial College, London. Adcroft, A., Hill, C., and Marshall, J. (1997) Representation of topography by shaved cells in a height coordinate ocean model. Mon. Weather Rev., 125, 2293-2315. Arakawa, A., and Lamb, V. (1977) Computational design of the basic dynamical processes of the UCLA General Circulation Model. Methods Comput. Phys., 17, 174-267. Bryan, K. (1969) A numerical model for the study of the circulation of the world ocean. J. Comput. Phys., 4, 347-376. Dukowicz, J. K., Smith, R. D., and Malone, R. C. (1993) A reformulation and implementation of the Bryan-Cox-Semtner ocean model on the connection machine. J. Atmos. Oceanic Technol., 10, 195-208. Dukowicz, J. K. (1995) I don't have this one! Harlow, F. H., and Welch, J. E. (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids, 8, 2182-2189. Holland, W. R., and Lin, L. B. (1975) On the generation of mesoscale eddies and their contribution to the oceanic general circulation I. A preliminary numerical experiment. J. Phys. Oceanogr., 5, 642-657. Jones, H., and Marshall, J. (1993) Convection with rotation in a neutral ocean: a study of open-ocean deep convection. J. Phys. Oceanogr., 23, 1009-1039. Marshall, J., Hill, C., Perelman, L., and Adcroft, A. (1997a) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 5733-5752. Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C. (1997b) A finite volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 5753-5766. Potter, D. (1976) Computational Physics, John Wiley, New York. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vettering, W. T. (1986) Numerical Recipes, Cambridge University Press, New York. Visbeck, M., Marshall, J., Haine, T., and Spall, M. (1997) Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381-402. White, A. A., and Bromley, R. A. (1995) Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force. Q. J. R. Meteorol. Soc., 121, 399-418. Williams, G. P. (1969) Numerical integrations of the three-dimensional Navier-Stokes equations for incompressible flow. J. Fluid Mech., 37, 727-750.  In the hydrostatic primitive equations (HPE) all underlined terms in (1.3.2), (1.3.3) and (1.3.4) are omitted; the singly-underlined terms are included the quasi-hydrostatic model (QH). The fully non-hydrostatic model (NH) includes all terms. Since solid boundaries always coincide with the faces of zones, the imposition of boundary conditions in the formulation of the Elliptic problem presents no problem even in the case of shaved cells; the non-divergence condition (2.2.1) is applied to the zone adjacent to the wall noting that the component of velocity normal to the solid boundary is identically zero. It is readily seen that the inhomogeneous Neumann boundary condition on pressure at the wall of the continuous problem never explicitly enters in to the discrete problem. Rather, information about the boundary is contained in the ‘source function’ in the zone adjacent to the boundary in a manner which is exactly analogous to the continuous problem; there inhomogeneous conditions are replaced with homogeneous conditions together with an interior ( function sheet of ‘source’ adjacent to the boundary - see the discussion in section 3.2 of Marshall et al. 1997a. Note also that Eqs.(2.3.1) and (2.3.2) above are discrete forms of the continuous equations Eqs.(1.5.9) and (1.5.10) of section 1.5.   EMBED Equation.2 has five diagonals corresponding to the coupling of the central point with surrounding points along the four ‘arms’ of the horizontal (2 operator.  If the ocean column is made up of cells stacked up on top of one-another which do not have equal heights (z, then A is not symmetric, but it can easily be symmetrized by pre-multiplying it with a symmetrization matrix W, where  EMBED Equation.2   The name ‘conjugate gradient’ stems from the property that  EMBED Equation.2 ; the search directions on consecutive iterations are conjugate to one another. PAGE  PAGE 5 PAGE 5 PAGE 18 PAGE 1 PAGE 40 PAGE 1 PAGE 52 PAGE  PAGE 54  EMBED Equation.3   EMBED PowerPoint.Show.8  N™Уабпрщъ12345WXrstuvЇЈТУФХЦпрњћќ§ў12345stŽ’“ГДЮћїїђђяшяошяшяшядшяшяшяЪшяшяшяРшяшяшяЖшяшяшяЌшяшяшяЂшяшяшяjюUmHjqUmHjєUmHjwUmHjњUmHj}UmHjUmH jUmHmH jU5CJ 5CJ(=LMN‰Š‹™š›œУФХЯа 6wќќќќќќќќќќќќќќќќќќќќќќњјђђђ ЦЖ!
3 $LMN‰Š‹™š›œУФХЯаѓ 8 h š ѕ $ y Ч Oˆщ#`Гф5h™гŠіUЗ1]_`bopqўџТУ78c#d#Ы(Ь())))):);)<)l)m)з*и*<+=+ +Ё+,,‡,ˆ,н,о,ф,х,H-I-з-и-K.ўўўўўўўўўўўўўўўўўўўўўўўўўќњјјњќњњјјјјјјјњјјјњјјјјјќќіііўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўawЧџ6”дlАэOЮ D { Б № /
4 e
5 Є
6 п
7  t З ѓ 8 љљљљљѓѓљљѓѓэљљѓѓѓѓѓѓѓљѓѓэљэ ЦЖ!
8  ЦЖ!
9  ЦЖ!
10 ЮЯавгдёђѓ JKLfghjkЊЋЌЎЏЬЭчшщыьэњћќ-./IJKMNopŠ‹ŒŽ­ЎѕюыюычыюынюыюычыюыгюыюыюыЩюыюыюыПюыюычыюыЕюыюычыюыЋюыюыюыЁюыюыюjжUmHjYUmHjмUmHj_UmHjтUmHjeUmHjшUmH>*mHmH jUmHjkUmH?ЎШЩЪЬЭъы  
11 " # $ > ? @ B C D Y Z [ u v w y z {   ‘ Ћ Ќ ­ Џ А Б Ю Я а ъ ы ь ю я №
12 
13 
14 )
15 *
16 +
17 -
18 .
19 /
20 C
21 D
22 E
23 _
24 `
25 a
26 §ѓь§ь§ь§ть§ь§о§ь§дь§ь§о§ь§Ъь§ь§о§ь§Рь§ь§о§ь§Жь§ь§о§ь§Ќь§ь§о§ь§ЂьjО
27 UmHjA
28 UmHjФ UmHjG UmHjЪUmHjMUmH>*mHjаUmH jUmHjSUmHmH@a
29 c
30 d
31 e
32 ‚
33 ƒ
34 „
35 ž
36 Ÿ
37  
38 Ђ
39 Ѓ
40 О
41 П
42 й
43 к
44 л
45 н
46 о
47 п
48 љ
49 њ
50 ћ
51       R S T n o p r s – — Б В Г Е Ж в г э ю я ё ђ   2 3 4 6 7 G H b c d f g §і§ђ§і§ші§і§і§оі§і§ђ§і§ді§і§ђ§і§Ъі§і§і§Рі§і§і§Жі§і§і§Ќі§і§і§Ђі§іjІUmHj)UmHjЌ UmHj/ UmHjВ UmHj5 UmHjИ UmHj; UmH>*mH jUmHmH@8 h š ѕ $ y Ч Oˆщ#`Гф5h™гŠіUЗ1]_љѓѓљэљљѓѓѓѓѓѓѓљѓѓѓљѓѓѓѓѓээы ЦЖ!
52  ЦЖ!
53  ЦЖ!
54 g h x y z ” • – ˜ ™ š г д е я № ё ѓ є     " # X Y s t u w x І Ї С Т У Х Ц і ї -./IJKMNOfgh‚ƒ„†‡§љ§ђ§шђ§ђ§љ§ђ§ођ§ђ§ђ§дђ§ђ§ђ§Ъђ§ђ§ђ§Рђ§ђ§ђ§Жђ§ђ§љ§ђ§Ќђ§ђ§љ§ђ§Ђђ§ђjŽUmHjUmHj”UmHjUmHjšUmHjUmHj UmHj#UmH jUmH>*mHmH@‡ˆЧШЩуфхчшщ!"#>?@Z[\^_`‘’“­ЎЏБВГТУФопрту/01345FGHbcdfghwxy“§љ§ђ§шђ§ђ§љ§ђ§ођ§ђ§љ§ђ§дђ§ђ§љ§ђ§Ъђ§ђ§љ§ђ§Рђ§ђ§ђ§Жђ§ђ§љ§ђ§Ќђ§ђ§љ§ђ§jљUmHj|UmHjџUmHj‚UmHjUmHjˆUmHj UmH jUmH>*mHmHB“”•—˜™БВГЭЮЯбвќ§hij„…†ˆ‰Šдеж№ёђєѕі345OPQSTU•–—БВГЕЖЗуфхџѕюыюычыюынюыюыюыгюыюычыюыЩюыюычыюыПюыюычыюыЕюыюычыюыЋюыюычыюыЁюjсUmHjdUmHjчUmHjjUmHjэUmHjpUmHjѓUmH>*mHmH jUmHjvUmH?+,-/0<=WXY[\]^qЦЧклмн-./0”œ]^op˜™­Ў‰Š§і§і§ьі§і§і§ті§і§нжЫжНЎЫжЫж ‘Ыж‰ж|t|ж|t|жЫжCJOJQJjCJOJQJU6CJOJQJjшн‡5
55 CJEHђџOJQJUjшн‡5
56 OJQJUVmHjщн‡5
57 CJEHќџOJQJUjщн‡5
58 OJQJUVmHjCJOJQJU CJOJQJ jUjлUmHj^UmH jUmHmH,_`bopqўџТУ78c#d#Ы(Ь())))):);)<)l)m)з*§§њ§§ѕђяяяяяяяяяяяээы§§щрр$$ ЦT$$$„$žŸ ae#&ГЕќЯ#ю#Ы$Ю$а$в$и$к$Ь())l)m)С)Т)к)л)ц)ч)ђ)ѓ)**и*й*ь*э*ю*я*+ +!+"+3+4+5+6+;+<+=+>+Q+ѕшнжЮжЮжЮжЮжЦжЮжЮжЮжЮжПжЮжЦжЦжЦжДжнжЊнжжнжн”нжжнжCJOJQJmHjECJEHвџOJQJUj"б6
59 UVmH jr№6CJOJQJ CJOJQJ6CJOJQJ5CJOJQJ CJOJQJjCJOJQJUjXCJEHњџOJQJUj>ђа6
60 UVmH5з*и*<+=+ +Ё+,,‡,ˆ,н,о,ф,х,H-I-з-и-K.L.г.д.E/F/0іёьёьёьёьёумуёёййёжййёжй$$$ Ца€ $„а Ца€$$$$$$ ЦTQ+R+S+T+ƒ+„+‰+Š+›+œ++ž+Ÿ+ +Ё+Ђ+Е+Ж+З+И+ї+ќ+§+,,,,,,(,),*,+,k,p,q,‚,ƒ,„,…,ˆ,‰,œ,,ž,яреЮЮеЮеХеЮЮеЮЕІеЮеЮеХеЮЁ—ЁЮеЮеХеЮеЮ€qjdл‡5
61 CJEHєџOJQJUjdл‡5
62 CJOJQJUVmH jЫEHфџUjlб6
63 UVmH jUjgл‡5
64 CJEHфџOJQJUjgл‡5
65 CJOJQJUVmHCJOJQJmH CJOJQJjCJOJQJUjhл‡5
66 CJEHєџOJQJUjhл‡5
67 CJOJQJUVmH,ž,Ÿ,Р,С,Ц,Ч,и,й,к,л,м,н,х,ц,љ,њ,ћ,ќ,+-,-1-2-C-D-E-F-G-H-™-š-­-Ў-Џ-А-е-з-и-й-ь-э-ю-я-../.4.5.F.G.H.I.K.L.z.єээєэєфєэпэєэбТєээєэєфєээєэИЉєэІэŸІ•ŠŸІэєэєфєэІэjbл‡5
68 CJEHрџUjbл‡5
69 UVmH jCJUCJjйYŠ5
70 CJEHіџOJQJUjйYŠ5
71 UVmHjcл‡5
72 CJEHєџOJQJUjcл‡5
73 OJQJUVmHOJQJCJOJQJmH CJOJQJjCJOJQJU4K.L.г.д.E/F/00Y0Z0P1„1…1о1п1L2M233
74 4 4]4^4Л5М5Н5е5ж5ф6х6:7;79 9Q9R9Є9Ѕ9ѕ;і;@<A<ы<ь<I=J=›=œ=ъ=ы=>>?>Џ>Ц>Ч>Ї?Ј?ћ?ќ?Л@М@Н@О@П@Р@С@Т@У@Ф@Х@Ц@Ч@Ш@Щ@Ъ@Ы@Ь@п@р@с@т@у@ф@х@ц@<A=AсAтA!B"BˆB‰BуBфBІCЇCоCпCрC1Dўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўdz.{.|.д.е.ш.щ.ъ.ы.(/)/.///@/A/B/C/D/F/L/M/`/a/b/c/„/…/˜/™/š/›/00,0-0.0/0Y0Z0f0єьхолбЦолхЛхЛВЛхх­Ѕœ­хЛх’…ЛхЛwjЛххjь#CJEHрџOJQJUjЦ‰;8
75 UVmH5CJj!"CJEH№џOJQJUjhб6
76 UVmHjњєˆ5
77 EHђџUjњєˆ5
78 UV jUCJOJQJmHjCJOJQJUjˆєˆ5
79 CJEHшџUjˆєˆ5
80 UVmHCJ jCJU CJOJQJ6CJOJQJ jd№6CJOJQJ'00Y0Z0P1„1…1о1п1L2M233
81 4 4]4^4Л5М5Н5е5ж5ф6х6:7;79 9§њ§§§§ѕђѕђяяя§њњя§§эыяяњ§я§$$$$$f0g0—0˜0Ј0Љ0Њ0Џ0А0Б0111…1†1™1š1›1œ1е1о1п1р1ѓ1є1ѕ1і1/24252F2G2H2I2K2M2S2T2g2h2i2j2l2m2€2іячячнячнячняиЮЧияиНЖияЋяЋЂЋяя™”ˆ{™”™”jUљˆ5
82 EHіџOJQJUjUљˆ5
83 OJQJUVOJQJjOJQJUCJOJQJmHjCJOJQJU jЩ(EHєџUjPŽ;8
84 UVmH j‰&EHіџUj>Ž;8
85 UVmH jU5CJH*OJQJ5CJOJQJ CJOJQJ jW№CJOJQJ,€22‚2ƒ2…2†2™2š2›2œ2ž2Ÿ2В2Г2Д2Е2Ж27383:3;3=3>3@3A3F3G3 4 44 4!4"4”4•4ы4ў4e5j5Н5ж5666ѓцниниЮУниниЙЎниЇŸЇŸЇŸЇŸЇŸЇ”Ї†w”ЇŸЇŸЇoЇЇŸЇ5CJOJQJjVл‡5
86 CJEHєџOJQJUjVл‡5
87 OJQJUVmHjCJOJQJU6CJOJQJ CJOJQJjй,EHєџOJQJUjоŽ;8
88 UVmHj+EHіџOJQJUjЪŽ;8
89 UVmHOJQJjOJQJUjhљˆ5
90 EHєџOJQJUjhљˆ5
91 OJQJUV+6666х6ц6љ6њ6ћ6ќ6A7B788#8$8%8&81828E8F8G8H8Š8‹8ž8Ÿ8 8Ё8R9S9f9g9іяхякяЬНкяЕякяЇ˜кякяŠ{кякяqdкякяVjLл‡5
92 OJQJUVmHjЇ.CJEHіџOJQJUj@98
93 UVmHj]Š5
94 CJEHєџOJQJUj]Š5
95 OJQJUVmHj]Š5
96 CJEHіџOJQJUj]Š5
97 OJQJUVmH5CJOJQJjMл‡5
98 CJEHњџOJQJUjMл‡5
99 OJQJUVmHjCJOJQJU jf№CJOJQJ CJOJQJ jl№CJOJQJ! 9Q9R9Є9Ѕ9ѕ;і;@<A<ы<ь<I=J=›=œ=ъ=ы=>>?>Џ>Ц>Ч>Ї?Ј?ћ?ќ?Л@М@Н@§§њїє§њ§є§њ§§§њ§§§§ђєє§њњє§§$$$g9h9i9А9Н9:‚:2;3;B;C;D;E;b;c;r;s;t;u;z;{;Ž;;;‘;Ы;ж;і;ї;
100 < < < <G<ёцпзпЭпцпПАцпцпЂ“цпцп‰|цпзпцпn_цпjFл‡5
101 CJEHєџOJQJUjFл‡5
102 OJQJUVmHjz0CJEHіџOJQJUjбA98
103 UVmHjJл‡5
104 CJEHєџOJQJUjJл‡5
105 OJQJUVmHjKл‡5
106 CJEHєџOJQJUjKл‡5
107 OJQJUVmH jd№CJOJQJ>*CJOJQJ CJOJQJjCJOJQJUjLл‡5
108 CJEHєџOJQJU!G<H<[<\<]<^<m<n<<‚<ƒ<„<…<<<Ѓ<Є<Ѕ<І<ь<э<ќ<§<ў<џ<A=H=I=J=œ==А=Б=В=Г=іёчміеіёЧКіВеіёЈіе˜Ž‡˜ееtеfWtj#O‰5
109 CJEHшџOJQJUj#O‰5
110 OJQJUVmHjCJOJQJU:CJOJQJ jS6EHіџUjB98
111 UVmH jUjQ4EHєџOJQJUjA98
112 UVmH5CJOJQJjDл‡5
113 EHєџOJQJUjDл‡5
114 OJQJUVmH CJOJQJju2EHєџOJQJUjB98
115 UVmHOJQJjOJQJU"Г=ё=ђ=>>>>?>Џ>Ц>Ч>ѓ>є>?? ?
116 ? ?.?/?1?2?4?5?І?Ј?Љ?М?Н?О?П?ќ?@@@@%@љюљрбюљЩТљЙДІ™ЙДљ‘љ‘љ‘љŽ‡Ž}r‡Žљgљ\љ jl№6CJOJQJ jf№6CJOJQJjєђˆ5
117 CJEHЈџUjєђˆ5
118 UVmH jCJUCJ6CJOJQJjDл‡5
119 EHєџOJQJUjDл‡5
120 OJQJUVmHOJQJjOJQJU CJOJQJ5CJOJQJj"O‰5
121 CJEHєџOJQJUj"O‰5
122 OJQJUVmHjCJOJQJU CJOJQJ$%@&@i@j@@Ё@М@Ь@п@ь@э@ AAAAAA%A&A9A:A=A>AQARASATAоAпAтAуAіAїAјAњA BBї№ц№ї№тктз№ї№ї№ї№Ь№С№Ж№Ј™Ж№Œ№Ж№‚uЖ№gj_л‡5
123 OJQJUVmHjT8CJEHšџOJQJUj%;8
124 UVmHj0JCJOJQJUjaл‡5
125 CJEHђџOJQJUjaл‡5
126 OJQJUVmHjCJOJQJU jl№6CJOJQJ jf№6CJOJQJCJ5CJOJQJ5CJ jW№CJOJQJ CJOJQJ6CJOJQJ$Н@О@П@Р@С@Т@У@Ф@Х@Ц@Ч@Ш@Щ@Ъ@Ы@Ь@п@р@с@т@у@ф@х@ц@<A=AсAтA!B§§§§§§§§§§§§§§§њ§§§§§§§їїїїє$$$BBB"B#B6B7B8B:BMBNBOBPB‰BŠBBžBŸBЁBДBЕBЖBЗBъBыBўBџBCCMCNCaCbCёцпцпеШцпКЋцпцпЁ”цп†wцпцпm`цпцпVj’;8
127 UVmHj(DCJEHєџOJQJUjј‘;8
128 UVmHj[л‡5
129 CJEHіџOJQJUj[л‡5
130 OJQJUVmHj@CJEHxџOJQJUjb‘;8
131 UVmHj]л‡5
132 CJEHіџOJQJUj]л‡5
133 OJQJUVmHj™<CJEHЈџOJQJUjХ;8
134 UVmH CJOJQJjCJOJQJUj_л‡5
135 CJEHіџOJQJU !B"BˆB‰BуBфBІCЇCоCпCрC1D2D„D…DZE[EКEЛEџEF6F7FЦFЧFШFGGйH§њ§њ§§§§§§њњњ§§§§§њњњїї§§ѕ§ї$$bCcCdCоCпCрCсCєCѕCіCїC2D3DFDGDHDID‹DŒDŸD DЁDЂDЄDЅDИDЙDКDЛDНDОDбDвDгDдDжDђчрнрчргЦчрчрМЏчрІЁ•ˆІЁІЁ|oІЁІЁeZІЁj^LEHіџOJQJUjЪŽ;8
136 UVmHjhљˆ5
137 EHєџOJQJUjhљˆ5
138 OJQJUVjUљˆ5
139 EHіџOJQJUjUљˆ5
140 OJQJUVOJQJjOJQJUjJCJEHтџOJQJUjQ’;8
141 UVmHjЮGCJEHтџOJQJUj@’;8
142 UVmHCJ CJOJQJjCJOJQJUjћECJEHєџOJQJU#1D2D„D…DZE[EКEЛEџEF6F7FЦFЧFШFGGйHкHлHII5I6I K KеOжOзOіOїOPP RRiRjRЖRЗRлRмRSSSSTSГSДSьSэSšT›TэTюT­VЎV№VёVїVјV@WAWJYKYwYЏYАYхYцYZZњZћZF[G[N[O[Ž[[3\4\k]l]У]Ф]ы]ь]^^=^>^я^№^6_7_”_•_у_ф_aaLaўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўdжDзDъDыDьDэDюDtEuE‚EƒEЛEМEЯEаEбEвEFFFFFFЅFІFЦFШFGAGBGцGшGлHнHIIIіёчміёеЫеЫеРеЖЉРеРе›ŒРееyеoеgеgеРе5CJOJQJ jЎ№CJOJQJ:CJOJQJ jf№6CJOJQJjWл‡5
143 CJEHтџOJQJUjWл‡5
144 OJQJUVmHjPCJEHтџOJQJUjы’;8
145 UVmHjCJOJQJU jб№CJOJQJ CJOJQJj2NEHєџOJQJUjоŽ;8
146 UVmHOJQJjOJQJU$йHкHлHII5I6I K KеOжOзOіOїOPP RRiRjRЖRЗRлRмRSSSSTS§§§§њ§ї§їїїѕїѓяїї§§њ§§§§§њ§„$$IIII<I=IPIQIRISI~II™IšIуIфIїIјIљIњIJJ2J3J4J5J6JЊJЌJ K KKK<KётзазаТГзаЋаЃаза•†за}xl_}xаЃаWаЃа:CJOJQJj5л‡5
147 EHіџOJQJUj5л‡5
148 OJQJUVOJQJjOJQJUj6л‡5
149 CJEHрџOJQJUj6л‡5
150 OJQJUVmH5CJOJQJ6CJOJQJj7л‡5
151 CJEHіџOJQJUj7л‡5
152 OJQJUVmH CJOJQJjCJOJQJUj8л‡5
153 CJEHцџOJQJUj8л‡5
154 OJQJUVmH!<K=KXKYKkKlKНLОLбLвLгLдLIMKM{M|MоMсMKNMNˆN‹NвNдNќNўN–O—O˜O›OœOЦOЧOзOіOїOPPiPjP‹PŒPŸP PЁPЂP RR(RіячячямяЮПмяЗяіяЏяЗяЗяЗяЗяЅчяšячяя˜ячямяށмя|яOJQJjЎRCJEHњџOJQJUjО“;8
155 UVmH>* jf№6CJOJQJ jW№CJOJQJ>*CJOJQJ5CJOJQJj4л‡5
156 CJEHњџOJQJUj4л‡5
157 CJOJQJUVjCJOJQJU6CJOJQJ CJOJQJ jЎ№CJOJQJ0(R)RMRNRaRbRcRdRjRkR~RR€RRНRСRТRУRФRХRSS S!S"S#SДSЕSШSЩSЪSЫSєэтэдХтэтэЗЈтэ • Š этэ|mтэтэ_Pтj0р‡5
158 CJEHшџOJQJUj0р‡5
159 OJQJUVmHj1р‡5
160 CJEHшџOJQJUj1р‡5
161 OJQJUVmH jf№6CJOJQJ jl№6CJOJQJ6CJOJQJj2р‡5
162 CJEHрџOJQJUj2р‡5
163 OJQJUVmHj3р‡5
164 CJEHіџOJQJUj3р‡5
165 OJQJUVmHjCJOJQJU CJOJQJ jy№6CJOJQJTSГSДSьSэSšT›TэTюT­VЎV№VёVїVјV@WAWJYKYwYЏYАYхYцYZZњZћZF[§§њ§ї§њ§ї§њ§§§њ§їѓѓё§§§њ§їїњ„$$ЫS›TœTЏTАTБTВTЎVЏVТVУVФVХVјVљV W WWWvWwW‡WˆW›WœWWžWXX.X/X0X1XВXГXЦXљюљрбюљюљУДюљюљІ—юљљюљ…xюљюљj[юљюљj,р‡5
166 CJEHіџOJQJUj,р‡5
167 OJQJUVmHj‹TCJEHіџOJQJUj&::8
168 UVmH6CJOJQJj-р‡5
169 CJEHђџOJQJUj-р‡5
170 OJQJUVmHj.р‡5
171 CJEHђџOJQJUj.р‡5
172 OJQJUVmHj/р‡5
173 CJEHєџOJQJUj/р‡5
174 OJQJUVmHjCJOJQJU CJOJQJ#ЦXЧXШXЩXKYwYЏYцYчYіYїYјYљY*Z+Z>Z?Z@ZAZїZњZћZќZ[[[[O[P[c[d[e[ѕшнжЮЬжнжОЏнжнжЁ’нжŠжнж|mнжнж_PjCс‡5
175 CJEHжџOJQJUjCс‡5
176 OJQJUVmHjEс‡5
177 CJEHрџOJQJUjEс‡5
178 OJQJUVmH6CJOJQJjFс‡5
179 CJEHєџOJQJUjFс‡5
180 OJQJUVmHjHс‡5
181 CJEHєџOJQJUjHс‡5
182 OJQJUVmH>*5CJOJQJ CJOJQJjCJOJQJUjƒVCJEHіџOJQJUj@;:8
183 UVmHF[G[N[O[Ž[[3\4\k]l]У]Ф]ы]ь]^^=^>^я^№^6_7_”_•_у_ф_aaLa§§§њ§ї§їїї§њ§§§њ§ї§њ§§§њїї§њ$$e[f[\\j\k\~\\€\\Ÿ\ \Г\Д\Е\Ж\К\Л\Ю\Я\а\б\с\т\ѕ\і\ї\ј\]]0]1]2]єэхэєэзШєэєэКЋєэєэŽєэєэ€qєэєэcTj>с‡5
184 CJEHєџOJQJUj>с‡5
185 OJQJUVmHj?с‡5
186 CJEHіџOJQJUj?с‡5
187 OJQJUVmHj@с‡5
188 CJEHєџOJQJUj@с‡5
189 OJQJUVmHjAс‡5
190 CJEHєџOJQJUjAс‡5
191 OJQJUVmHjBс‡5
192 CJEHіџOJQJUjBс‡5
193 OJQJUVmH5CJOJQJ CJOJQJjCJOJQJU 2]3]:];]N]O]P]Q]Ђ]Ѓ]Ж]З]И]Й]Ф]Х]д]е]ж]з]ђ]ѓ]^^^ ^^^(^)^*^+^@^єэєэпаєэєэТГєэєэЅ–єэˆ|oэєэaRєэj9с‡5
194 CJEHђџOJQJUj9с‡5
195 OJQJUVmHj:с‡5
196 EHіџOJQJUj:с‡5
197 OJQJUVOJQJjOJQJUj;с‡5
198 CJEHьџOJQJUj;с‡5
199 OJQJUVmHj<с‡5
200 CJEHєџOJQJUj<с‡5
201 OJQJUVmHj=с‡5
202 CJEHєџOJQJUj=с‡5
203 OJQJUVmH CJOJQJjCJOJQJU @^E^H^K^Т^У^ж^з^и^й^№^ё^____•_–_Љ_Њ_Ћ_Ќ_ц_щ_.`/`B`C`D`E`S`T`g`h`ї№ї№х№зШх№х№КЋх№х№Žх№ї№х№€qх№х№cj4с‡5
204 OJQJUVmHj5с‡5
205 CJEHєџOJQJUj5с‡5
206 OJQJUVmHj6с‡5
207 CJEHрџOJQJUj6с‡5
208 OJQJUVmHj7с‡5
209 CJEHєџOJQJUj7с‡5
210 OJQJUVmHj8с‡5
211 CJEHєџOJQJUj8с‡5
212 OJQJUVmHjCJOJQJU CJOJQJ5CJOJQJ!h`i`j`г`д`ч`ш`щ`ъ`a aaaaaSaTaUahaiajaka–aŸa aжaзaъaыaьaэabbЃbёцпцпбТцпцпДЅцп — ‰|— п пц n_цпцпj/с‡5
213 CJEHєџOJQJUj/с‡5
214 OJQJUVmHj1с‡5
215 EHєџOJQJUj1с‡5
216 OJQJUVmHjOJQJUOJQJj2с‡5
217 CJEHшџOJQJUj2с‡5
218 OJQJUVmHj3с‡5
219 CJEHњџOJQJUj3с‡5
220 OJQJUVmH CJOJQJjCJOJQJUj4с‡5
221 CJEHєџOJQJU!LaMaSaTa aЁaеaжa/b0bъbыbd€dаdбdзdиd*e+eчeшeщe f fifjfkflfmfofЕfИfМfгf g!g"g€gЉg hghhhihЫhЬhCkDkEkakokpk l lcldl…l†lиlйlбmвm#n$nƒn„nиnйnootouoŸo oъoыorrrryrzrУrФrЬsЭsНtОtuurvsvФvХvx:x;x<xЬyЭyh~ўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўdLaMaSaTa aЁaеaжa/b0bъbыbd€dаdбdзdиd*e+eчeшeщe f fifjfkf§§§њї§§њ§єєє§њ§§§њ§є№єю§є§§„$$$ЃbЄbЅbІbјbљb c cccccЃcЄcЅcІcdd#d$d%d&d7d8d€dd”d•d–d—dиdётзазаТГзазаЅ–зазаˆyзаqазl^Oзаj*с‡5
222 CJEHшџOJQJUj*с‡5
223 OJQJUVmHOJQJ6CJOJQJj+с‡5
224 CJEHєџOJQJUj+с‡5
225 OJQJUVmHj,с‡5
226 CJEHєџOJQJUj,с‡5
227 OJQJUVmHj-с‡5
228 CJEHєџOJQJUj-с‡5
229 OJQJUVmH CJOJQJjCJOJQJUj.с‡5
230 CJEHєџOJQJUj.с‡5
231 OJQJUVmHиdйdьdэdюdяdeeЃeЄeЅeІeЈeГeЕeчeшeщe f4f7f9f;f@fBfmfnf€ff”f•f–f—ffžfБfВfєэпаєэЧТЖЉЧТэТэЅэээээ’эєэ„uєэєэgj&с‡5
232 OJQJUVmHj'с‡5
233 CJEHєџOJQJUj'с‡5
234 OJQJUVmHjOJQJUmH5CJOJQJ>*CJj(с‡5
235 EH№џOJQJUj(с‡5
236 OJQJUVOJQJjOJQJUj)с‡5
237 CJEH№џOJQJUj)с‡5
238 OJQJUVmH CJOJQJjCJOJQJU$kflfmfofЕfИfМfгf g!g"g€gЉg hghhhihЫhЬhCkDkEkakokpk lфффффффффффффффтттпттнлзп„$& #$„„c„е$d%d&d'd/„Д+DQ™ВfГfДfЕfЗfщfьfёfѓfgghgig|g}g~ggБgВgХgЦgЧgШgкgлgюgяg№gёgєgѕgh h
239 h hёцпдпЬпЬпЬпцпОЏцпцпЁ’цпцп„uцпцпgXцj"с‡5
240 CJEHшџOJQJUj"с‡5
241 OJQJUVmHj#с‡5
242 CJEHіџOJQJUj#с‡5
243 OJQJUVmHj$с‡5
244 CJEHшџOJQJUj$с‡5
245 OJQJUVmHj%с‡5
246 CJEHєџOJQJUj%с‡5
247 OJQJUVmH5CJOJQJjOJQJUmH CJOJQJjCJOJQJUj&с‡5
248 CJEHрџOJQJU" hhh(h)h*h+hOhPhchdhehfhghhhihnhˆhhЁhЅhКhОhЫh№hђhјhћhDiEiЬiЮiYj[jЗjИjЙj=kAkCkakokpkљюљрбюљюЬОЏюљЬљЇ Ї Ї Ї љ˜љ˜љљ˜љ˜љ…{љ˜љy>* jЎ№CJOJQJ6CJOJQJ jf№6CJOJQJ5CJOJQJ CJOJQJ5CJOJQJj с‡5
249 CJEHшџOJQJUj с‡5
250 OJQJUVmHOJQJj!с‡5
251 CJEHрџOJQJUj!с‡5
252 OJQJUVmHjCJOJQJU CJOJQJ*pkqkъkыkўkџkll ll!l"l#l$ljlkl†l‡lšl›lœllпlрlѓlєlѕlіlћlќlmmmmвmгmцmђырыжЩрырыПВрыЊыры “рыры‰|рырыreрырыjЮ`CJEHєџOJQJUjУœ;8
253 UVmHjё^CJEHєџOJQJUjЂœ;8
254 UVmHjЎ\CJEHєџOJQJUj“;8
255 UVmH5CJOJQJjBZCJEHрџOJQJUjяеD8
256 UVmHjrXCJEHђџOJQJUjš;8
257 UVmHjCJOJQJU CJOJQJjCJOJQJUmH$ l lcldl…l†lиlйlбmвm#n$nƒn„nиnйnootouoŸo oъoыorrrryr§њ§ї§њ§ї§њ§§§њ§§§њ§§§њ§їїѕ§ї$$цmчmшmщm*n+n>n?n@nAnhnin„n…n˜n™nšn›nпnрnѓnєnѕnіnoo1o2o3o4o{o|o oЁoДoЕoѕшнжнжЬПнжЗжнж­ нжнж–‰нжнжrнжЗжнжhjЋЂ;8
258 UVmHjГjCJEHшџOJQJUjжD8
259 UVmHjуhCJEHєџOJQJUjћ ;8
260 UVmHjгfCJEHєџOJQJUjЏ ;8
261 UVmH6CJOJQJjeCJEHђџOJQJUj2Ÿ;8
262 UVmH CJOJQJjCJOJQJUjЅbCJEHрџOJQJUjжD8
263 UVmH#ЕoЖoЗoёoђopppp0p1p6p7p$q%q8q9q:q;q=q>qQqRqSqTq\q]qpqqqrqsqxqyqŒqqŽqqrrђчрчржЩчрСрСрчрЗЊчрчр “чрчр‰|чрчрreчрc>*jљvCJEHєџOJQJUj…І;8
264 UVmHjuCJEHіџOJQJUjlІ;8
265 UVmHjџrCJEHєџOJQJUj0І;8
266 UVmHjпpCJEHєџOJQJUj№Ѕ;8
267 UVmH6CJOJQJjoCJEHђџOJQJUjVЃ;8
268 UVmH CJOJQJjCJOJQJUjвlCJEHђџOJQJU&yrzrУrФrЬsЭsНtОtuurvsvФvХvx:x;x<xЬyЭyh~i~j~‡~ˆ~67§њ§їїї§њ§ї§њ§їєђђээїээъцэц„$$„$$$rzr{rŽrrr‘rЪrЫrоrпrрrсrцrчrњrћrќr§r@sAsTsUsVsWsОtПtвtгtдtеtu uuuuu<u=uPuљюљфзюљюљЭРюљюљЖЉюљюљŸ’юљюљˆ{юљюљqdюљюљjИƒCJEHђџOJQJUjЏ;8
269 UVmHjCJEHђџOJQJUj%Ў;8
270 UVmHj(CJEHіџOJQJUjEзD8
271 UVmHjL}CJEHєџOJQJUj4зD8
272 UVmHjo{CJEHєџOJQJUj(зD8
273 UVmHjаxCJEHшџOJQJUjќжD8
274 UVmHjCJOJQJU CJOJQJ'PuQuRuSuvv2v3v4v5vsvtv‡vˆv‰vŠvЫvЬvпvрvсvтvчvшvћvќv§vўvx<xЙzМzСzУz№zђz_{a{е{ж{щ{ѕшнжнжЬПнжнжЕЈнжнжž‘нжнж‡zнжжrжrжrжrжнж5CJOJQJj‘CJEHєџOJQJUjмА;8
275 UVmHjТ‹CJEHєџOJQJUjНА;8
276 UVmHj5‰CJEHЮџOJQJUjА;8
277 UVmHj_‡CJEHђџOJQJUjЏ;8
278 UVmH CJOJQJjCJOJQJUjŽ…CJEHіџOJQJUjEЏ;8
279 UVmH(щ{ъ{ы{ь{||||||:|;|N|O|P|Q|˜|™|Ќ|­|Ў|Џ|}Ÿ}ї}ћ}g~h~ˆ~—~˜~ж~з~ётзазаТГзазаЅ–зазаˆyзаqаqаiа_аT jD№6CJOJQJ jЎ№CJOJQJ:CJOJQJ5CJOJQJjфн‡5
280 CJEHєџOJQJUjфн‡5
281 OJQJUVmHjхн‡5
282 CJEHєџOJQJUjхн‡5
283 OJQJUVmHjцн‡5
284 CJEHіџOJQJUjцн‡5
285 OJQJUVmH CJOJQJjCJOJQJUjчн‡5
286 CJEHєџOJQJUjчн‡5
287 OJQJUVmH h~i~j~‡~ˆ~67mnЙК € €X€Y€е€ж€СТ‚‚ыƒьƒF„G„z„{„9…:…-†.†/†1†w†z†}††€†Т†J‡K‡}‡Ч‡Ш‡Щ‡ћ‡ќ‡ˆˆАŒфх8Ž9ŽQŽRŽНО !5‘6‘f‘g‘c’d’ “!“;“<“†“‡“Ÿ“ “z”{”Њ”Ћ”[–\–r–s–‡˜ˆ˜А˜Б˜с˜т˜5™6™†™‡™ВšГšљš_›`›ўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўdз~и~78KLMNno‚ƒ„…КЛЮЯаб €€!€"€#€$€…€†€­€Б€Ж€И€б€г€х€ц€љ€ї№х№зШх№х№КЋх№х№Žх№х№€qх№ї№i№i№i№х№5CJOJQJjљ“\3
288 CJEHкџOJQJUjљ“\3
289 OJQJUVmHjC“\3
290 CJEHшџOJQJUjC“\3
291 OJQJUVmHjn’\3
292 CJEHшџOJQJUjn’\3
293 OJQJUVmHjP‘\3
294 CJEHшџOJQJUjP‘\3
295 OJQJUVmHjCJOJQJU CJOJQJ6CJOJQJ$7mnЙК € €X€Y€е€ж€СТ‚‚ыƒьƒF„G„z„{„9…:…-†.†ќњќњќњќњѕѕѕњђюѕѕѕѕыњшњѕњ$$„$$„$љ€њ€ћ€ќ€БВЗИТУжзийP‚Q‚Z‚[‚s‚t‚‡‚ˆ‚‰‚Š‚љ‚њ‚8ƒ9ƒG„H„[„\„]„^„b„яреЮЦЮЦЮЦЮеЮИЉеЮžЮЦЮеЮŽеЮžЮyЮеЮk\еЮjюSШ3
296 CJEHтџOJQJUjюSШ3
297 OJQJUVmH5CJOJQJj_CJEHьџOJQJUjњХ?8
298 CJOJQJUVmH je№6CJOJQJj„Ÿ\3
299 CJEHфџOJQJUj„Ÿ\3
300 OJQJUVmH6CJOJQJ CJOJQJjCJOJQJUjШœ\3
301 CJEHњџOJQJUjШœ\3
302 CJOJQJUVmH$b„c„v„w„x„y„„‚„Ф„Х„й„к„л„
303 … ………t…w…y…{…€…‚…/†0†B†C†V†W†X†Y†^†_†r†s†t†u†w†єэпаєэШэОэГШэГэШэШэШэШэЈэŸšŒŸэєэqbєэjrŽн3
304 CJEHцџOJQJUjrŽн3
305 OJQJUVmHjtŽн3
306 EH№џOJQJUjtŽн3
307 OJQJUVmHOJQJjOJQJUjOJQJUmH je№6CJOJQJ jD№CJOJQJ5CJOJQJj^TШ3
308 CJEHшџOJQJUj^TШ3
309 OJQJUVmH CJOJQJjCJOJQJU%.†/†1†w†z†}††€†Т†J‡K‡}‡Ч‡Ш‡Щ‡ћ‡ќ‡ˆˆАŒфттттттттттФттТЛЛИЖГЌ$$„а$$$„@&$& „ #$„„c„е$d%d&d'd/„Д+DQ™& „ #$„„c„е$d%d&d'd/„Д+DQ™w†x†y†˜†›† †Ђ†П†С†‡ ‡‡‡‡‡%‡&‡9‡:‡;‡<‡K‡L‡_‡`‡a‡c‡v‡w‡x‡y‡}‡~‡‘‡’‡јэцоцоцоцгцХЖгцгцЈ™гцгц‚гцteгцгцWj>Б]3
310 OJQJUVmHjAБ]3
311 CJEHіџOJQJUjAБ]3
312 OJQJUVmHj_‘CJEHђџOJQJUjЭЎЎ6
313 UVmHjBБ]3
314 CJEH№џOJQJUjBБ]3
315 OJQJUVmHjCБ]3
316 CJEHцџOJQJUjCБ]3
317 OJQJUVmHjCJOJQJU5CJOJQJ CJOJQJjOJQJUmH jUmH"’‡“‡”‡Џ‡А‡У‡Ф‡Х‡Ц‡Ч‡Ш‡Щ‡Я‡р‡у‡х‡ч‡ь‡я‡ќ‡ˆW‰X‰k‰l‰m‰n‰}‰~‰‘‰’‰“‰”‰‰ž‰Т‰У‰Ш‰Щ‰IŠKŠNŠёцпцкЬНцпкпЕпЕпЕпЕппцxцпцпˆ{цпqпiпiпiп6CJOJQJ jJ№CJOJQJjT–CJEHќџOJQJUju~Ъ6
318 CJOJQJUVmHj…”CJEHќџOJQJUjH~Ъ6
319 CJOJQJUVmH5CJOJQJjЕ]3
320 CJEHшџOJQJUjЕ]3
321 OJQJUVmHOJQJ CJOJQJjCJOJQJUj>Б]3
322 CJEHшџOJQJU)NŠPŠVŠXŠиŠйŠъŠыŠўŠџŠ‹‹‹‹%‹&‹9‹:‹;‹<‹W‹X‹d‹e‹x‹y‹z‹{‹АŒБŒЬŒЭŒЮŒЯŒдŒРСУФЩЪ9ŽQŽqŽrŽtŽї№ї№ї№х№еЦх№ї№х№МЏх№ї№х№Ѕ˜х№х№Žƒх{№ї№ї№ї№y№ї№>*5CJOJQJjœCJOJQJUj
323 б6
324 UVmHjšCJEHіџOJQJUj†cа6
325 UVmHj2˜CJEHђџOJQJUj‹cа6
326 UVmHjЌœŠ5
327 CJEHєџOJQJUjЌœŠ5
328 CJOJQJUVmHjCJOJQJU CJOJQJ6CJOJQJ-фх8Ž9ŽQŽRŽНО !5‘6‘f‘g‘c’d’ “!“;“<“†“‡“Ÿ“ “њњњјіѓі№іііэіѓі№ѓѓіѓіэіііэі$$$$@&tŽuŽwŽxŽ}Ž~ŽŽŽŽОПвгде 789:>?@cp6‘7‘J‘K‘L‘M‘m‘n‘‘єэхэхэхэкэЬНкэкэГІкэ›‘‰э›‘эхэкэ{lкэкэjTl3
329 CJEHшџOJQJUjTl3
330 OJQJUVmHCJH*OJQJ6CJH*OJQJ jd№6CJOJQJjуЪCJEHєџOJQJUj~ч?8
331 UVmHjзj3
332 CJEH№џOJQJUjзj3
333 OJQJUVmHjCJOJQJU6CJOJQJ CJOJQJ jr№6CJOJQJ%‘‚‘ƒ‘„‘С‘Т‘е‘ж‘з‘и‘—’˜’§’ў’!“"“5“6“7“8“B“C“V“W“X“Y“‡“ˆ“›“œ““ž“ ”ётзазаЦЙзаБаЉаза›Œзаза~oзазаaRзаjїПa3
334 CJEHшџOJQJUjїПa3
335 OJQJUVmHjЧд3
336 CJEHќџOJQJUjЧд3
337 OJQJUVmHjљПa3
338 CJEHєџOJQJUjљПa3
339 OJQJUVmH6CJOJQJ5CJOJQJjlЭCJEHњџOJQJUjmeа6
340 UVmH CJOJQJjCJOJQJUjœTl3
341 CJEH№џOJQJUjœTl3
342 OJQJUVmH ” ”””-”.”/”0”P”Q”d”e”f”g”{”|”””‘”’”Е”Ж”Щ”Ъ”Ы”Ь”ь”э” ••••`•a•‚•ƒ•–•—•ї№х№зШх№х№КЋх№х№Žх№х№€qх№ї№ї№ї№ї№х№gj™eа6
343 UVmHj‰v3
344 CJEHіџOJQJUj‰v3
345 OJQJUVmHjюлj3
346 CJEHшџOJQJUjюлj3
347 OJQJUVmHjTŽд3
348 CJEHіџOJQJUjTŽд3
349 OJQJUVmHjєПa3
350 CJEHіџOJQJUjєПa3
351 OJQJUVmHjCJOJQJU CJOJQJ6CJOJQJ% “z”{”Њ”Ћ”[–\–r–s–‡˜ˆ˜А˜Б˜с˜т˜5™6™†™‡™ВšГšљš_›`›x›y›—›˜›ќќљїќїѕїќїљїїїљїїїќїююїыїїш@&$$ Ц8$$—•˜•™•Ч•Ш•л•м•н•о•––0–1–2–3–[–\–r–t—u—ˆ—‰—Š—‹—%˜&˜9˜:˜;˜<˜M˜N˜ˆ˜‰˜œ˜ђчрчрвУчрчрЙЌчрЂ рчр’ƒчрчрufчр\рчр jЎ№CJOJQJj№Пa3
352 CJEHєџOJQJUj№Пa3
353 OJQJUVmHjЪWl3
354 CJEHјџOJQJUjЪWl3
355 OJQJUVmH>*56CJOJQJjбCJEHњџOJQJUjЗeа6
356 UVmHjѕŽд3
357 CJEHќџOJQJUjѕŽд3
358 OJQJUVmH CJOJQJjCJOJQJUjJЯCJEHшџOJQJU"œ˜˜ž˜Ÿ˜И˜Й˜т˜у˜і˜ї˜ј˜љ˜К™Л™Ю™Я™а™б™е™ж™щ™ъ™ы™ь™э™њ™ћ™ššётзаХазаЗЈзаŸšŒŸаŸšqdŸšазаVjиФ{5
359 OJQJUVmHj­ѕj3
360 EHіџOJQJUj­ѕj3
361 OJQJUVmHj’ѕj3
362 EHіџOJQJUj’ѕj3
363 OJQJUVmHOJQJjOJQJUj<Yl3
364 CJEHњџOJQJUj<Yl3
365 OJQJUVmH jО№CJH*OJQJ CJOJQJjCJOJQJUj˜лj3
366 CJEHфџOJQJUj˜лj3
367 OJQJUVmHššš&š+šZš[šnšošpšqšušvš‰šŠš‹šŒš`›a›t›u›v›w›˜›­›
368 œ œ0œ1œDœEœFœGœXœYœlœёцпзпцпЩКцпцпЌцпцп€цп~пtпцпj]цпцпj{гCJEHоџOJQJUjЎъ?8
369 UVmH jЎ№CJOJQJ>*jгio3
370 CJEHцџOJQJUjгio3
371 OJQJUVmHj%Х{5
372 CJEHіџOJQJUj%Х{5
373 OJQJUVmHjVХ{5
374 CJEHіџOJQJUjVХ{5
375 OJQJUVmH6CJOJQJ CJOJQJjCJOJQJUjиФ{5
376 CJEHіџOJQJU#`›x›y›—›˜›­›Ў›/œ0œQœRœЩœЪœтуžž;ž<ž{ž|žяŸ№Ÿ  U V Š ‹ І Ї з и  Ё Ё‡ЁˆЁЕЁЖЁЫЁЬЁ\Є]Є‚ЄƒЄ0Ѕ1ЅOЅPЅxІ{І“І”ІЇ‚ЇЗЇИЇЙЇгЇдЇPЉQЉlЉmЉ}Љ~Љ}Ћ~ЋТЋУЋЩЋЌЌg­h­Ѓ­Є­М­Н­IАJАІАЇАјАљА§ВўВ*Е+Е=Е>ЕъЖыЖ7З8ЗЫЙЬЙфЙхЙџКЛўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўd˜›­›Ў›/œ0œQœRœЩœЪœтуžž;ž<ž{ž|žяŸ№Ÿ  U V Š ‹ І Ї з §ћјјѕћюююћ§ћћћѕћјћ§ћћћѕћћћѕ$ ЦД$$lœmœnœoœуž<ž=žPžQžRžSžНžОžбžвžгžдžŸŸяŸ№Ÿ  U V W j k l m Ї Ј Л М Н О н ѕцлдвдлдФЕлдл䯘лддвдлд†yлдлдobлдjOкCJEHфџOJQJUj~жD8
377 UVmHj1зCJEHшџOJQJUjŽы?8
378 UVmH>*CJOJQJj•v3
379 CJEHіџOJQJUj•v3
380 OJQJUVmHj…[l3
381 CJEHмџOJQJUj…[l3
382 OJQJUVmH>* CJOJQJjCJOJQJUjpo3
383 CJEHіџOJQJUjpo3
384 UVmH%з и  Ё Ё‡ЁˆЁЕЁЖЁЫЁЬЁ\Є]Є‚ЄƒЄ0Ѕ1ЅOЅPЅxІ{І“І”ІЇ‚ЇЗЇИЇЙЇгЇ§§§њііђ№§њњњњњњ№§њ§э§њ§§§§ы$„„$н о ё ђ ѓ є і  Ё ЁWЁXЁkЁlЁmЁnЁ‡ЁˆЁЕЁЖЁЫЁ]Є‚Є0Ѕ1ЅOЅPЅ{І|ІІІ‘І’І€ЇЇ‚ЇЗЇгЇjЈkЈoЈpЈЩЈЪЈQЉіёхиіёбЩбОбАЁОб•“б•б“ЩбОб…vОбёб•бnбnбnб6CJOJQJjъP‰5
385 CJEHрџOJQJUjъP‰5
386 OJQJUVmH>*5CJOJQJ>*CJjAv3
387 CJEHњџOJQJUjAv3
388 OJQJUVmHjCJOJQJU>*CJOJQJ CJOJQJjПюЃ3
389 EHњџOJQJUjПюЃ3
390 OJQJUVOJQJjOJQJU+гЇдЇPЉQЉlЉmЉ}Љ~Љ}Ћ~ЋТЋУЋЩЋЌЌg­h­Ѓ­Є­М­Н­IАJАІАЇАјАљА§ВўВ§њ§ј§§§њњѕ§§ѕ§њ§§њђ§њњњ§ѕ§њ§$$$QЉlЉmЉ}Љ“Њ”Њ[Ћ\ЋoЋpЋqЋrЋzЋ{Ћ~ЋЋ’Ћ“Ћ”Ћ•ЋЩЋЪЋнЋоЋпЋрЋЌЌЌЌЌЌ#Ќ$Ќ7Ќ8Ќ§іюіюіуіеЦуіЙіуіЏЂуіуі”…уіуіwhуіуіZjXж{5
391 OJQJUVmHjYж{5
392 CJEHіџOJQJUjYж{5
393 OJQJUVmHjZж{5
394 CJEHвџOJQJUjZж{5
395 OJQJUVmHj˜нCJEHоџOJQJUjзю?8
396 UVmHj0JCJOJQJUj\ж{5
397 CJEHєџOJQJUj\ж{5
398 OJQJUVmHjCJOJQJU6CJOJQJ CJOJQJ>*#8Ќ9Ќ:ЌWЌXЌkЌlЌmЌnЌсЌтЌуЌфЌхЌ­­­­Є­Ѕ­И­Й­К­Л­а­б­ф­х­ц­ч­ш­ЮЎЯЎтЎёцпцпбТцпЗЏпЇпЇпЇпцп™Šцп|na|пцпjUж{5
399 EHюџOJQJUjUж{5
400 OJQJUVmHOJQJjOJQJUjVж{5
401 CJEHшџOJQJUjVж{5
402 OJQJUVmHCJH*OJQJ6CJOJQJ jD№6CJOJQJjWж{5
403 CJEHрџOJQJUjWж{5
404 OJQJUVmH CJOJQJjCJOJQJUjXж{5
405 CJEHіџOJQJU!тЎуЎфЎхЎЇАЈАЛАМАНАОАџАББББББ?Б@БMБNБaБbБcБdБeБhБiБjБ}Б~ББётзазаЦЙзаАЋŸ’АЋа…аАЋwjАЋаЋАЋ^QjNж{5
406 EHєџOJQJUjNж{5
407 OJQJUVjQж{5
408 EHєџOJQJUjQж{5
409 OJQJUVmHj0JCJOJQJUjRж{5
410 EHєџOJQJUjRж{5
411 OJQJUVOJQJjOJQJUjзрCJEHЮџOJQJUj%№?8
412 UVmH CJOJQJjCJOJQJUjTж{5
413 CJEHіџOJQJUjTж{5
414 OJQJUVmHБ€ББНБОБбБвБгБдБ В
415 ВВВВ ВАГГГНГОГ5Д‘Д*Е+Е=Е>ЕžЕŸЕВЕГЕДЕЕЕЩЕЮЕdЖіёъпъбТпъпъДЅпъъъ•ъ•ƒъпъufпъ^ъ>*CJOJQJjJж{5
416 CJEHєџOJQJUjJж{5
417 OJQJUVmH6>*CJOJQJ5CJOJQJ6CJOJQJ5CJOJQJjLж{5
418 CJEHєџOJQJUjLж{5
419 OJQJUVmHjMж{5
420 CJEHєџOJQJUjMж{5
421 OJQJUVmHjCJOJQJU CJOJQJOJQJjOJQJU!ўВ*Е+Е=Е>ЕъЖыЖ7З8ЗЫЙЬЙфЙхЙџКЛММНМњМћМrОsОcТdТœТТ‰УŠУгУќњњњќњїќќњєњќќќњїњќќќ№юњќњњ„$$$dЖeЖfЖoЖpЖƒЖ„Ж…Ж†ЖыЖьЖџЖЗЗЗ>З?ЗRЗSЗTЗUЗ\З]ЗpЗqЗrЗsЗuЗwЗxЗƒЗ„ЗЫЗЬЗіьхкхаУкхкхЕІкхкх˜‰кх€{ob€{х{хUхкj0JCJOJQJUjFж{5
422 EHєџOJQJUjFж{5
423 OJQJUVOJQJjOJQJUjGж{5
424 CJEHєџOJQJUjGж{5
425 OJQJUVmHjHж{5
426 CJEHЮџOJQJUjHж{5
427 OJQJUVmHjEуCJEHшџOJQJUjл№?8
428 UVmHjCJOJQJU CJOJQJ6CJH*OJQJ jб№CJOJQJ!ЬЗпЗрЗсЗтЗИИИИИИ#И$И7И8И9И:ИAИBИCИУИФИзИиИйИкИ=Й>ЙQЙRЙљымбљбљУДбљбљІ—бљ…љбљwhбљбљZj@ж{5
429 OJQJUVmHjAж{5
430 CJEHђџOJQJUjAж{5
431 OJQJUVmH6CJOJQJ jД№CJOJQJjBж{5
432 CJEHєџOJQJUjBж{5
433 OJQJUVmHjCж{5
434 CJEHєџOJQJUjCж{5
435 OJQJUVmHjCJOJQJUjEж{5
436 CJEHњџOJQJUjEж{5
437 OJQJUVmH CJOJQJRЙSЙTЙЬЙЭЙрЙсЙтЙуЙыЙьЙКК7К8КfКgКzК{К|К}КК€К“К”К•К–КЛЛЛЛЛЛаЛјЛёцпцпбТцпКпКпКпБЌž‘БпцпƒtцпцпfWцпКj<ж{5
438 CJEHєџOJQJUj<ж{5
439 OJQJUVmHj=ж{5
440 CJEHєџOJQJUj=ж{5
441 OJQJUVmHj>ж{5
442 EH№џOJQJUj>ж{5
443 OJQJUVmHOJQJjOJQJU6CJOJQJj?ж{5
444 CJEHєџOJQJUj?ж{5
445 OJQJUVmH CJOJQJjCJOJQJUj@ж{5
446 CJEHєџOJQJU"јЛNМjМНМОМбМвМгМдМ Н НН Н!Н"НIНJН]Н^Н_Н`НcНfНˆН‰НœННžНŸНЂНЃНЈНЉНПНРНгНдНљёљцљиЩцљцљЛЌцљцљžцљ‡љцљyjцљ‡љ‡љцљ\j7ж{5
447 OJQJUVmHj8ж{5
448 CJEHєџOJQJUj8ж{5
449 OJQJUVmH5CJOJQJj9ж{5
450 CJEHјџOJQJUj9ж{5
451 OJQJUVmHj:ж{5
452 CJEHєџOJQJUj:ж{5
453 OJQJUVmHj;ж{5
454 CJEHrџOJQJUj;ж{5
455 OJQJUVmHjCJOJQJU6CJOJQJ CJOJQJ$ЛММНМњМћМrОsОcТdТœТТ‰УŠУгУдУgФhФ˜Ф™ФYЧZЧ€ЧЧ(Ш)ШAШBШЭШЮШЩЩ%Щ&Щ>Щ?ЩdЩeЩ}Щ~ЩчЩшЩЪЪnЫoЫЋЫЌЫоЫпЫЪЬЫЬdЮeЮuЮvЮЊЮЋЮУЮФЮ+а,аDаEа‡бˆбђбѓб в вMв–в—вЗвИв гг&г'гeгfгЅгІг0д1дCдDдїдјд;е<еЂеЃеЛеМежж1ж2ж>з?зWзўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўdдНеНжНфНхНјНљНњНћН§Н+О,О?О@ОAОBО‹ОŒОŸО ОЁОЂОXПYПlПmПnПoПpПqПrП…ПёцпжбХИжбпцпЊ›цпцп~цпцпpaцпWцп jЛ№CJOJQJj1ж{5
456 CJEHєџOJQJUj1ж{5
457 OJQJUVmHj2ж{5
458 CJEHєџOJQJUj2ж{5
459 OJQJUVmHj4ж{5
460 CJEHіџOJQJUj4ж{5
461 OJQJUVmHj6ж{5
462 EHіџOJQJUj6ж{5
463 OJQJUVOJQJjOJQJU CJOJQJjCJOJQJUj7ж{5
464 CJEHіџOJQJU…П†П‡ПˆППŽПЁПЂПЃПЄПРПСПфПхПРРРР#Р$Р%Р&РIРJРrРsДЕРЯРаРуРфРхРцРєРјРС СаСбСфСётзазаТГзаЋаЋаЋазаŽза†аЋа†азаxiза†аЋазаj–U~5
465 CJEHєџOJQJUj–U~5
466 OJQJUVmH6CJOJQJj-ж{5
467 CJEHцџOJQJUj-ж{5
468 OJQJUVmH5CJOJQJj‰U~5
469 CJEHєџOJQJUj‰U~5
470 OJQJUVmH CJOJQJjCJOJQJUj/ж{5
471 CJEHјџOJQJUj/ж{5
472 OJQJUVmH(фСхСцСчСТТ+Т,Т-Т.ТcТdТœТЁУЂУЉУЊУЏУАУФФ%Ф&Ф'Ф(ФlФmФЧФШФ,Х-Х€ХХвХгХдХЦЦЦЦњЦћЦЧЧ6Ч7Ч9Ч:ЧётзазаТГзаЏ­аЅаЅаЅаза—ˆзаЅаЅаЅаЅа€xа€аЅаЅаЅаЅаЅCJH*OJQJ6CJOJQJj)ж{5
473 CJEHіџOJQJUj)ж{5
474 OJQJUVmH5CJOJQJ>*>*CJjЇU~5
475 CJEHєџOJQJUjЇU~5
476 OJQJUVmH CJOJQJjCJOJQJUj U~5
477 CJEHєџOJQJUj U~5
478 OJQJUVmH/гУдУgФhФ˜Ф™ФYЧZЧ€ЧЧ(Ш)ШAШBШЭШЮШЩЩ%Щ&Щ>Щ?ЩdЩeЩ}Щ~ЩчЩшЩЪ§њ§§§ї§§§ї§є§§§§§§§є§§§є§§§є$$$:ЧПЧРЧхЧцЧёЧђЧШШШШ)Ш*Ш=Ш>Ш?Ш@ШHШIШ\Ш]Ш^Ш_ШvШxШyШzШ{ШЩЩЩЩЩЩ&Щ'Щ:ЩљёљёљцљиЩцљцљЛЌцљцљžцљёљ…ёљцљwhцљцљj%ж{5
479 CJEHрџOJQJUj%ж{5
480 OJQJUVmH jЎ№CJOJQJj&ж{5
481 CJEHњџOJQJUj&ж{5
482 OJQJUVmHj'ж{5
483 CJEHєџOJQJUj'ж{5
484 OJQJUVmHj(ж{5
485 CJEHќџOJQJUj(ж{5
486 OJQJUVmHjCJOJQJU5CJOJQJ CJOJQJ$:Щ;Щ<Щ=ЩMЩ]ЩeЩfЩyЩzЩ{Щ|Щ…Щ”Щ›ЩœЩЃЩЄЩшЩщЩќЩ§ЩўЩџЩЊЪЋЪОЪПЪРЪСЪєЪѕЪoЫётзаШазаКЋзаШаЃаЃаза•†зазаxiза\аj0JCJOJQJUj!ж{5
487 CJEHіџOJQJUj!ж{5
488 OJQJUVmHj"ж{5
489 CJEHтџOJQJUj"ж{5
490 OJQJUVmH5CJOJQJj#ж{5
491 CJEHіџOJQJUj#ж{5
492 OJQJUVmH6CJOJQJ CJOJQJjCJOJQJUj$ж{5
493 CJEHњџOJQJUj$ж{5
494 OJQJUVmH ЪЪnЫoЫЋЫЌЫоЫпЫЪЬЫЬdЮeЮuЮvЮЊЮЋЮУЮФЮ+а,аDаEа‡бˆбђбѓб в§њ§ї§§§њњњ§§§§§є§њ§є§яыяяц$„„$„$$$oЫpЫƒЫ„Ы…Ы†ЫЃЫБЫИЫ;Ь<ЬAЬBЬэЬюЬЖЭЗЭЙЭeЮuЮЋЮЌЮПЮРЮСЮТЮSЯTЯVЯpЯqЯ„Я…Я†Я‡ЯХЯЦЯйЯіёужіёЯЧЯЧЯЧЯЧЯЧПЯЗЯЌЯžЌЯЧ…ЯЌЯwhЌЯЌЯjж{5
495 CJEHњџOJQJUjж{5
496 OJQJUVmH5CJH*OJQJjж{5
497 CJEHіџOJQJUjж{5
498 OJQJUVmHjCJOJQJU6CJOJQJCJH*OJQJ5CJOJQJ CJOJQJj ж{5
499 EHbџOJQJUj ж{5
500 OJQJUVmHOJQJjOJQJU%йЯкЯлЯмЯ,а-а@аAаBаCаxаyаŒааŽаа,б-бѓбєбвв в
501 ввв&в'в(в)вyвётзазаТГзазаЅ–заŽаза€qзазаcTзаjж{5
502 CJEHюџOJQJUjж{5
503 OJQJUVmHjж{5
504 CJEHмџOJQJUjж{5
505 OJQJUVmH5CJOJQJjж{5
506 CJEHіџOJQJUjж{5
507 OJQJUVmHjж{5
508 CJEHшџOJQJUjж{5
509 OJQJUVmH CJOJQJjCJOJQJUjж{5
510 CJEHњџOJQJUjж{5
511 OJQJUVmH в вMв–в—вЗвИв гг&г'гeгfгЅгІг0д1дCдDдїдјд;е<еЂеЃеЛеМежжћћћћјіііјіііѓі№і№№№№ѓіііјііі$$$„yвzввŽввв—в˜вЋвЌв­вЎвывьвџвгггггг"г#г$г%гfгgгzг{г|г~г‘гіёужіЯФЯЖЇФЯіё›ŽіёЯФЯ€qФЯФЯcTФЯjж{5
512 CJEHіџOJQJUjж{5
513 OJQJUVmHjж{5
514 CJEHшџOJQJUjж{5
515 OJQJUVmHjж{5
516 EH№џOJQJUjж{5
517 OJQJUVjж{5
518 CJEHкџOJQJUjж{5
519 OJQJUVmHjCJOJQJU CJOJQJjж{5
520 EHіџOJQJUjж{5
521 OJQJUVmHOJQJjOJQJU‘г’г“г”г1дCдцдчд
522 е еее е!еhеiеnеoе˜е™еЃеЄеЗеИеЙеКеЦеЧекелеменечеётзаШаРазаВЃза˜ааРазаpзазаbSзаjж{5
523 CJEHќџOJQJUjж{5
524 OJQJUVmHjж{5
525 CJEHќџOJQJUjж{5
526 OJQJUVmH jb№6CJOJQJ ja№6CJOJQJjж{5
527 CJEHtџOJQJUjж{5
528 OJQJUVmH5CJOJQJ6CJOJQJ CJOJQJjCJOJQJUjж{5
529 CJEHкџOJQJUjж{5
530 OJQJUVmH чешежж-ж.ж/ж0ж[ж\ж^жжж’жжжзж/з0з?з@зSзTзUзVзaзeзmзnзз‘зЧзШзззизйзкзозпзюзяз№зёзї№х№зШх№їР№їР№ї№ї№х№ВЃх№ї№ї№ї№х№•†х№х№xiхj ж{5
531 CJEHОџOJQJUj ж{5
532 OJQJUVmHj ж{5
533 CJEHОџOJQJUj ж{5
534 OJQJUVmHj ж{5
535 CJEHќџOJQJUj ж{5
536 OJQJUVmHCJH*OJQJjж{5
537 CJEHќџOJQJUjж{5
538 OJQJUVmHjCJOJQJU CJOJQJ5CJOJQJ)ж1ж2ж>з?зWзXзТзУз
539 и иeиfиzи{иˆи‰ияи№ий‚йvкwкыльлэлммќњїњќњњњїњњњќњњњњњєњїїїњњђю„$$$WзXзТзУз
540 и иeиfиzи{иˆи‰ияи№ий‚йvкwкыльлэлммм"м#м9о:о;оVоWорярёрссс&с'с8с9сЄсЅсІсЋсИсЛс т`тАтВтуLуNу^уЉуэуф9ффЪфрфіф х"хoхНх ц^цЎцџцч^ч`чБчГчшcшfшwш{шЩшщ`щЈщхщ-ъjъАъДъ ыSы™ыоыь]ьЉьъь/эlэЎэўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўdёзізїзиии и&и'и:и;и<и=иfиgиvиwиxиyи иЁиЖиКи%й&й9й:й;й<йŒйй›йœйойпйфйхй,к-к8к9кљюљрбюљюљУДюљюљІ—юљљљюљrюљљљљљљj6CJOJQJjж{5
541 CJEHцџOJQJUjж{5
542 OJQJUVmH5CJOJQJjж{5
543 CJEHєџOJQJUjж{5
544 OJQJUVmHj ж{5
545 CJEHєџOJQJUj ж{5
546 OJQJUVmHj
547 ж{5
548 CJEHОџOJQJUj
549 ж{5
550 OJQJUVmHjCJOJQJU CJOJQJ(9к:кGкHкIкJкjкkкQлRльлмм"м'о-о;оWоЮоЯохоцоэоюоќо§опппп8п9п<п=п@пAпррр№рёрсс&с'с8с9сЄссстDт_тŽтЏтоту8уKууЈуЫуьуaф~фЄфЩфTхіячіпязязяязязяячячячячячячячячячяШРЙяЗАЗяАЈАЈАЈАЈАЈАЈАЈАЈАЈА6CJOJQJ CJOJQJ>* CJOJQJ5CJOJQJj5CJOJQJUmH5CJOJQJCJH*OJQJ6CJOJQJ CJOJQJ6CJH*OJQJBмм"м#м9о:о;оVоWорярёрссс&с'с8с9сЄсЅсІсЋсИсЛс тћћћіѓѓёяшуярооёомоооооооз$„а$$@&$„@&$$„„ т`тАтВтуLуNу^уЉуэуф9ффЪфрфіф х"хoхНх ц^цЎцџцч^ч`чБчГчњњіњіііњіііњњііііњііііііііњі„а$„аTхnхЄхНххх ц:ц^ц†ц­цлцўцJч]ч‘чАчшшJшbшfшoш шШшўшщEщ_щщЇщйщфщъ,ъ^ъiъ—ъЏъѕъ ы9ыRыƒы˜ыУыныььPь\ь‘ьЈьеьщьэ.эSэkэЁэ­эїэюNюgю“юžютюїю+я6яqяŠяЦямясяюяяя#№8№;№u№v№Ъ№к№ЇёЊёЋёсёї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№їч№ї№хнн№5CJOJQJ>*CJOJQJmH CJOJQJ6CJOJQJWГчшcшfшwш{шЩшщ`щЈщхщ-ъjъАъДъ ыSы™ыоыь]ьЉьъь/эlэЎэВэЫэЯэћіћєєєёёёёєєєєєєєєёєєєёёєєєє$$„а„аЎэВэЫэЯэююhюŸюЃюјю7я;я‹яяняся9№:№;№u№v№Ш№Щ№Ъ№и№й№к№ЇёЈёЉёЊёЋёпёрёсё`ђaђbђђђžђŸђ ђЯђађђѕѓѕеіжіЈјЉјРјСјЬјљ€љ…љ5ќ6ќAќЮ§љўњўџџ34tu˜™ВГPQ"ЭЮл§ў ,ст№1АБХфхЅІЛўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўdЯэююhюŸюЃюјю7я;я‹яяняся9№:№;№u№v№Ш№Щ№Ъ№и№й№к№ЇёЈёЉёЊёЋё§§§§§§§§њ§§§њ§§ј§§§§іђђђђ№№§„$Ћёпёрёсё`ђaђbђђђžђŸђ ђЯђађђѕѓѕеіжіЈјЉјРјСјЬјљ€љ…љ5ќ6ќќљљљљљіљљљљіљљљљљљљѓљьљљьљљ$
551 & F$$$$сёђ$ђ`ђbђђђžђ ђЯђађђѕѓѕFіGіIіKіMіRіyі{і—і™іœіžіУіХіžјЃјЄјЅјЈјЉјРјщјыјэјяјёјѓј0љ1љ3љ4љ6љ7љeљgљiљkљmљoљœљЅљњ
552 њCњEњnњwњЧњЫњањжњ§њћqћwћќ ќќќ+ќ0ќ1ќ2ќ§§њўљёљъткъъљъљёљёљёљвљвљвљвљёШёљъЦљёљёљёљёљёљёљёљёљёљёљёљёљёљёљёљёљёљёљёљёШёљёљ>* j*№CJOJQJCJH*OJQJ5CJOJQJ5CJOJQJ CJOJQJ6CJOJQJ CJOJQJN6ќAќЮ§љўњўџџ34tu˜™ВГPQ"ЭЮл§ў јёююыюююыюююыюююююјююјююјюю$$$„@&$
553 & FњўџџБџДџЙџКџСџЦџJY ІЌЎЏАДЙСУмьёњ(4tuŠ˜чщ%3 ~†.0_o—™ВГ#=@DFfvФХЧШЭЮyŠ2=SVd l Ј Ќ Ц ж 2
554 §іячяпячячячяпяпячяпячячячя§зячяЯячячячяЯяЯячяЧ§зячячяЯяЯячячячячячячяЧячячячя>*CJOJQJ5CJOJQJ>*CJOJQJCJH*OJQJ6CJOJQJ CJOJQJ CJOJQJ>*N2
555 6
556 п
557
558
559
560 V f й Ё І Ж Ь к   ’ Ÿ ю ѓ љ ћ )-3579:sx…ŸЄ ƒ”№іњџ"#%'\chn”•—™ЎГДЕЖЗ%3†‹‘’”–ипˆ—,8:HMXхї№ї№ї№ї№ш№ї№ї№ш№ї№ї№р№ї№р№р№ш№ї№ї№ї№ї№ї№ї№р№р№ї№ї№р№р№їжї№р№ї№ї№р№р№ї№ї№ї№ї№ї№дЭ№ CJOJQJ>* j*№CJOJQJCJH*OJQJ5CJOJQJ CJOJQJ6CJOJQJQ,ст№1АБХфхЅІЛ`arrsŒ78jk  јѕѕјѕѕѕјѕѕђѕѕѕјѕѕјѕѕјѕѕђѕѕѕј$$$
561 & F'ак~†фь=E‡‘§
562  %Ђ­ЏДЖПХЪоп^egnp€‚‰‹’ВО@JЗХ"$+-=?EGMДР8jkЛЧЩеАГИНŽў CЛ Œ Ž › э ј Ч!в!ї!ќ!ў!"ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№ї№юч№ї№ї№ї№ї№ї№ї№ї№п№ї№ї№ї№ї№ї№ї5CJOJQJ CJOJQJ>* CJOJQJ6CJOJQJXЛ`arrsŒ78jk     r$s$$(&)&?&€''‘'’'Ÿ'T)U)f)L*M*T*і+ї+ј+(,),;,<,є-ѕ-..A.B.^.ƒ.н.о.ё.ђ.//@/A/=0>0W0X0(3)3Q3~3Е3и3я3 4/4U4€4К4ђ4,5:5z5ˆ5Ц5р56=6w6в673747B:C:D:m:n:Н: ;
563 ;ё=ђ=#?$?o?p?ўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўd   r$s$$(&)&?&€''‘'’'Ÿ'T)U)f)L*M*T*і+ї+ј+(,),;,ќќѕќќѕќќюќќыќѕќќѕќќѕќќќщчх$$
564 & F!$
565 & F$"" """$"%"Š"Œ"Ž""Т"Ъ"Ь"д"к"с"у"ъ"####‘# #Ђ#Б#$
566 $ $$'$)$+$-$]$e$g$o$и$у$х$№$T&h&'''‘'’' ((( (%(*(„(((–(›(Ÿ(Ч*б*++q+z+ї+ј+(,),;,<,є-ѕ-..=0>0W0M2O2Б3Г3д3љёљёљёљщљщљёљёљёљёљщљщљёљёљёљёљщљщљёљёљёљёљёљёљчрљёљёљёљёљёљёљёљёљёљррчрљрчиљрчљщљщљ>*CJOJQJ CJOJQJ>*CJH*OJQJ6CJOJQJ CJOJQJU;,<,є-ѕ-..A.B.^.ƒ.н.о.ё.ђ.//@/A/=0>0W0X0(3)3Q3~3Е3§іѓ№ѓѓѓщщтѓѓѓтттѓѓѓ№ѓѓѓѓѓѓ$
567 & F$
568 & F$$$ Цx@д3е3В4Г4Ж4И4ю4№4м5о5Ј7Џ7X8b89$9D:m:n:Н:;
569 ;%<&<ї<ј<$?n?o?p?9@:@A@B@žA A}C~CЛCМCНC$E%E-E.E;E<EcGdGЄGЅGІGH H'H(HxHzHxIЅIІIиIкIтIуI§IўIџIJ*J+Jї№ї№ї№ї№ї№ш№ш№ш№р№о№д№Щ№оТ№д№д№ї№ТоТ№д№д№ш№ТоТ№ї№ї№ї№о№ТРЙРЙЕЙБ j-№5mH j5U5 CJOJQJ jb№6CJOJQJ jД№CJOJQJ>*5CJOJQJ6CJOJQJ CJOJQJCJH*OJQJFЕ3и3я3 4/4U4€4К4ђ4,5:5z5ˆ5Ц5р56=6w6в673747B:C:D:m:n:Н:ќќќќќќќќќѕќѕќѕќќќюќѕќќќьъьќ$„p„ї$„ „а$Н: ;
570 ;ё=ђ=#?$?o?p?CC}C~CМCНCcGdGЅGІGxIЅIІIиIйIкI‡JˆJ‰J‘Jќљљљљљќљљљљљќљљљќљљќљљљљііёё$$$$$p?CC}C~CМCНCcGdGЅGІGxIЅIІIиIйIкI‡JˆJ‰J‘JœJЄJБJВJЕJИJНJСJХJЧJЫJЯJвJжJйJмJпJтJхJцJ№JќJKKK&K'K/K2K7K:K<K=KBKIKVKWKYKZK\K]K_KaKcKgKhKuKK„K‰KKK”K—K›KœKЅKІKБKСKЭKсKэKL LLL#L$L4L=LILVLdLmLuLwLyL{L„Lўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўd+J‡JВJМJцJ№J'K)K:K;K=KOKWKXKZK[K]K^KhKoK$L7L9L:L=LBLILOLRLTLVL[L`LbL…L†LŠL‹LŽL‘LЌL­LАLГLЦLЧLШLЩLЫLкLњL M(M:MWMcMdMeMfMgMhMqMzM—MЈMУMШMбMпM§MўMNNN
571 NNNNNNNN N!N"Nљёљёљёљчљёљчљчљчљёљёљпљёљёљпљёљпљпљељпљељпљчљчљёљёљёљёчљчљчљёљёљёљёљчљёљпљељпљпљпљч jД№CJOJQJCJH*OJQJ j-№CJOJQJ6CJOJQJ CJOJQJT‘JœJЄJБJВJЕJИJНJСJХJЧJЫJЯJвJжJйJмJпJтJхJњњњЉањњњњњњњњњњњњњњњP$$–l”жжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$хJцJ№JќJKKK&K'K/K2KЎЉЉЉЉЉЉZXЉЉN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$P$$–l”nжжr”џи xЦ+"џџџџџџџџџџџџџџџџ
572 2K7K:K<K=KBKIKVKWKYKZK\K]K_KaKcKgKњњњЋЌњњњњњњњњњњњњN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$gKhKuKK„K‰KKK”K—K›KЎаЉЉЉЉЉЉЉЉЉ$$P$$–l”:жжr”џи xЦ+"џџџџџџџџџџџџџџџџ
573 ›KœKЅKІKБKСKЭKсKэKѕKL LLL#LА ЋЋЋЋЋЋЋЋЋЋЋЋЋ$$N$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ#L$L4L=LILVLdLmLuLwLyL{L„L†LˆL‘L“LœLЈLЊLАœЋЋЋЋЋЋЋЋЋЋЋЋЋЋЋЋЋЋ$$N$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ„L†LˆL‘L“LœLЈLЊLГLЕLТLФLЦLШLЪLЫLкLтLщLёLљLњL MMM M'M(M:MAMHMOMVMWMcMeMgMiMpMqMzMMˆMM–M—MЈMАMИMРMТMУMШMЪMЬMЮMаMбMпMыMєM§MџMN NNN!N#N$N3N=N?NANCNDNVN]NdNkNrNsNyNˆNŒNŽNN”N–N›NNŸN NЏNЗNПNСNУNФNгNеNўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўdЊLГLЕLТLФLЦLШLЪLЫLкLтLщLёLљLњњњњњњњЋМњњњњњN$$–lжжr”џи xЦ+"  џџџџ џџџџ џџџџ џџџџ$$ љLњL MMM M'M(M:MAMHMАИЋЋЋЋЋ\МЋЋЋN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$N$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ
574 HMOMVMWMcMeMgMiMpMqMzMMˆMM–MњњЋhњњњњњЋ˜њњњњњN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$–M—MЈMАMИMРMТMУMШMЪMЬMЎАЉЉЉЉЉZ8ЉЉЉN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$P$$–l”гжжr”џи xЦ+"џџџџџџџџџџџџџџџџ
575 ЬMЮMаMбMпMыMєM§MџMN NNN!N#N$N3N=N?NANњњЋМњњњњњЋњњњњњЋ€њњњњN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$"N$N)N+N-N/N1N5N6N9N<N=N>N?N@NANBNDNVNsNNN‚N„N†N˜NšN NЏNФNЪNЬNЭNЯNбNгNдNеNжNмNьN;OcO‹OœOЙOФOсOъOPPIPzP‡P”PЏPКPЛPМPНPОPПPУPђPєPѕPљPњP§PўPQ QQQQQQ,Q0Q4Q7Q<Q?QNQ[Qљёљщљщљпљщљељељељёљёљщљщљщљёљёљщљщљељељёљёљёљёљёљёљёљёљёељељељёљељељељёељељељёљёљёљё j-№CJOJQJ jД№CJOJQJCJH*OJQJ6CJOJQJ CJOJQJTANCNDNVN]NdNkNrNsNyNˆNŒNŽNN”N–N›NNŸN NњЋМњњњњњЋДњњњњњњњњњњЋN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$ NЏNЗNПNСNУNФNгNеNзNйNлNмNьNѓNџNOOO!OњњњњњЋ`њњњњњЋ|њњњњњњњN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$еNзNйNлNмNьNѓNџNOOO!O(O/O9O:O;OHOWOcOjOqOxOzO|O~O€O‚O„O†OˆOŠO‹OœOЃOЊOБOИOЙOФOЫOвOйOрOсOъOёOјOџOPPPP P'P.P/P9P=PAPEPHPIPQPYPjPrPzP{P|P}P~PP€PP‚PƒP„P…P†P‡P”PœPЄPЌPЎPЏPКPМPОPРPТPУPЫPгPфPыPђPѓPєPіPўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўd!O(O/O9O:O;OHOWOcOjOqOxOzO|O~O€O‚O„O†OˆOњњњњЋ@њњњњњњњњњњњњњњN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$ˆOŠO‹OœOЃOЊOБOИOЙOФOЫOњЋИњњњњњ\ њњN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$
576 ЫOвOйOрOсOъOёOјOџOPPњњњЉ˜њњњњњZ N$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџP$$–l”pжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$
577 PPP P'P.P/P9P=PAPEPHPIPQPYPjPrPzP{P|PњњњњњЋhњњњњњЋјњњњњњњњN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$|P}P~PP€PP‚PƒP„P…P†P‡P”PœPЄPЌPЎPЏPКPМPњњњњњњњњњњЋ њњњњњЋPњњN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$МPОPРPТPУPЫPгPфPыPђPѓPєPіPїPјPљPћPќP§PџPњњњЋєњњњњњњњњњњњњњњњN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$іPїPјPљPћPќP§PџPQ QQQQQQ(Q0Q8Q@QMQNQ[QbQiQpQwQxQ†QQ”Q›QЂQЃQБQМQЧQвQнQоQьQѓQњQRR RR R+R6R;R<RBRQRSRURWR[R]RbRdReRuR}R…RŒR”R•RЃRЅRЇRЌRЎRЏRЛRУRЪRгRлRхRэRєR§RSSS*S,S.S0S7S8SASCSESGSISJSTSYS\S^SўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўdџPQ QQQQQQ(Q0Q8QАXЋЋЋЋЋ\рЋЋЋN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$N$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ
578 8Q@QMQNQ[QbQiQpQwQxQ†QњњЋЈњњњњњ\ЌњN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$
579 [QxQ†QЃQБQоQьQ RR<RHRJRLRMROR_RaRbRcReRuR•R›RRžRŸRЁRЃRЄRЅRІRЉRЋRЌR­RЏRЛRтRфRS*S8SASJSOShStS‡S’STЁTЃTІT2UGUIUKUЏUПUСUТUiVƒV…V‡VЊVРVIWUWWWXWX%X'X(XЋXНXПXСXPYљёљёљёљёљёљщљщљщљпљёљёљщљщљпљпљщљпљёљщљёљёљёљииаиШиаиШиаиШиаиШиШиаиШиаиШиаиШи5CJOJQJ6CJOJQJ CJOJQJ j-№CJOJQJCJH*OJQJ6CJOJQJ CJOJQJO†QQ”Q›QЂQЃQБQМQЧQвQнQоQьQѓQњQRR RR RњњњњЋьњњњњњЋЌњњњњњЋЬњњN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$ R+R6R;R<RBRQRSRURWR[R]RbRdReRuR}R…RŒR”RњњњЋЄњњњњњњњњњЋРњњњњњN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$”R•RЃRЅRЇRЌRЎRЏRЛRУRЪRгRлRхRэRєR§RSSАhЋЋЋЋЋА˜ЋЋЋЋЋЋЋЋЋЋЋ$$N$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџSS*S,S.S0S7S8SASCSESАŒЋЋЋЋЋ\HЋЋЋN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$N$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ
580 ESGSISJSTSYS\S^ScSdSњњЋhњњњњЅVN$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$$N$$–lжжr”џи xЦ+"џџџџџџџџџџџџџџџџ$$ ^ScSdSeSfSgShSsStSuS…S‡S’S“S”STTГTДTVUWUЭUЮU’V“VСVТVeWfW3X4XЮXЯXrYsYCZDZƒZ„Z
581 [ [Т[У[Ž\\$]%]^єbйcёc–dЁdЌd­dЛdЧdжdтdуdёd§dўd
582 eeeSeTeўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўўќќўўўўўўўўўўўўўCdSeSfSgShSsStSuS…S‡S’S“S”STTГTДTVUWUЭUЮU’V“VСVТVeWfW3X4Xќљљљїѕѕѕѕїљљљљљљљљљљљљљљљљљљ$$4XЮXЯXrYsYCZDZƒZ„Z
583 [ [Т[У[Ž\\$]%]^Hbєbйcёc•d–dŸd dЁdќќќќќќќќќќќќќќќњїїѕїђѕњщхњ„h&`#$„јџ„$$$PY`YbYeY!Z1Z3Z6ZVZkZбZтZЁ[Г[Е[З[g\~\€\ƒ\]]]]#]%]&]']O]R]м]о]^^^^^NaOaHbIbJbKb^b_b`babчbшbщbєbѕb_c`cachcicаcбcйcкcэcюcяcї№ш№ї№ш№ї№ї№ї№ш№ї№ш№ї№ш№с№ш№ш№ш№снсиаЧиУСсМКИИиЊЁj^ж{5
584 EHОџUj^ж{5
585 OJQJUVmH56 jD№6H* jб№j_ж{5
586 EHєџUj_ж{5
587 UV jU jd№ j0JU5CJOJQJ CJOJQJ6CJOJQJ?яc№cёcђc.d/dBdCdDdEd–d—ddždŸdЁdЂdЈdЉdЊdЋdЌdЎdЏdЕdЖdЗdИdЙdЛdМdТdУdХdЦdЧdЩdЪdаdбdвdгdдdжdзdнdоdрdсdтdфdхdыdьdэdюdяdёdђdјdљdћdќd§dџdeeee
588 e eeeeeeee-eњѓњхмњевевевеЭевевеЭевевеЭевевеЭевевеЭевевеЭевевеЭевевевевеЭевњ0JmH0J j0JUj]ж{5
589 EH№џUj]ж{5
590 OJQJUVmH j0JU jUNЁdЌd­dЎdЙdКdЛdЧdШdЩdдdеdжdтdуdфdяd№dёd§dўdџde e
591 eeeeeіђ№іђ№іђ№іђ№іђ№іђ№іђ№іђ№іђ№№„h&`#$„јџ„-e.e/e0e2e3eMeNeOePeQeTeѕющтпгЬтп jЮцCJUj.б6
592 CJUVmHCJ jCJU jU jlхEHіџUjЙ™;8
593 UVmH e1e2eQeReSeTe§§§§§§
594 0Аа/ Ар=!А"А# $ %ААа/ Ар=!А"А# $ %ААа/ Ар=!А"А# $ %ААа/ Ар=!А"А# $ %ААа/ Ар=!А"А# $ %А0Аа/ Ар=!А"А# $ %ААа/ Ар=!А"А# $ %А`!№ЧъˆDѕ“Ї-“77 ЙЫ}oZ]j: ј-4аžE•ўxœЬ˜xеЂЧчЬl2Лš0l”"Є(эJQ
595 (э"  ="$tЅI‘&MЏiJ‘&MšR”ЂP)†:ЈЅ^оoЮl˜’ я{яћ}9џ’™3g'gfšGгŒEЅ5ЭЋезЌAбРмZˆvƒš–GKџзХ­iU‚4ы7dУ-:ъПѓИt\ZЈжЄ~У†Скв3Zы7ƒЁVЮсўуx§mЏlišЎ§aмzL•ляЫ–KЫЁ с?FщщЃz• .n#—ШЉ™ќМN&ЇЏYn)aЯњ/=@ўЖ•і'т–ЦЃск9­FаnMљн[qsAnC—ЋdЭ6ПеfЂЋsЁh жЬэЯe.ДœшkЪ‘œі y]Ћ!чЌЇgzgKбэГ Шјlї:–НZт–ГЛnЎ•†К*{?ѓ<'oмКz†ЧЭ'ЏьЃіёЦЅјс&бБТъwшж8>6*N{б”љѓм=ЎИДёЯVpХšVЮ›з яЂХЃЋ–шRЕь“eД0юК
596 мn!šOў ѓџЎИyЅw[=“л­ѓ `йоw9ŸВqлЇlм\ыOк #TxŒЋ0СUФœрвн+ н*ЌЙ1 ЭЪŠ˜W…хЙЅЇk–ЖКщk˜~ѕщk{ћgwћlO ыа›…tэŽќЄ?‚\zVЎ&}fWЕЮт*Uъп…5ГєПЇ[яOЏ\ЎQtсЗъ‰гZЁ^SVЎхВ57хZю6зР цЄЗЯ5№Žй ЁњLzƒХѕћšн&z‰™ЌdЦГk.О™ЭЎЕHнФб@lЭtv™Эі+є;LэМѕЛwож}sоАя‹UїИЫ3Кš‹ЦUm’+ГЋ9ЅНчКЊ-wЙХ{ЎћYыY.ћNиšЭй-w Ы3н`БХ5“о`1чОfэВя„ьЎнrWsб'гйЕ#\нDWW—щь2оЃ Иžя_ніЬЪxЮЪNk]c9яE#E>sЛВЃоm?Эx>S]KDыUё`чггеSXѓщТnŸНљx.ˆоЎЉx>iЎ5r>ῘOж>ПWE Б]{аŸ_ya~}Е’й\ЏSт'б\Ф<рѕк"FШѕъ“эћЉŽnъŸ‹§љ=ЎлŸ_я{Ь'Ѓї…~)†Ÿ‘Yz.ЄП/„iМ+\ƒšz#ˆ6JBšђОpM4ЫKпAIЏІ~ыћBрЭћ$ГНk3ЋEяІ—vsнвяBћ- уж—s,Ђ•1ŠЪЦ\Q٘-ЉhЬeЉЂ„1Y„#E~c„а7ХozМ8 З[ѕІт Н‘X­П,–ъuФbНОјLЏ+щ‘тcНЁ˜Џџ[,д›р5kє–b“%іщБт”оWќ­я‰`cЌШmLсЦGЂ8чЖцPојX<eЬ‡O…=GqsЗ,€_й8$ъs2}nf|7ЕiЦ^mцЛ›BхнTM|!Ќ7ћєзвˆЎМšоёfй{C-fкЯѕ~^йyў<i^YН{2^­nFЫРX§„ё`WыgнхВVЋf|ь=ЃЃууЂbДЌL=(Уj•„P9.‘Сўš•3х‘gЊgИ\ŒjёЭ#:.’уе•ЧЮюДж8ЈЏв;>А=к^‡pуmэ{rЪ3НЧ™,чЙо"хбŠfs\bз§Т[Мr^]ЕіђNlиЙOBtЛЈ˜
597 ђZ‹p­%фЕпџ'qфvХлž
598 Ќа3KW|ыwпѕщп™юјю›я–Пзs|ЮЪеW4+`"з i{Фt+[%,:ЌTX‡Ј„ФˆА.ŒттЛ'vŽыЪА}|ЏИв‘к3rCф~Т8Dў,.*GЖЖxЏ$ЃgЄ[Aq#Ѕ—енъ?ЌRЖЈ“lO…МЮџ)мЖkщщЛV€Ѕ zлъ-<w>сгз(ыЧ)fД№Dщw;Юэѓ}Ьњўяuц{Зне™Aњюn„zAЦ3ЭќйlљUџJЕіdяЬ-<Чр~ЯœdиŸбб[>Ѓ;п
599 B4ы‰ыеŽp•ЩFAIЊ$|оЃ^rŸзщчѓZ$љ%Љ’|L?/^^ђ`ЅŸлk‘lф‘ЄJrC.њ9ёr’чRњД?ˆ<ˆž<рF›ј&Й[щh~y= ЃО з•ўпž#Ц=ЩЦ O
600 Є2NХK5ЎЃЏс_#Пюqњ—бW№Џ’_Ѕw.У%єŸј’_Rњчб№/’_ЄwЮУ9єяјП“ŸSњgаgё%џ•оY8ЇбЇ№O‘ŸVњЧаЧёOŸ wŽСQt~љQЅŒŸBžB/Ž@њќ_Ш“”ўєAќCф‡ш„№3њ'ќŸШVњ{бћ№ї“яЇЗіТшяёП'џAщяBяЦпCО‡оnи;бптKОSщoCoЧпAОƒоvи[б_уMОUщoBoЦпBО…оfиб_тIОQщЏCЏЧп@ОоzXkбk№зЏUњ+бЋ№W“ЏІЗ
601
602 єrќхф+”ўєRќeфЫш-…%АНљbЅ?Н!љBz `>ЬC‚џ љ<Ѕ?=.љ\zs`6ЬBЯФŸI>KщOCOЧŸA>ƒоt˜SбтH>UщOFOСџ€ќzS`2LBПџ>љ$Ѕ?="љDz`<ŒCХK>NщBЦC>†оh#б#№GTњCбУ№‡“Ї7 †Тєлјo“Qњаё‘Ђ7@є[јo‘їWњ}а}ёћ‘їЃзњ@ot/ќ^фН•~:Пyz‰нбн№Л‘wWњБш8ќxђxzq 1шЎј]Щc”~'tgќhђhzЁtDwРя@оQщGЁлтЗ#oGЏ-DAєыјЏ“ЗQњ-а-ё[‘ЗЂзZРkшWё_%Э“ўM-Гoewћо‘йГ§uO[}КћŸП#Мю)fLwgяЁЅџI•Э'ukžд­яћImyЊл>ѓLwіЮ<н} ўЩ;ТdЗ§Ž`]sця­=Щўћ'UвЌ{ЦКwZ’ЗRюЉц‹dџ§“*iЭш7ХkJоLщ7іX$џ–ЄJC#њ ё’7Rњ/Ё_ЦЏO^ŸоЫ№дCзХЏK^OщGЂ_Р‘ќEz/@$дFзТЏE^[щз@?‡џ<љѓєžƒP] ПyuЅ_§/ќgЩŸЅї/Ј•б•№+‘WVњOЃŸСЏ@^о3№4”G—У/G^^щ—F?…_†М НЇ 4”BGрG—RњХбOт— /AяI(ХаEё‹’Sњ…бу?AўНЧЁ0„ЃУ№УШУ•~AєЃј…Ш б{
603 B(к‡я#Uњљбр‡‡а{ђC>t0~0y>ЅŸ§ўУфг{ђ@nt.ќ\фЙ•О„Ÿƒ<Н №‚эЦw“{”О €HH/\` u|мPњџu1nИ“ \ЃwУЭ{#ќэN1Ўу_'џлэєЏ ЏтџEўНЋp.Ѓ/с_"ПЌє/ /тџAўН‹pЮЃЯсŸ#?ЏєЯЂХџќ7zПТY8ƒ>šќŒв?Ž>’ќ$НpŽЁт%?Іє“б)јЉфЉєR Ž “№“Ш(§ƒшCј‡Щг;сњgќŸЩ(§}ш§ј?’џHo?ьƒНш№ пЋєwЃїрGўН=АvЁwтя$пЅєЗЃwрCў НАЖЁЗтo%пІє7ЃЗрEўН-А6Ё7тo$пЄєзЃ7рAўН АжЁзтЏ%_ЇєWЁWуNў9НеА
604 VЂWрЏ _Љє—Ђ—сFўНeА– у/&_Ђє тJў)Н…АцЃчсЯ#ŸЏєч чтLў1НЙ0fЃgсЯ"Ÿ­єЇЃgрDўН0ІЁЇтO%ŸцЮъ;BFџЏ№“щ< ГњЌŸсnЋ'™џќa†Л˜‘dfясџцЩmљАЅRЬь9Щ<џфСњŒŽођныСКgІsoЬмэžqњSм|ЯЄJІРdњ“№&‘OVњм|ЯЄJ&Рxњу№Ц‘WњЃбc№п%—о Ѓа#ёG’RњУаУёп!‡оpCбC№‡Uњбƒ№“І7Тtќўф”~_t?ќ7ЩпЄзњBtoќоф}”~"К~Oђžєz@"$ Луw'OPњqшxќ7Шп q‹ŽС!Uњббј]ШЛа‹†Юа нП#y'ЅпнП=y{zэ -DЁлрЗ!Rњ-б­№[“ЗІз
605 ZB єkјЏ‘ЗPњMбЭ№›“7Їз šТ+ш&јMШ_Qњ б№“7ІзBt}ќњф ”~]t=ќ—Ш_ЂWъBє‹ј/’зQњЕаЕё#Щ#ще†ZP§<ўѓф5•~5tuќф5шU‡jP§,ўГфU•~%teќ*фUшU†JP]ПyEЅ_]џiђЇщ•‡rP]П yYЅ.…_šМ4НR%б%№K—TњEбХ№‹“ЇW ŠBєјOQњaшpќТф…щ…C<†.„_ˆќ1ЅяC‡т$/H/|P‚B^@щЃѓсч'ЯO/C^єУј“чUњЙаЙёѓчЁ—rANtќф9•ОэСї’{щyР &:?мTњ:кРw‘Лш ƒ@kжЛ"ЙPњзMоЭdуПf
606 №юзсњ/ќПШЏ™Nџњ2ўђ+є.У%ј§ўф*§sшѓјШ/а;чрwєoјП‘џЎєOЃЯрŸ%?Kя œ†Sш“ј'ЩO)§ЃшcјЧЩг;G! ŠŸJžІє“аG№“Щ“щ$ј}џ0љ/ц§ўПТџŸ'ЃuцGќg.hfўd,l„˜сf„Ё~|faДMШЭ•,ЦИ(С/BЇ(нbŸYЯЦщ—b%ёKв‰ [Jт3Kуй8§ђŒЫAYќВtЪб-/ё™Oуй8§ЪŒ+AEќŠt*б­,ё™U№lœ~uЦе *~U:ешV—јЬx6NП6уZPП&ZtkK|f$žгЏЧИ.дСЏCЇ.нzŸљžгoФИ!4Рo@Ї!нFŸйЯЦщ7cм^С…NSКЭ$>Г9žгoХИ%ДРoAЇ%нVŸйЯЦщЗcмЂ№ЃшДЅлNт3луй8§hЦЁ~':щFK|f<ЇЯ8bёcщФб—јЬ7№lœ~Ц‰€Ÿ@'‘n‰Яь‰gуєћ1ю }№ћащKЗŸФgО‰gує1№аHwФgЦГqњУƒЁјCщ Ѓ;\т3пСГqњc†QјЃшŒІ;Fт3пХГqњO€ёјущL ;Qт3пУГqњ0ž“ё'г™Bї‰ЯќžгŸСx:LУŸFg:нŸљžгŸЫxЬЦŸMgнЙŸљ1žг_ШxЬЧŸOgн…Ÿљ)žг_Цx),С_Bg)нeŸљžг_ЭxЌФ_IgнеŸљ9žгпРx=ЌУ_Gg=н ŸљžгпТx3lТпDg3н-ŸљžгпСx;lУпFg;нŸљ žгпУx7ьТпEg7н=ŸљžгпЯxьХпKgн§Ÿљ#žг?Фј Р?@ч нCŸyЯЦщѓvУг/„Ї_№1х‰hсущXРOH–ŸŒЗ?>іsh?gыIјЁHулtЁћ~Жжэ3ЗзГ{ц6zпПяџЬћŸСOfћщ_„'QVќ~ЯќКnŸЙxŸўmuvzhЃDщЁ~иљб6Юнв‰qGш€пNGК$ьќx6N?–q tХяJ'†nЌ„ЯЦщ'0юн№ЛбщN7AТЮgуєћ0ю Н№{бщMЗ„ЯЦщ`моТ‹NК$ьќx6N(у!№6ўлt†а*aчЧГqњЃ„ј#шŒЄ;JТЮgуєЧ3cёЧвGwМ„ЯЦщOf< оЧŸЮ$К“%ьќx6NуЉ№!ў‡tІв&aчЧГqњГЯ‚™ј3щЬЂ;[ТЮgуєч3žŸрBgнљv~<ЇП„ёbX„ПˆЮbКK$ьќx6N%уА9tWJиљёlœў:Цka ў:kщЎ“Аѓуй8§MŒ7Т—ј_вйHw“„ЯЦщocМОЦџšЮVКл$ьќx6Nу№-ўЗtvвн%љŸZЮК‰Њ У3Щ4“);ˆ–`!G-e)`[
607 JAйД”п‚Z@ElJ…VР•#ъq;Јќ‚Aб‚
608 .EvhУІ.АD”ВY*"№?soв™n4­ˆч1пї~яMf&7пLšфвљб$–;ё6ШCЯУГ яvMbљwРNєx
609 №юаљб$–џGт}А}/ž}xаљб$–џёЯp§ žŸёxє_а$–џ7тЃp§žЃxxєпб$–џ$ё 8Ž~Я М'§šФђŸ"є"<g№ <њŸhЫžјo8‡~ЯпxЯ <њ4‰хwrІs€JV9:8:]3ћВРђФnабu<nМ†РЃ‡ЂI,=тКPНžКxы <z}4‰хoL|4Bo„ч
610 М§J4‰хoJь&шM№x№6xєЋб$–_Оѓ г›Ѓ7Чу­фнп?9ћ›чЃaŽрЮGГUzМЉ6ЬR›њЁw‘KЌэŸK<оAЯМsє.4‰хŸOœяЃП' я|Н Mbљ/„а?ТГя"Н MbљgУgшŸсЩЦЛX@яB“XўФЫaњ2<ЫёЎаЛа$–?—8ж ЏС“ƒ7W@яB“XўФ`=њz<№nаЛа$– ёfј
611 §+<›ёnаЛа$–?x+|‡ўž­xѓє.4‰хпIœпЃ'яNН MbљїяаРГя^Н Mbљ€ŸаТsяAН Mbљџ
612 ‡буљяН MbљТ1єcx
613 ёаЛа$–Пˆј8~Яx‹є.4‰х?GќœE?‹ч/Мчє.4‰хWщ]
614 \DПˆGЁЗЉzНMbљub„ ‡рqсеє.4‰хЏC\jЁзТSoН Mbљ7„ш №4ФлH@яB“Xў&f WЁ_…' oН Mbљ›7ƒpєp<Э№6аЛа$–П%ёЕаНžkёЖxєVhЫIм"а#№ДЦ)№шmа$–ПqДGo'
615 oGяˆ&БќБФ1'oЌРЃпˆ&Бќ]‰Л@zž.xЛ
616 <њMhЫпƒИ;ФЃЧущŽЗ‡РЃп‚&Бќ}ˆ{C/є^xzуэ#№ш}б$–?‘И$ 'рщ‡7QрбћЃI,џ@т„ž„gо~'šФђ&ЩшЩxс,№шCа$5?хуйЧлБ&œюЙФї‘k‹эб”ѓjXшI8Ѕ НЧ ќBЈЁУZЌ2шGЁUmKрН^р1хЇН3Bs!Ёч‚њ…PMѓюЊЦoогCУцо=rY~ѓО›m\сR”pqŒэќј­ЗЯчSЊЋфш{Хб­Kw;эКЈwW ]чдcЎГм“ЉЇХj1кYjgёœХ[ь2ЧXуkбu§МB бџ„bђ"Е– X­‡ж€Z< №жгЭ1жјhЭЉ…у ЧNЗnЮи‚3ъuhд"№DрНN7ЧЦ+Ž8ДXjбtђhМбŒ‰х,'8ЃоŒO-O<о›usŒ5>IП &RKР“€71‰ŒMœQяBKІ–Œ'я]К9Іь,НвQфњ[ѕЙ~R‹\5›Ѕ…ЎљЮ{\Ћё;Жььь*чк&—rчкlзlCўњpџ%ОGxm/Pз дeЦ(СzЃьQЫR Œд5F–:ЯЈъЈ•н–,ЇЂЬbkВп”о–ђ3нЋ­3Ўбжзj>Ѓ•ЖšлхфЫ ЏЖTа ЎFѓPЛO3Мц˜Рx7q(ZmjuёдЦЪЗhhj^Зmќ ч:у”s­ё‡гgœqЎцvљRу„ŸBјэ(Епёт5ЧЦя†=ді9WqЛŒ|ЉQр\"Ш'оЖк<љxЭ1ё>тuАС™k|gоuŒё1ж$‡x5кJjЋёфр5Ч”}Юši;$m Ччн*ŸГŠgzŽq8Є­бBЋxІ—žеСЯє™F7­ц+‰fpeпвХЖ‡iл:Ž%ЦёJОЄ—›ЅЃИЃЙгм~‰oы%[8ЮO9ЃлŒџAйGЉЮwxZјПУs,ˆї†ђ3тЃњ~ё9ёoA~Fќ3њ!ApŸяCџQPйgФ–П€|њnъЛёэ‚иIžžO}ЇЭП|;њъ;№m‡mGО}+ѕ<›џkђoаПЅў-ОoрkиBО}3ѕ-6џф_ЂoЂО п—№l$п€ОњF›пGО}ѕuјж‚rЩsаsЈчкќ+ЩWЁЏІОп*X +Ш—Ѓ/ЇОТцџœ| њRъKё-Яa1y6z6ѕХ6џЧфŸ J§S|ŸРЧАˆ|!њBъ‹lўф H§C|Р˜Ož…žE}ОЭџ.љ<єїЈП‡oМ sЩч ЯЁ>зцŸMўњлдпЦїЬ†YфoЂПI}–Э?ƒќ є™дgт{fРtђзб_Ї>нц•ќ5єiдЇс{ ^…WШЇЂOЅўŠЭџ"љKш/SпK№"М@ў<њѓд_АљŸ!§9ъЯс{ž)фOЃ?M}ŠЭџ$љSш“ЉOЦї< O?Žў8ѕ'lў‰ф“аЅў(ОI0&?‚ўѕ 6џ8ђёшд3№‡q№0y:z:ѕ‡mўбфcагЈЇсЃс!ђQшЃЈ?dѓ'>’њH|#`8Є’Ї ЇPOЕљ‡’п>Œњ0|їУPИќ^є{Љпgѓ"Œ>„њ|ƒa$“п~7ѕd›љ@є;Љп‰o €$ђ;ая ždѓї#ODяOН?ОDш фЗЃпN=СцяMоН/ѕОјњ@oшEоН'ѕ^6wђшЗPП_шёфнаЛQЗљЛwEП‰њMјКBˆ#яŒо™zœЭC‹~#ѕёХB D“п€~ѕh›?ŠМzGъёu€(hOоНѕі6kђHє6длр‹„жA~=њѕд#‚~oьYUбGk\§Ъ]TvVНзёЪnКФЇхЯЊCЕx=AЉg@АgеŠЏbZщЛЇЛ2ЋqЃ\ђНa”ИŠQєišЙ–@[я€’ы˜6оє’И]ЛvтЗмqќ?АESџЕM˜џЗсщ•џцЛтН{Qк}жѕX%{ЇT№n$˜НKбgкіЎ“mя:§K{Wvцtbыb™.гЙЭ ъzЌф[;ŽџЩŽD#юpмcєrŒ3pЄ“ЙЭ$Ÿ†ž5НV‹Ф8ƒ?UЛє'кхЗlˆіОў_mЅоњj›є›Е}њ-OŸФmљKш#рŸЭw‡;V˜ћК\3"TЬˆ=њЭ!f„З‚g1је!Иv[–’™2)J‘џ•Н7љЗ_•лi\ъHЛІƒ\…ШЇЯ 1яјЙ
617 оkдєoKzPпи|!ц–№’ъШKЊcљ5k‚Зџ˜KQNёфпЪ9р–3Б™Д|ŽCK?л"RцрВsШМuЊn1—jнj*щюMЊ\ћsеžњПШЕ?НšWЗю-АgЅяемgSщ VКДЦ5єoНЧЖкЉh9ьgO
618 ЬѓќžкJТ§#LJOU”§%ЏДРњЈж+­єіqмW…˜Q#Ђ.љ|NОx>Ээa2зЏl>ЙХ+­cшЫЮ“!rх,™ЇЉ‡DžщЯ‡:r2—рНXе#DћѹߘР#љЗ9ф#е/Г­цЁ5я)iв˜acG+%[(Ч%[+ЖliЩ–F–Ъ‡:9Э|UIоYЌQжЕмуЉ>^йэъш'і1ХЖВЌьIц?y4ъ‹9X“Es8ЪН~ЂЫэMEззЉ/зљ>pПэ
619 sO ІѓUЗЧŽ@uzЬїхя1F5zэЗ/ЄЊ^{щЋ‹:ЦЋjWWйUyƒќ‹Мz9Ј\Еh+\ЬР>i)ЉLсћ)VlЊhя‚Йчzтž›ъсТ=vИїюdџѕJOхжнЃмжЉКмжёЃ| е;vx+БЂ”ЙКRX…н=јчUu‡ ЅгФМђY­йYng†[ngК%(y­ФXџl АУмГЙXŠX,JЌЎеZЌЊUНYиЊVЄ{zhp+`ЛTЭ^WЗ‰§RjЅ(mџzP;{'ЄŽЯH—6fЌЙ$дјБ™#KВЬєєдqfиN)Л.TOБ2–WЬˆhЅПmuЈ–bЕ:sU(ѓˆЕ–ўZ jŒcЉС^'˜]щ;їЄyрЊќЪе(yпХф|ьzЬ­”њФФоЏ+юЯVŸ–g™вgесИ&iGnŒ’VЖ#”_‰мўЏєЪхf›‘{№Ћџ`!№І8Д…їPЮ N/МЩцг7Ј  ШНXJtўxœcdрd``a!0Щ
620 ФœL  312‚E™ўџџбc”‹21BUs3Сєё0)0)0‚ЬQcуgbјвФ фВ–ё ћP#7T ƒobIFHeA*CT” Ќ“ьf0 Pe}DаЩъyљКЮŒ‚ЊKЉ _Toc407169603}DаЩъyљКЮŒ‚ЊKЉ _Toc407169604}DаЩъyљКЮŒ‚ЊKЉ _Toc407169605}DаЩъyљКЮŒ‚ЊKЉ _Toc407169606}DаЩъyљКЮŒ‚ЊKЉ _Toc407169607}DаЩъyљКЮŒ‚ЊKЉ _Toc407169608}DаЩъyљКЮŒ‚ЊKЉ _Toc407169609}DаЩъyљКЮŒ‚ЊKЉ _Toc407169610}DаЩъyљКЮŒ‚ЊKЉ _Toc407169611}DаЩъyљКЮŒ‚ЊKЉ _Toc407169612}DаЩъyљКЮŒ‚ЊKЉ _Toc407169613}DаЩъyљКЮŒ‚ЊKЉ _Toc407169614}DаЩъyљКЮŒ‚ЊKЉ _Toc407169615}DаЩъyљКЮŒ‚ЊKЉ _Toc407169616}DаЩъyљКЮŒ‚ЊKЉ _Toc407169617}DаЩъyљКЮŒ‚ЊKЉ _Toc407169618}DаЩъyљКЮŒ‚ЊKЉ _Toc407169619}DаЩъyљКЮŒ‚ЊKЉ _Toc407169620}DаЩъyљКЮŒ‚ЊKЉ _Toc407169621}DаЩъyљКЮŒ‚ЊKЉ _Toc407169622}DаЩъyљКЮŒ‚ЊKЉ _Toc407169623}DаЩъyљКЮŒ‚ЊKЉ _Toc407169624}DаЩъyљКЮŒ‚ЊKЉ _Toc407169625}DаЩъyљКЮŒ‚ЊKЉ _Toc407169626}DаЩъyљКЮŒ‚ЊKЉ _Toc407169627}DаЩъyљКЮŒ‚ЊKЉ _Toc407169628}DаЩъyљКЮŒ‚ЊKЉ _Toc407169629}DаЩъyљКЮŒ‚ЊKЉ _Toc407169630}DаЩъyљКЮŒ‚ЊKЉ _Toc407169631}DаЩъyљКЮŒ‚ЊKЉ _Toc407169632}DаЩъyљКЮŒ‚ЊKЉ _Toc407169633}DаЩъyљКЮŒ‚ЊKЉ _Toc407169634}DаЩъyљКЮŒ‚ЊKЉ _Toc407169635}DаЩъyљКЮŒ‚ЊKЉ _Toc407169636}DаЩъyљКЮŒ‚ЊKЉ _Toc407169637}DаЩъyљКЮŒ‚ЊKЉ _Toc407169638}DаЩъyљКЮŒ‚ЊKЉ _Toc407169639}DаЩъyљКЮŒ‚ЊKЉ _Toc407169640}DаЩъyљКЮŒ‚ЊKЉ _Toc407169641}DаЩъyљКЮŒ‚ЊKЉ _Toc407169642}DаЩъyљКЮŒ‚ЊKЉ _Toc407169643}DаЩъyљКЮŒ‚ЊKЉ _Toc407169644}DаЩъyљКЮŒ‚ЊKЉ _Toc407169645}DаЩъyљКЮŒ‚ЊKЉ _Toc407169646}DаЩъyљКЮŒ‚ЊKЉ _Toc407169647}DаЩъyљКЮŒ‚ЊKЉ _Toc407169648}DаЩъyљКЮŒ‚ЊKЉ _Toc407169649}DаЩъyљКЮŒ‚ЊKЉ _Toc407169650}DаЩъyљКЮŒ‚ЊKЉ _Toc407169651}DаЩъyљКЮŒ‚ЊKЉ _Toc407169652}DаЩъyљКЮŒ‚ЊKЉ _Toc407169653}DаЩъyљКЮŒ‚ЊKЉ _Toc407169654}DаЩъyљКЮŒ‚ЊKЉ _Toc407169655}DаЩъyљКЮŒ‚ЊKЉ _Toc407169656}DаЩъyљКЮŒ‚ЊKЉ _Toc407169657}DаЩъyљКЮŒ‚ЊKЉ _Toc407169658эDd шш№BВ
621 №
622 S №A?П џ№€2№WМюк3!HЂ@>КхјЛj
623  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ЁЂЃЄЅІЇЈЉЊЋЌ­ЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯабвгдежзийклмнопрстуфхцчшщъыьэюя№ёђѓєѕіїјљњћќ§ўџ 
624     !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ЁЂЃЄЅІЇЈЉЊЋЌ­ЎўџџџАБВГДЕЖЗИЙКЛМG§џџџ§џџџ§џџџ§џџџТЦпХШЧЪЩЫЬЭЯЮбаевгджизкйнлмротћсуфхшцчщыъьэюяё№ѓђєѕіјїљњќ§џ§џџџRoot EntryџџџџџџџџL РFрpW:ф Н …СЅ НФ-Data
625 џџџџџџџџџџџџЏEWordDocumentKџџџџџџџџU]ObjectPoolNџџџџu їГЊЅ Н …СЅ Н_898096617™UРF їГЊЅ Н їГЊЅ НOle
626 џџџџџџџџџџџџPIC
627 џџџџLMETA џџџџџџџџџџџџШўџџџўџџџ
628 ўџџџ ўџџџўџџџўџџџўџџџўџџџўџџџўџџџўџџџўџџџўџџџ"ўџџџ$%&'()*+,-.ўџџџ0ўџџџўџџџўџџџўџџџ5ўџџџ789:;<=>?@ABCDEFGHIJKLўџџџNўџџџўџџџQRўџџџўџџџUўџџџWXYZ[\]^_`aўџџџcўџџџўџџџfўџџџўџџџiўџџџklmnopqrstuvўџџџxўџџџўџџџ{ўџџџўџџџ~ўџџџ€LЇф№шшЇ.F в џџџ.1  € &џџџџРџХџ`E & MathType ћ€ўTms Rmn- 2
629 @LLз 2
630 @:Hћ€ўTms Rmn-№ 2
631 @# `ћ€ўPSymbol-№ 2
632 @№Ѓг
633 &
634 џџџџћМ"System-№hџџ``cc2ф7&ўџ
635 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2/Щ 3l'ї>ќ(ї>
636 ƒL †ЃƒHМCompObj џџџџ ZObjInfoџџџџ
637 џџџџ Equation Native џџџџџџџџџџџџ<_898096616џџџџџџџџ РF`9УЊЅ Н aЬЊЅ НOle
638 џџџџџџџџџџџџPIC
639  џџџџLMETA џџџџџџџџџџџџCompObjџџџџZL_{ hшш_{.F ѓ џџџ.1  @р&џџџџРџЅџ х & MathTypepћ€ўTms Rmn\G- 2
640 `LLз 2
641 `=Lзћ€ўTms Rmn-№ 2
642 `# `ћ€ўPSymbol-№ 2
643 `№Ггћ џPSymbol-№ 2
644 Рr{
645 &
646 џџџџћМ"System-№ўџ
647 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2/Щ@3('ї>И(ї>
648 ƒL †ГƒL „rџџџ.1ObjInfoџџџџџџџџEquation Native џџџџџџџџџџџџ\_919663166nЮРF aЬЊЅ Н aЬЊЅ НOle
649 џџџџџџџџџџџџ LЧ {аhшшЧ {* M џџџ.1  @€ &џџџџРџВџ@ ђ & MathType`ћўцPSymbol„-2
650 •]}ћ€ўPSymbol-№ 2
651 €3б 2
652 €Ф=гћ€ўTms RmnPIC
653 џџџџ!LMETA џџџџџџџџџџџџ#ШCompObjџџџџ/fObjInfoџџџџџџџџ1-№ 2
654 €<.`ћ€ўМTms Rmn-№ 2
655 €™vРћ€ўTms Rmn-№ 2
656 €Ї0Р
657 2
658 € ``ћ€ўTms Rmn-№2
659 €л
660 ContinuityРРkkРРkkЈ
661 &
662 џџџџћМ"System-№ћ€ўPSymbol-ўџ
663 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9Вq а |cIœgI
664 †"‚.‡v†=ˆ0000LSь c
665  шшSь ^= Њ џџџ.1    &џџџџРџЈџ`Ј &Equation Native џџџџџџџџџџџџ2<_919671330џџџџџџџџЮРF aЬЊЅ Н ЫфЊЅ НOle
666 џџџџџџџџџџџџ3PIC
667 џџџџ4LMETA џџџџџџџџџџџџ6ˆCompObjџџџџMfObjInfoџџџџџџџџOEquation Native џџџџџџџџџџџџPœ MathTypeњ-2@2Ќ^О^zОzJОJ^Ў^F ћ€ўPSymbol%- 2
668 –JЖМ 2
669 ОжЖМ 2
670 ЬШЖМ 2
671 ъ ЖМ 2
672 ЬИЖМ 2
673 ъЦЖМћ€ўМTms Rmn€-№ 2
674 –vР 2
675 •WG+ћ џМTms Rmn-№ 2
676 ічh} 2
677 ѕЂvpћ€ўTms Rmn-№ 2
678 О’tk 2
679 •
680 pР 2
681 Ь„w 2
682 ъЩtk 2
683 СLG 2
684 ЬtpР 2
685 ъ‚r•2
686 р Motion>РkkРРћ`џTms Rmn-№ 2
687 ."hPћ џTms Rmn-№ 2
688 іa hp 2
689 !dw•ћ€ўPSymbol-№ 2
690 • =г 2
691 •-г 2
692 •1б 2
693 С=г 2
694 С-г 2
695 Лр
696 ќМ 2
697 !р
698 §М 2
699 .р
700 яМ 2
701 §р
702 яМ 2
703 ˆр
704 ўМ 2
705 —р
706 яМ 2
707
708 яМћ€ўTms Rmn-№ 2
709 С@ ` 2
710 рЇ  `
711 &
712 џџџџћМ"System-№€Ч4ЦЦ‚Цюўžўџ
713 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9Вq а€zImI
714 „"‡v„"ƒt†=‡G ‡v  
715 †"†"ƒp –} ƒMƒoƒtƒiƒoƒneLЧ {аhшшЧ {* M џџџ.1  @€ &џџџџРџВџ@ ђ &_898095976'["РF ЫфЊЅ Н”ѕЊЅ НOle
716 џџџџџџџџџџџџSPIC
717 !$џџџџTLMETA џџџџџџџџџџџџVШ MathType`ћўцPSymbol„-2
718 •]}ћ€ўPSymbol-№ 2
719 €3б 2
720 €Ф=гћ€ўTms Rmn-№ 2
721 €<.`ћ€ўМTms Rmn-№ 2
722 €™vРћ€ўTms Rmn-№ 2
723 €Ї0Р
724 2
725 € ``ћ€ўTms Rmn-№2
726 €л
727 ContinuityРРkkРРkkЈ
728 &
729 џџџџћМ"System-№ћ€ўPSymbol-ўџ
730 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2АЫ`3ь2Ј2
731 †б‚.‡v†=ˆ0–}  ƒCƒoƒnƒtƒiƒnƒuƒiƒtƒy ƒo
732 †б‡p–}CompObj#%џџџџbZObjInfoџџџџ&џџџџdEquation Native џџџџџџџџџџџџe|_898095975џџџџџџџџ)РF”ѕЊЅ Н”ѕЊЅ НOle
733 џџџџџџџџџџџџgPIC
734 (+џџџџhLMETA џџџџџџџџџџџџjCompObj*,џџџџwZLй ЏЗЈшшй Џ.) h џџџ.1  @Р
735 &џџџџРџГџ€
736 ѓ & MathTypeрњ-@ ћ€ўPSymbol- 2
737 ‹JЖМ 2
738 Љ†ЖМћ€ўTms Rmn-№ 2
739 ‹Tз 2
740 ЉBtk 2
741 €МG 2
742 €…HeatЈРkћ џTms Rmn-№ 2
743 раT}ћ€ўPSymbol-№ 2
744 €=г 2
745 АžќМ 2
746 Сž§М 2
747 гžўМћ€ўTms Rmn-№ 2
748 €e ```
749 &
750 џџџџћМ"System-№ююяwvїtћПсќ{пџя§нноюэяXћПсќ{пџя§нноюэяXћПсќўџ
751 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2АЫ`3ќ2<2
752 „ЖƒT„Жƒt†=ƒG ƒT
753 –}   ƒHƒeƒaƒtџџџџўџџџџџџџџџџLL ЏhЈшшL ЏО< i џџџ.ObjInfoџџџџ-џџџџyEquation Native џџџџџџџџџџџџz|_919671148 D0ЮРF”ѕЊЅ Н „ЋЅ НOle
754 џџџџџџџџџџџџ|PIC
755 /2џџџџ}LMETA џџџџџџџџџџџџCompObj13џџџџŒfObjInfoџџџџ4џџџџŽ‚ƒ„…†‡ˆ‰Š‹ўџџџўџџџўџџџўџџџўџџџ“ўџџџ•–—˜™š›œžŸ ЁЂўџџџЄўџџџўџџџЇЈўџџџўџџџЋўџџџ­ЎЏАБВГДЕЖЗИЙКЛМўџџџОўџџџўџџџСўџџџўџџџФўџџџЦЧШЩЪўџџџЬўџџџўџџџўџџџўџџџбўџџџгдежзийклўџџџнўџџџўџџџрўџџџўџџџуўџџџхцчшщъыьэюяўџџџёўџџџўџџџєўџџџўџџџїўџџџљњћќ§ўўџџџўџџџ1  @@
756 &џџџџРџГџ
757 ѓ & MathTypeрњ-@пћ€ўPSymbol- 2
758 ‹JЖМ 2
759 ЉoЖМћ€ўTms Rmn-№ 2
760 ‹SР 2
761 Љ+tk 2
762 €ŽG 2
763 €ЂSaltРРkkћ џTms Rmnp-№ 2
764 рЇSpћ€ўPSymbol-№ 2
765 €S=г 2
766 А[ќМ 2
767 С[§М 2
768 г[ўМћ€ўTms Rmnp-№ 2
769 €" ````
770 &
771 џџџџћМ"System-№ўџ
772 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9Вq аd|cIœgI
773 „"ƒS„"ƒtEquation Native џџџџџџџџџџџџ€_898095972 7РF „ЋЅ Н€M ЋЅ НOle
774 џџџџџџџџџџџџ‘PIC
775 69џџџџ’L†=ƒG ƒS
776 –}    ƒSƒaƒlƒtLр{ј hшшр{Ž: Ќ џџџ.1  @Р&џџџџРџНџ€§ & MathType`ћўлPSymbol-2
777 ›m}ћ€ўPSymbol-№ 2
778 €@META џџџџџџџџџџџџ”ˆCompObj8:џџџџЃZObjInfoџџџџ;џџџџЅEquation Native џџџџџџџџџџџџІœrг 2
779 €Эrгћ€ўPSymbol-№ 2
780 €‡=гћ€ўTms Rmn-№ 2
781 €Ќ(~ 2
782 €,` 2
783 €F,` 2
784 €)~ћ€ўTms Rmn-№ 2
785 €2Tз 2
786 €‡SР 2
787 €ЭpР2
788 €K
789 EquationъРРРkkРР
790 2
791 €+ofРk2
792 €Жstate•kРkЈћ€ўTms Rmn-№ 2
793 € ` 2
794 €+  ``` 2
795 €Ы ` 2
796 €V `
797 &
798 џџџџћМ"System-№ўџ
799 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2АЫ€38'2Ш(2
800 „r†=„r‚(ƒT‚,ƒS‚,ƒp ‚)–}   ƒEƒqƒuƒaƒtƒiƒoƒn ƒoƒf ƒsƒtƒaƒtƒeћ€ўLKžЌ|шшKž&H ї џџџ.1  `р &џџџџРџЅџ   & MathType`ћђ§лPSymbol„-2
801 Мџ(ћђ§лPSymbol„-№2
802 МБ_898095971џџџџџџџџ>РF€M ЋЅ Н€M ЋЅ НOle
803 џџџџџџџџџџџџЉPIC
804 =@џџџџЊLMETA џџџџџџџџџџџџЌ)ћ>ўРPSymbol„-№2
805 ЊС(ћ>ўРPSymbol„-№2
806 Њ5 )ћ€ўМTms Rmn-№ 2
807  9vР 2
808  ‰vРћ џМTms Rmn-№ 2
809 jh}ћ€ўTms Rmn-№ 2
810  љ ` 2
811  Т  `ћ€ўPSymbol-№ 2
812  Э=г 2
813  =гћ€ўTms Rmn-№ 2
814  ,` 2
815  § ,` 2
816  1 ,`ћ€ўTms Rmn-№ 2
817  Ѕw 2
818  B uР 2
819  ‰
820 vЈ 2
821  С w
822 &
823 џџџџћМ"System-№џџћїџџџџџџџџџџПџџџўџ
824 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2CompObj?AџџџџНZObjInfoџџџџBџџџџПEquation Native џџџџџџџџџџџџР|_898259417їЇEРF ю'ЋЅ Н ю'ЋЅ НДЪ`O@д_?d _?
825 ‡v †=‡v ‡h
826 ‚,ƒw–(–)†=ƒu‚,ƒv‚,ƒw –(–)џџџџџџџџџL{4h@шш{4ЦT Ћ џџџ.1  @&џџџџРџГџГ & MathTypePћ€ўPSymbolF- 2
827 `3Ole
828 џџџџџџџџџџџџТPIC
829 DGџџџџУLMETA џџџџџџџџџџџџХhCompObjFHџџџџЫfбћ€ўTimes New Roman-№ 2
830 `CpР
831 &
832 џџџџћМ"Systemn-№"Systemnўџ
833 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqDг —EHЗDиЗD
834 †бƒpObjInfoџџџџIџџџџЭEquation Native џџџџџџџџџџџџЮ<_898095970 <LРF ю'ЋЅ Н ЈRЋЅ НOle
835 џџџџџџџџџџџџЯPIC
836 KNџџџџаLMETA џџџџџџџџџџџџвHCompObjMOџџџџмZObjInfoџџџџPџџџџоL3в„Мшш3вN3  џџџ.1  ` &џџџџРџБџ` & MathTypeњ-§Ш§Kћ€ўTms Rmn- 2
837 `\pР 2
838 kpРћ џTms Rmn-№ 2
839 ъцrefWb>ћ€ўPSymbol-№ 2
840 `‚=гћ€ўPSymbol-№ 2
841 kDdМ 2
842 ‰шrг
843 &
844 џџџџћМ"System-№?џjЊjЊjЊ?џўџ
845 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.24Щ@w: &п50(п5
846 ƒp†=„dƒp„r Equation Native џџџџџџџџџџџџп\_898167944џџџџџџџџSРF@IZЋЅ Н kЋЅ НOle
847 џџџџџџџџџџџџсPIC
848 RUџџџџтLƒrƒeƒf1L“ Œ”шш“ Œfh k џџџ.1   €
849 &џџџџРџІџ@
850 Ц & MathTypeР њ"-=@=9ћ€ўPSymbolН- 2
851 xJЖМ 2
852 Э META џџџџџџџџџџџџфшCompObjTVџџџџ№fObjInfoџџџџWџџџџђEquation Native џџџџџџџџџџџџѓ|ЖМ 2
853  Фrгћ€ўTimes New Roman P-№ 2
854 xpР 2
855 ЭЧz• 2
856   gРћџTimes New Romand€-№ 2
857 йМrefcpG 2
858 БrefcpGћ€ўPSymbol-№ 2
859  –+г 2
860  ;=гћ€ўTimes New Romand€-№ 2
861  € 0Р
862 &
863 џџџџћМ"Systemn-№№ 2
864 ўџ
865 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9Вqјв`їCHCиC
866 „Жƒp ƒrƒeƒf
867 „Жƒz†+„r ƒrƒeƒf
868 ƒg†=ˆ0L{Иhшш_898168058QџџџџZРFр9tЋЅ Нр9tЋЅ НOle
869 џџџџџџџџџџџџѕPIC
870 Y\џџџџіLMETA џџџџџџџџџџџџјЈ{ц@ Щ џџџ.1  @Р&џџџџDц& & MathTypepћ€ўPSymbol- 2
871 `@rгћџTimes New Romanз-№ 2
872 С-refcpG&,MathTypeUU 
873 „r ƒrƒeƒf
874 &
875 џџџџћМ"Systemn-№"SystemnObjInfo[]џџџџџEquation Native џџџџџџџџџџџџ<_919671400Ў`ЮРFр9tЋЅ Н Ы•ЋЅ НOle
876 џџџџџџџџџџџџўџџџўџџџўџџџ 
877    ўџџџўџџџўџџџўџџџўџџџ!ўџџџўџџџ$%&ўџџџўџџџ)ўџџџ+,-./012345ўџџџ7ўџџџўџџџ:ўџџџўџџџ=ўџџџ?@ABCDEFGHIўџџџKўџџџўџџџNўџџџўџџџQўџџџSTUVWXўџџџўџџџўџџџўџџџ]ўџџџ_`abcdўџџџўџџџўџџџўџџџiўџџџklmnopўџџџrўџџџўџџџўџџџўџџџwўџџџyz{|}~ўџџџ€јв іЌJїПр 
878 „r ƒrƒeƒfLSь c
879  шшSь ^= Њ џџџ.1    &џџџџРџЈџ`Ј & MathTypeњ-2@2Ќ^О^zОzJОJ^ЎPIC
880 _bџџџџLMETA џџџџџџџџџџџџˆCompObjacџџџџfObjInfoџџџџdџџџџ  
881   8 !"#$&%('*)+,-/.103245679;V:<=>?@ABDCEFGHIJKLMONQPSRUTYWoXZ[\]^_`bacedfghnijklmpr‡qstvu|wxyz{}~†^F ћ€ўPSymbol%- 2
882 –JЖМ 2
883 ОжЖМ 2
884 ЬШЖМ 2
885 ъ ЖМ 2
886 ЬИЖМ 2
887 ъЦЖМћ€ўМTms Rmn€-№ 2
888 –vР 2
889 •WG+ћ џМTms Rmn-№ 2
890 ічh} 2
891 ѕЂvpћ€ўTms Rmn-№ 2
892 О’tk 2
893 •
894 pР 2
895 Ь„w 2
896 ъЩtk 2
897 СLG 2
898 ЬtpР 2
899 ъ‚r•2
900 р Motion>РkkРРћ`џTms Rmn-№ 2
901 ."hPћ џTms Rmn-№ 2
902 іa hp 2
903 !dw•ћ€ўPSymbol-№ 2
904 • =г 2
905 •-г 2
906 •1б 2
907 С=г 2
908 С-г 2
909 Лр
910 ќМ 2
911 !р
912 §М 2
913 .р
914 яМ 2
915 §р
916 яМ 2
917 ˆр
918 ўМ 2
919 —р
920 яМ 2
921
922 яМћ€ўTms Rmn-№ 2
923 С@ ` 2
924 рЇ  `
925 &
926 џџџџћМ"System-№€Ч4ЦЦ‚Цюўžўџ
927 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9Вq а$h`IЌRI
928 ‡G ‡v  Equation Native џџџџџџџџџџџџ@_943425990џџџџџџџџgЮРF Ы•ЋЅ Н Ы•ЋЅ НOle
929 џџџџџџџџџџџџCompObjfhџџџџ fўџ
930 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩгЈ`hI8cI
931 ‡G ‡v
932 †=†"‡v‚.†"‡v†"ˆ2…Љ†з‡v†"‡g„Д„С„С ƒrƒeƒf
933 †+‡F ‡v
934 †+‡D ‡vObjInfoџџџџiџџџџ"Equation Native џџџџџџџџџџџџ#Ф_943427134я„lЮРF Ы•ЋЅ Н 5ЎЋЅ НOle
935 џџџџџџџџџџџџ'PIC
936 knџџџџ(LMETA џџџџџџџџџџџџ*шCompObjmoџџџџ6fObjInfoџџџџpџџџџ8LѕвМшшѕвЦT f џџџ.1  ` &џџџџРџЃџр & MathTypeрћ€ўTimes New Roman- 2
937 p5G 2
938 pрTз 2
939 НбFъћџTimes New Roman)-№ 2
940 а8T 2
941 Tћ€ўPSymbol -№ 2
942 pn=г 2
943 pИ-г 2
944 pаб 2
945 Н+гћ€ўМTimes New Roman-№ 2
946 pœvРћ€ўTimes New Roman)-№ 2
947 pW.`2
948 Н@ ````````
949 &
950 џџџџћМ"Systemn-№ ```````ўџ
951 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩгdШcIМgI
952 ƒG ƒT
953 †=†"‡v‚.†"ƒT †+ƒF ƒT
954 †+ƒD ƒTL‹іиашш‹іЦT f џџџ.1  €Р&џџџџРџЈџ€( &Equation Native џџџџџџџџџџџџ9€_943427152џџџџџџџџsЮРF 5ЎЋЅ Н`]ЗЋЅ НOle
955 џџџџџџџџџџџџ;PIC
956 ruџџџџ<LMETA џџџџџџџџџџџџ>шCompObjtvџџџџJfObjInfoџџџџwџџџџLEquation Native џџџџџџџџџџџџM| MathType№ћ€ўTimes New Roman- 2
957 k5G 2
958 kЧSР 2
959 НбFъћџTimes New Roman)-№ 2
960 Ы>S€ 2
961 ‡S€ћ€ўPSymbol -№ 2
962 kU=г 2
963 kŸ-г 2
964 kЗб 2
965 Н+гћ€ўМTimes New Roman-№ 2
966 kƒvРћ€ўTimes New Roman)-№ 2
967 k>.`2
968 Н@ ````````
969 &
970 џџџџћМ"Systemn-№ ```````ўџ
971 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩг`8zIˆzI
972 ƒG ƒS
973 †=†"‡v‚.†"ƒS†+ƒF ƒS
974 †+ƒD ƒS_898169173ц.zРF п"ЎЅ Нр,ЎЅ НOle
975 џџџџџџџџџџџџOPIC
976 y|џџџџPLMETA џџџџџџџџџџџџRЈL4,@шш4 Ы џџџ.1  р&џџџџQ1 & MathTypePћ€ўTimes New Roman(- 2
977 `FFъћџTimes New Roman -№ 2
978 РїT&,MathTypeUU 
979 ƒF ƒTt Word 6
980 &
981 џџџџћМ"Systemn-№јв іЌJїПD<
982 ƒF ƒT№ LэWTшшэWўT Ы џџџ.1   Р&џџџџK 6 &ObjInfo{}џџџџYEquation Native џџџџџџџџџџџџZ<_898169192џџџџџџџџ€РFр,ЎЅ Нр,ЎЅ НOle
983 џџџџџџџџџџџџ[PIC
984 ‚џџџџ\LMETA џџџџџџџџџџџџ^ЈObjInfoƒџџџџeEquation Native џџџџџџџџџџџџf< MathType`ћ€ўTimes New Roman(- 2
985 `FFъћџTimes New Roman-№ 2
986 РќS€&,MathTypeUU 
987 ƒF ƒSU
988 &
989 џџџџћМ"Systemn-№"Systemnјв іЌJїПO
990 ƒF ƒS1_943427274q‹†ЮРFр,ЎЅ НЈ3ЎЅ НOle
991 џџџџџџџџџџџџgPIC
992 …ˆџџџџhLMETA џџџџџџџџџџџџjЈL4,@шш4 Ы џџџ.1  р&џџџџQ1 & MathTypePћ€ўTimes New Roman(- 2
993 `FFъћџTimes New Roman -№ 2
994 РїT&,MathTypeUU 
995 ƒF ƒTt Word 6
996 &
997 џџџџћМ"Systemn-№ўџ
998 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩгœcIАgI
999 ƒD ƒTLэWTшшCompObj‡‰џџџџqfObjInfoџџџџŠџџџџsEquation Native џџџџџџџџџџџџt8_943427294џџџџџџџџЮРFРЯ<ЎЅ НРЯ<ЎЅ НOle
1000 џџџџџџџџџџџџuPIC
1001 ŒџџџџvLMETA џџџџџџџџџџџџxЈCompObjސџџџџfэWўT Ы џџџ.1   Р&џџџџK 6 & MathType`ћ€ўTimes New Roman(- 2
1002 `FFъћџTimes New Roman-№ 2
1003 РќS€&,MathTypeUU 
1004 ƒF ƒSU
1005 &
1006 џџџџћМ"Systemn-№"Systemnўџ
1007 џџџџЮРFMicrosoft Equation 3.0 DS Eqўџџџўџџџўџџџўџџџ…ўџџџ‡ˆ‰Š‹ŒŽ‘’ўџџџ”ўџџџўџџџ—ўџџџўџџџšўџџџœžŸ ЁЂЃўџџџЅўџџџўџџџўџџџўџџџЊўџџџЌ­ЎЏАБВГўџџџЕўџџџўџџџўџџџўџџџКўџџџМНОПРСТУФХўџџџЧўџџџўџџџЪўџџџўџџџЭўџџџЯабвгдежўџџџиўџџџўџџџўџџџўџџџнўџџџпрстуфхцчшўџџџъўџџџўџџџэўџџџўџџџ№ўџџџђѓєѕіїўџџџљўџџџўџџџќ§ўџџџўџџџўџџџuation Equation.3є9ВqЩг,zI|zI
1008 ƒD ƒSLp ž||шшp ž^= k џџџ.1  ``
1009 &џџџџРџЄџ
1010  &ObjInfoџџџџ‘џџџџEquation Native џџџџџџџџџџџџ‚8_898095958џџџџ`”РFРI ЌЅ НръЌЅ НOle
1011 џџџџџџџџџџџџƒPIC
1012 “–џџџџ„LMETA џџџџџџџџџџџџ†CompObj•—џџџџ“ZObjInfoџџџџ˜џџџџ• MathType`ћ€ўPSymbol- 2
1013  3б 2
1014  >=г 2
1015  wб 2
1016  /=гћ џTms Rmn-№ 2
1017 єb2pћ€ўTms Rmn-№ 2
1018  pРћ€ўTms Rmn-№ 2
1019  €.`ћ€ўМTms Rmn-№ 2
1020  еG+ћ џМTms Rmn-№ 2
1021  vpћ€ўџ@Script-№ 2
1022  i F™
1023 &
1024 џџџџћМ"System-№Tms Rmn-№ 2
1025 `\ўџ
1026 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ŸЬ`w4P‡3а‡3
1027 †б ˆ2
1028 ƒp†=†б‚.‡G ‡v
1029 †=ScriptFEquation Native џџџџџџџџџџџџ–|_898095949г5›РFръЌЅ Н |4ЌЅ НOle
1030 џџџџџџџџџџџџ˜PIC
1031 šџџџџ™LLіэашшіэЖG є џџџ.1  Р€&џџџџРџЅџ@e & MathType0ћ€ўМTms Rmn- 2
1032 `9vР 2
1033 `Nnзћ€ўTms Rmn-№ 2
1034 `є.`ћ€ўPSymbolMETA џџџџџџџџџџџџ›CompObjœžџџџџЄZObjInfoџџџџŸџџџџІEquation Native џџџџџџџџџџџџЇ<-№ 2
1035 `Š=гћ€ўTms Rmn-№ 2
1036 `m0Р
1037 &
1038 џџџџћМ"System-№W(#?1`/ƒ‡zўџ
1039 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.26Щ 74'ї?Ќ(ї?
1040 ‡v‚.‡n†=ˆ0n_898260247ўЂРF |4ЌЅ Н@mNЌЅ НOle
1041 џџџџџџџџџџџџЈPIC
1042 ЁЄџџџџЉLMETA џџџџџџџџџџџџЋLв4М@шшв4І4 ы џџџ.1  `&џџџџРџЅџ Ѕ & MathTypePћ€ўTms Rmn- 2
1043 `7vЈћ џTms Rmnf-№ 2
1044 РьT}ћ€ўPSymbol-№ 2
1045 `=гћ€ўTms Rmnf-№ 2
1046 `S0Р
1047 &
1048 џџџџћМ"System-№ЋBџџўBџџQCџџ*­.+ˆI/,ўџ
1049 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.24Щ w:ь'п5,,п5
1050 ƒv ƒT
1051 †=ˆ0HCompObjЃЅџџџџДZObjInfoџџџџІџџџџЖEquation Native џџџџџџџџџџџџЗ<_898260246џџџџџџџџЉРF@mNЌЅ Н 6_ЌЅ НOle
1052 џџџџџџџџџџџџИPIC
1053 ЈЋџџџџЙLMETA џџџџџџџџџџџџЛЈCompObjЊЌџџџџЦZLЗW`TшшЗW~G @ џџџ.1   &џџџџРџОџРо & MathType`ћ€ўPSymbol- 2
1054 `*ЖМ 2
1055 `ЖМћ€ўTms Rmn-№ 2
1056 `цvЈ 2
1057 `еnРћрўTms Rmn-№ 2
1058 дTЁћрўTms Rmn-№ 2
1059 `‘/Pћ€ўPSymbol-№ 2
1060 `х=гћ€ўTms Rmn-№ 2
1061 `
1062 0Р
1063 &
1064 џџџџћМ"System-№џџџџўџџџџџўџ|”(|”ўџ
1065 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ObjInfoџџџџ­џџџџШEquation Native џџџџџџџџџџџџЩ\_943276062AшАЮРF 6_ЌЅ Н@зfЌЅ НOle
1066 џџџџџџџџџџџџЫ)Щ@_=Ьo<Po<
1067  e€„Жƒv
1068 ƒT‚/ e€„Жƒn†=ˆ0Lв4М@шшв4І4 ы џџџ.1  `&џџџџРџЅџ Ѕ &PIC
1069 ЏВџџџџЬLMETA џџџџџџџџџџџџЮCompObjБГџџџџзfObjInfoџџџџДџџџџй MathTypePћ€ўTms Rmn- 2
1070 `7vЈћ џTms Rmnf-№ 2
1071 РьT}ћ€ўPSymbol-№ 2
1072 `=гћ€ўTms Rmnf-№ 2
1073 `S0Р
1074 &
1075 џџџџћМ"System-№ЋBџџўBџџQCџџ*­.+ˆI/,ўџ
1076 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩгœcIАgI
1077 ƒv ƒTLбWTшшбWv3 1 џџџ.1   &џџџџРџГџРг &Equation Native џџџџџџџџџџџџк8_898095948џџџџџџџџЗРF@зfЌЅ НрЧ€ЌЅ НOle
1078 џџџџџџџџџџџџлPIC
1079 ЖЙџџџџмLMETA џџџџџџџџџџџџоˆCompObjИКџџџџщZObjInfoџџџџЛџџџџыEquation Native џџџџџџџџџџџџь\ MathType`ћ€ўМTms Rmnї- 2
1080 `6nз 2
1081 `Эnз 2
1082 `юG+ћ џМTms RmnG-№ 2
1083 Р9vpћ€ўTms Rmnї-№ 2
1084 `.` 2
1085 `™.`ћ€ўPSymbol-№ 2
1086 `Yб 2
1087 `‘=гћ€ўTms Rmnї-№ 2
1088 `ipР
1089 &
1090 џџџџћМ"System-№RyиџTyКџVy‘џWyФџ‘‘ЖџA’‘џL’Єџf’ўџ
1091 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2§Ы@џ4дя5d я5
1092 ‡n‚.†бp†=‡n‚.‡G ‡v^єш^^^^^^L{WhTшш_898095947ФЕОРFрЧ€ЌЅ Нр1™ЌЅ НOle
1093 џџџџџџџџџџџџюPIC
1094 НРџџџџяLMETA џџџџџџџџџџџџёˆ{W68 Ј џџџ.1   @&џџџџРџЈџШ & MathType`ћ€ўМTms Rmn- 2
1095 `1G+ћ џМTms Rmnœf-№ 2
1096 Р|vp
1097 &
1098 џџџџћМ"System-№џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџCompObjПТџџџџјZObjInfoџџџџџџџџџџџџњOle10NativeСУџџџџћ„Equation Native џџџџџџџџџџџџў<ўџ
1099 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2€
1100 ‡G ƒn
1101 †+„r ƒn
1102 ƒg‡k†+‡u ƒn
1103 …DƒtЩЫ O?D_>д _>
1104 ‡G ‡viL_898095946џџџџџџџџЦРFр1™ЌЅ НРњЉЌЅ НOle
1105 џџџџџџџџџџџџџPIC
1106 ХШџџџџLMETA џџџџџџџџџџџџ(ўџџџ 
1107 ўџџџ ўџџџўџџџўџџџўџџџўџџџўџџџўџџџ ўџџџўџџџўџџџўџџџ%ўџџџ'()*+,-./012ўџџџ4ўџџџўџџџ7ўџџџўџџџ:ўџџџ<=>?@ABўџџџDўџџџўџџџўџџџўџџџIўџџџKLMNOPўџџџRўџџџўџџџўџџџўџџџWўџџџYZ[\]^_`ўџџџbўџџџўџџџeўџџџўџџџhўџџџjklmnopqўџџџsўџџџўџџџvўџџџўџџџўџџџzўџџџ|}~€LWРTшшWf@ § џџџ.1   &џџџџРџЈџРШ & MathType`ћ€ўМTms Rmn<- 2
1108 `6nз 2
1109 `WG+ 2
1110 `ю0Рћ џМTms Rmn-№ 2
1111 РЂvpћ€ўTms Rmn<-№ 2
1112 `.`ћ€ўPSymbol-№ 2
1113 `Б=г
1114 &
1115 џџџџћМ"System-№џn€ ўџ
1116 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2€
1117 ‚(‡G ‡n
1118 †-„r ƒn
1119 ƒg‡k‚)†З‡n†=‡0CompObjЧЪџџџџ ZObjInfoџџџџџџџџџџџџ Ole10NativeЩЫџџџџ„Equation Native џџџџџџџџџџџџ\5Щ@o9 &7Hœ'7H
1120 ‡n‚.‡G ‡v
1121 †=‡0џџџ.1L4p@шш4>P § џџџ.1  €&џџџџРџГџ@Г &_943276497^ЮЮРFРњЉЌЅ Н УКЌЅ НOle
1122 џџџџџџџџџџџџPIC
1123 ЭаџџџџLMETA џџџџџџџџџџџџ( MathTypePћ€ўМTms Rmn- 2
1124 `6nз 2
1125 `ipзћ€ўTms Rmn-№ 2
1126 `.`ћ€ўPSymbol-№ 2
1127 `Yб 2
1128 `Ё=гћ€ўTms Rmn-№ 2
1129 `„0Р
1130 &
1131 џџџџћМ"System-№ц ўџ
1132 џџџџЮРFMicrosoft Equation 3.0 DS EqCompObjЯбџџџџfObjInfoџџџџвџџџџ!Equation Native џџџџџџџџџџџџ"@_898095942gМеРF`ыУЌЅ Н`ыУЌЅ Нuation Equation.3є9ВqЩг$œcIАgI
1133 ‡n‚.†"ƒp†=ˆ0L“ Сшш“ СnA } џџџ.1  €€
1134 &џџџџРџКџ@
1135 : &Ole
1136 џџџџџџџџџџџџ#PIC
1137 дзџџџџ$LMETA џџџџџџџџџџџџ&(CompObjжиџџџџ3Z MathType`ћ€ўPSymbolq- 2
1138 Р3б 2
1139 Р>=г 2
1140 Рwб 2
1141 Р/=гћ џTms Rmnв -№ 2
1142 b2pћ€ўTms Rmn<-№ 2
1143 РpРћ€ўTms Rmnв -№ 2
1144 Р€.` 2
1145 Ы~Я 2
1146 уt ~Яћ€ўМTms Rmn<-№ 2
1147 РеG+ћ џМTms Rmnв -№ 2
1148  vpћ€ўџ@Script-№ 2
1149 Рi F™
1150 &
1151 џџџџћМ"System-№+++
1152     ўџ
1153 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.25Щ`o9ш&7Hx(7H
1154 †б ˆ2
1155 ƒp†=†б‚."‡G ‡v
1156 †=Script"FџџџџџџџџџџџџџџџџџџџџџObjInfoџџџџйџџџџ5Equation Native џџџџџџџџџџџџ6|_943276545џџџџџџџџмЮРF`ыУЌЅ Н }хЌЅ НOle
1157 џџџџџџџџџџџџ8L{Сhшш{СцB х џџџ.1  €@&џџџџdКџЄ: & MathType`ћ€ўTms Rmn<- 2
1158 Ыa~Яћ€ўМTms Rmnв -№ 2
1159 Р1G+ћ џМTms Rmn<-№PIC
1160 лоџџџџ9LMETA џџџџџџџџџџџџ;шCompObjнпџџџџCfObjInfoџџџџрџџџџE 2
1161 |vp&,MathTypeUU 
1162 "‡G ‡v
1163 &
1164 џџџџћМ"System-№
1165 6"џўџ
1166 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩг ,zI|zI
1167 "‡G ‡vEquation Native џџџџџџџџџџџџF<_898095940џџџџџџџџуРFрт7­Ѕ Нрт7­Ѕ НOle
1168 џџџџџџџџџџџџGPIC
1169 тхџџџџHLL{WhTшш{WVE Ј џџџ.1   @&џџџџРџЈџШ & MathType`ћ€ўМTms Rmn+- 2
1170 `1G+ћ џМTms Rmn-№ 2
1171 Р|vp
1172 &
1173 џџџџћМ"System-№бхb4|-vхb4|-META џџџџџџџџџџџџJˆCompObjфцџџџџQZObjInfoџџџџчџџџџSEquation Native џџџџџџџџџџџџT<ўџ
1174 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2)Щ _=Фo<To<
1175  e€‡G
1176  ‡vLуСчшш_943276295џџџџџџџџъЮРF@эЌЅ Н@эЌЅ НOle
1177 џџџџџџџџџџџџUPIC
1178 щьџџџџVLMETA џџџџџџџџџџџџX(уСЮG  џџџ.1  €@&џџџџРџКџ: & MathType`ћ€ўTms Rmn+- 2
1179 Ыa~Яћ€ўМTms Rmn-№ 2
1180 Р1G+ 2
1181 РB.` 2
1182 РЯnз 2
1183 РH0РћрўМTms Rmn+-№ 2
1184 {vћ€ўPSymbol-№ 2
1185 Р =г
1186 &
1187 џџџџћМ"System-№џџџџџџџџџУџџџчџџџчџџўџ
1188 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩг@МcIАgI
1189  e€"‡G e   e ‡v  e€‡.‡n†=ˆ0Lz4Ќ@шшCompObjыэџџџџafObjInfoџџџџюџџџџcEquation Native џџџџџџџџџџџџd\_943276570кЫёЮРF@эЌЅ Нрx­Ѕ НOle
1190 џџџџџџџџџџџџfPIC
1191 №ѓџџџџgLMETA џџџџџџџџџџџџi(CompObjђѕџџџџrfz4†O § џџџ.1  р&џџџџРџГџ Г & MathTypePћ€ўМTms Rmn- 2
1192 `6nз 2
1193 `Ь0Рћ€ўTms Rmn-№ 2
1194 `.`ћ€ўPSymbol-№ 2
1195 `Yб 2
1196 `=гћ€ўTms Rmn-№ 2
1197 `ipР
1198 &
1199 џџџџћМ"System-№F*Fdмє<`„ WBВ WBўџ
1200 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9Вq`
1201 †бƒp ƒn†+ˆ1
1202 †З‡n†=‡0џџџџџџџџџџџџџџџЩг$<ŠIр‹I
1203 ‡n‚.†"ƒp†=ˆ0 ObjInfoџџџџџџџџџџџџtOle10NativeєіџџџџudEquation Native џџџџџџџџџџџџw@_898191139џџџџљРFрx­Ѕ НРA0­Ѕ НOle
1204 џџџџџџџџџџџџxPIC
1205 јћџџџџyLMETA џџџџџџџџџџџџ{ˆCompObjњќџџџџŠZL) ETlшш) EІ4 Ј џџџ.1  р
1206 &џџџџРџГџр “ & MathTypeРњ-§Z§єћ>ўРPSymbol-2
1207 j((ћ>ўРPSymbol-№2
1208 jј)ћ€ў‚ƒ„…†‡ˆ‰ўџџџ‹ўџџџўџџџŽўџџџўџџџ’ўџџџ”•–—˜™ўџџџ›ўџџџўџџџўџџџўџџџ ўџџџЂЃЄЅІЇЈЉЊЋЌ­ЎЏўџџџБўџџџўџџџДЕўџџџўџџџИўџџџКЛМНОПРСТУФХЦўџџџШўџџџўџџџЫўџџџўџџџЮўџџџабвгдежзийклмнопрстуфхцчшщъыьэюя№ёђѓєѕіїјўџџџњўџџџўџџџ§ўџTms Rmn-№ 2
1209 `EK 2
1210 ‰ nР 2
1211 `­Tз 2
1212 `,SРћрўTms Rmn€-№ 2
1213 -[nћ€ўPSymbol-№ 2
1214 kБЖМ 2
1215 ‰dЖМћ€ўTms Rmn€-№ 2
1216 `š,`ћ€ўPSymbol-№ 2
1217 `ж=гћ€ўTms Rmn€-№ 2
1218 ` 0Р
1219 &
1220 џџџџћМ"System-№@@џ@џќ@@@џќџўџўџў@ўџ
1221 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.24Щ€w:L(п5м)п5
1222  e€ƒK e ƒn e€
1223  e€„Ж
1224  e€„Жƒn
1225  e€ƒT‚,ƒS
1226 –(–) e€†=ˆ0-№ 2
1227 -[ObjInfoџџџџ§џџџџŒEquation Native џџџџџџџџџџџџœ_898191138~CРFрт7­Ѕ Нрт7­Ѕ НOle
1228 џџџџџџџџџџџџLWWTTшшWWvD Ј џџџ.1    &џџџџРџЅџрХ & MathType`ћ€ўTms Rmn- 2
1229 `EKћ џTms Rmn-№ 2
1230 Р\np
1231 &
1232 џџџџћМ"SystemPIC
1233 џџџџџ‘LMETA џџџџџџџџџџџџ“ˆCompObjџџџџšZObjInfoџџџџџџџџœ-№FтЌEz џџЪ FВЌEž џџи F*Fўџ
1234 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.24Щ w:X(п5˜,п5
1235 ƒK ƒnL
1236  ДlшшEquation Native џџџџџџџџџџџџ<_898167540иXРF 
1237 A­Ѕ Н`œb­Ѕ НOle
1238 џџџџџџџџџџџџžPIC
1239  џџџџŸL
1240  = Л џџџ.1  р &џџџџРџОџрž & MathTypeРњ-яŸял§h§˜
1241 ю
1242 тћ€ўTms Rmn- 2
1243 R0uР 2
1244 R–r• 2
1245 ]ЩD
1246 2
1247 {Dtk 2
1248 `7vЈ 2
1249 `Šr• 2
1250 k’D
1251 2
1252 ‰ФDtk 2
1253 n
1254 ;w
1255 2
1256 y META џџџџџџџџџџџџЁЈCompObj
1257 џџџџАZObjInfoџџџџ џџџџВEquation Native џџџџџџџџџџџџГœDr•
1258 2
1259 — ,Dtkћ€ўPSymbol-№ 2
1260 RY=г 2
1261 `M=г 2
1262 n
1263 Ј=гћ€ўTms Rmn-№ 2
1264 RkcosЈР•ћ€ўPSymbol-№ 2
1265 R…fЧ 2
1266 ]нlг 2
1267 kІfЧћ€ўTms Rmn-№ 2
1268 n
1269 * `
1270 &
1271 џџџџћМ"System-№Ч&zЧ&ŒЧ&žЧ&АЧ&ТЧ&ЪЧ&HЧ&‚Ч&``Еўџ
1272 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.26Щ€3ФŸ2TŸ2
1273 ƒu†=ƒr‚c‚o‚s„fƒD„lƒDƒtƒv†=ƒrƒD„fƒDƒtƒw†=ƒDƒrƒDƒt 1L Сршш_898095969џџџџџџџџРF`œb­Ѕ Н€=j­Ѕ НOle
1274 џџџџџџџџџџџџЖPIC
1275  џџџџЗLMETA џџџџџџџџџџџџЙh СnE œ џџџ.1  € &џџџџРџЇџР
1276 ' & MathTypepћэ§тPSymbol„-2
1277 НН(ћэ§тPSymbol„-№2
1278 НJ
1279 )ћ€ўМTms Rmn-№ 2
1280  1G+ћ џМTms Rmn-№ 2
1281 |vpћ€ўPSymbol-№ 2
1282  ‹=гћ€ўTms Rmn-№ 2
1283  CG 2
1284  TG 2
1285  ^Gћ џTms Rmn-№ 2
1286 Uup 2
1287 jvb 2
1288 v w•ћ€ўTms Rmn-№ 2
1289  є,` 2
1290  ў,`
1291 &
1292 џџџџћМ"System-№ўџ
1293 џџџџРFMicrosoft Equation 2.0 DS EqCompObjџџџџЧZObjInfoџџџџџџџџЩEquation Native џџџџџџџџџџџџЪ|_943427621j/ЮРF€=j­Ѕ Н .„­Ѕ Нuation Equation.26Щ`џ303А3
1294 ‡G ‡v
1295 †=ƒG ƒu
1296 ‚,ƒG ƒv
1297 ‚,ƒG ƒw
1298 –(–)Lг'т”pшшг'тіG  џџџ.Ole
1299 џџџџџџџџџџџџЬPIC
1300 џџџџЭLMETA џџџџџџџџџџџџЯH
1301 CompObjџџџџљf1  € $&џџџџРџБџр#1 & MathType0њ-00ёќќё0z 0„%
1302 %
1303 ћ\§лPSymbol„-2
1304 в 1{ћ\§лPSymbol„-№2
1305 в }ћ€ўTms Rmn-№ 2
1306 ђ5G 2
1307 ђ-uР
1308 2
1309 žuwР 2
1310 М­r•
1311 2
1312 žŠ uvРЈ 2
1313 МА r• 2
1314  ЄvЈ 2
1315  љw 2
1316 : +Fъ2
1317 vж advectionРРЈЈЈkkРР2
1318 ЖзmetricЈk•kЈ2
1319 x
1320 ЯCoriolisР•kРkk•2
1321 И сForcingъР•ЈkРР2
1322 И ш
1323 Dissipatiok••kРРkkР 2
1324 И #nРћ џTms Rmn9-№ 2
1325 RGup 2
1326 š ъupћ€ўPSymbol-№ 2
1327 ђT=г 2
1328 ђ–-г 2
1329 ђб 2
1330 “œ-г 2
1331 “M-г 2
1332 ŸBьМ 2
1333 дBэМ 2
1334
1335 BюМ 2
1336 ŸœќМ 2
1337 дœ§М 2
1338
1339 œўМ 2
1340  œ-г 2
1341  у-г 2
1342  ш +г 2
1343 : +г 2
1344 !SќМ 2
1345 aS§М 2
1346 ”SяМ 2
1347 SяМ 2
1348 =SяМ 2
1349 Ђ SўМ 2
1350 зSяМ 2
1351 L
1352 SяМ 2
1353 С SяМ 2
1354 ВьМ 2
1355 aэМ 2
1356 %яМ 2
1357 šяМ 2
1358 яМ 2
1359  юМ 2
1360 зяМ 2
1361 L
1362 яМ 2
1363 С яМћ€ўTms Rmn9-№ 2
1364 ђ `2
1365 ђэ
1366 ``````````2
1367 ђ­  ````````2
1368 “@ ```````` 2
1369 “Щ ` 2
1370 žђ
1371  ` 2
1372 “c ````2
1373  @ ```````` 2
1374  Щ ` 2
1375  +  ` 2
1376  л `2
1377 : @ ```````` 2
1378 : Ы `2
1379 : ƒ
1380 ``````````2
1381 : C
1382
1383 ``````````2
1384 :  `````ћ€ўМTms Rmn-№ 2
1385 ђсvРћ€ўTms Rmn9-№ 2
1386 ђœ.` 2
1387 ž– tankЈР 2
1388  { sin•kР 2
1389  1cosЈР• 2
1390 И /kћ€ўPSymbol-№ 2
1391 ž’ fЧ 2
1392  d fЧ 2
1393  KfЧћ€ўTms Rmn9-№ 2
1394  Ж2Р 2
1395  2Рћ€ўPSymbol-№ 2
1396  }W' 2
1397  вW'
1398 &
1399 џџџџћМ"System-№џџѕџџќџџ№џџ№џџџџџџџўџ
1400 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩг$PcIРgI
1401 ƒG ƒu
1402 †=†" ‡v‚.†"ƒu                          †" ƒuƒwƒr†"ƒuƒv ObjInfoџџџџџџџџћEquation Native џџџџџџџџџџџџќ@_8980959676JРF .„­Ѕ Н@Я‹­Ѕ НOle
1403 џџџџџџџџџџџџ ўџџџўџџџ ўџџџ ўџџџўџџџўџџџўџџџўџџџўџџџ !"#$%&'()*+,-./0123456ўџџџ8ўџџџўџџџ;<=>?@AўџџџўџџџDўџџџFGHўџџџJўџџџўџџџўџџџўџџџOўџџџQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstўџџџvўџџџўџџџyz{|}~€‚t‚a‚n„Цƒr–{–}            †" †"ˆ2…Љƒv‚s‚i‚n„Ц †+ˆ2…Љƒw‚c‚o‚s„Ц–{–}         †+ ƒF ƒu
1404  †+ƒD ƒu
1405                         –}ƒaƒdƒvƒeƒcƒtƒiƒoƒnƒmƒeƒtƒrƒiƒcƒCƒoƒrƒiƒoƒlƒiƒs e€ƒFƒoƒrƒcƒiƒnƒg‚/ƒDƒiƒsƒsƒiƒpƒaƒtƒiƒoƒn
1406 –{L=4Д@шш=4f: P џџџ.1   &џџџџРџЅџрЅ & MathTypeP
1407 &
1408 џџџџPIC
1409 џџџџ
1410 LMETA џџџџџџџџџџџџ ШCompObjџџџџZObjInfoџџџџ џџџџўџ
1411 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2АЫ 3t'2Д+2
1412 џ,(1'ј"іўyLГ: p €шшГ: ў@ Ю џџџ.Equation Native џџџџџџџџџџџџ<_943427781џџџџџџџџ#ЮРF@Я‹­Ѕ Нa­­Ѕ НOle
1413 џџџџџџџџџџџџPIC
1414 "%џџџџLMETA џџџџџџџџџџџџШCompObj$&џџџџ7fObjInfoџџџџ'џџџџ9Equation Native џџџџџџџџџџџџ:а1   €&џџџџРџМџ@М & MathTypeањ-ИИ„„Иš ИЕћўлPSymbolƒ-2
1415 ы1{ћўлPSymbolƒ-№2
1416 ыФ }ћ€ўTms Rmn-№ 2
1417 x5G 2
1418 xќvЈ 2
1419 DМr• 2
1420 &Њ uР 2
1421 Dи r• 2
1422 бЪuР 2
1423 4 +Fъћ џTms Rmnв -№ 2
1424 иKvb 2
1425 ” юvbћ€ўPSymbol-№ 2
1426 xM=г 2
1427 x-г 2
1428 xьб 2
1429 œ-г 2
1430 l+г 2
1431 %BьМ 2
1432 \BэМ 2
1433 ”BюМ 2
1434 %ЭќМ 2
1435 \Э§М 2
1436 ”ЭўМ 2
1437 бœ-г 2
1438 4 +г 2
1439 ЇŒќМ 2
1440 ЁŒ§М 2
1441 ŒяМ 2
1442 ŒяМ 2
1443 }ŒяМ 2
1444 œ ŒўМ 2
1445 ŒяМ 2
1446 Œ ŒяМ 2
1447  ŒяМћ€ўTms Rmnв -№ 2
1448 xz `2
1449 @ ```````` 2
1450 Щ `
1451 2
1452 &%vwР 2
1453 &#  `2
1454 ”
1455 `````````` 2
1456 T ```2
1457 б@ ```````` 2
1458 бЩ ` 2
1459 бd  `2
1460 4 @ ```````` 2
1461 4 Ы `ћ€ўМTms Rmn-№ 2
1462 xкvРћ€ўTms Rmnв -№ 2
1463 x•.` 2
1464 &Ч tankЈР 2
1465 бДsin•kРћ џTms Rmn-№ 2
1466 z‰
1467 2pћ€ўTms Rmnв -№ 2
1468 бм2Рћ€ўPSymbol-№ 2
1469 &У fЧ 2
1470 б
1471 fЧћ€ўPSymbol-№ 2
1472 бЃW'
1473 &
1474 џџџџћМ"System-№џџјџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџўџ
1475 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩгДМcIАgI
1476 ƒG ƒv
1477 †=†" ‡v‚.†"ƒv        †" ƒvƒwƒr†+ƒu ˆ2
1478  ‚t‚a‚n„Цƒr–{–}                     †" ˆ2…Љƒu‚s‚i‚n„Ц –{–}        †+ ƒF ƒv
1479 †+ƒD ƒv
1480 –}L=4Д@шш=4f: P џџџ.1   &џџџџРџЅџрЅ & MathTypeP
1481 &
1482 џџџџ_898095965џџџџџџџџ*РFa­­Ѕ Нa­­Ѕ НOle
1483 џџџџџџџџџџџџBPIC
1484 ),џџџџCLMETA џџџџџџџџџџџџEШўџ
1485 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2АЫ 3t'2Д+2
1486 џ,(1'ј"іўyLи @ шшCompObj+-џџџџIZObjInfoџџџџ.џџџџKEquation Native џџџџџџџџџџџџL<_943427938!=1ЮРFa­­Ѕ НРђЮ­Ѕ НOle
1487 џџџџџџџџџџџџMPIC
1488 03џџџџNLMETA џџџџџџџџџџџџP( CompObj24џџџџuf§џџџ‚ƒ„…ˆŠЂ‰‹ŒŽ‘’”“–•—˜™›šœžЁŸ ЃІСЄЅЇЈЉ­ЊЋЌЏЎБАВГДЖЕЗИЙКЛМНОРПУТкФЦХЧШЩЫЪЬЭЮвЯабгдезжийлојмнпсртухфцчшщъыэью№яёђєѓїѕіљњћўќ§џиŽG } џџџ.1  &џџџџРџЖџРЖ & MathTypePњ-”Џ”TdЏdTz
1489 z› F
1490 F› і  і } – Т– EˆIˆеXIXећ€ўTms Rmnт- 2
1491 5G 2
1492 [w 2
1493 шšuР 2
1494 ш• vЈ 2
1495 ƒr• 2
1496 љ ЦgР 2
1497 žOFъ2
1498 ` юCoriolisР•kРkk•2
1499 р ёbuoyancyРРРЈРРЈЈћ џTms RmnФ%-№ 2
1500 eMw• 2
1501 ƒрrefWb> 2
1502 ўw•ћ€ўPSymbol-№ 2
1503 ‚=г 2
1504 Ф-г 2
1505 Kб 2
1506 н+г 2
1507 шp+г 2
1508 чDьМ 2
1509 DэМ 2
1510 VDюМ 2
1511 чГ ќМ 2
1512 Г §М 2
1513 VГ ўМ 2
1514 љ œ-г 2
1515 ž+г 2
1516 ­rќМ 2
1517 Ё r§М 2
1518 rяМ 2
1519 •rяМ 2
1520
1521 rяМ 2
1522 rяМ 2
1523 }rяМ 2
1524 –rўМ 2
1525  rяМ 2
1526 Œ rяМ 2
1527 rяМ 2
1528 vrяМ 2
1529 ыrяМ 2
1530 Ъ4ьМ 2
1531 Ё 4эМ 2
1532 =4яМ 2
1533 В4яМ 2
1534 '4яМ 2
1535 }4яМ 2
1536 y4юМ 2
1537  4яМ 2
1538 Œ 4яМ 2
1539 4яМ 2
1540 v4яМћ€ўTms Rmn-№ 2
1541 Џ `2
1542 н@ ```````` 2
1543 нЫ `2
1544 нz
1545 `````````` 2
1546 н: ```2
1547 ` @ ````````` 2
1548 ` ѕ+з 2
1549 ` " `
1550 2
1551 `   2`Р 2
1552 ` юucosРЈР•2
1553 љ @ ````````2
1554 ž@ ```````` 2
1555 žЫ `ћ€ўМTms Rmnт-№ 2
1556 vРћ€ўTms Rmn-№ 2
1557 Ъ.` 2
1558 ш(~ 2
1559 ш )~ћ џTms Rmnт-№ 2
1560 <y2p 2
1561 <a
1562 2pћ€ўPSymbol-№ 2
1563 ` ЧW'ћ€ўPSymbol-№ 2
1564 ` Ћ
1565 fЧ
1566 2
1567  -drМг 2
1568 "тrг
1569 &
1570 џџџџћМ"System-№ўџ
1571 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqObjInfoџџџџ5џџџџwEquation Native џџџџџџџџџџџџxx_898095963’(8РFРђЮ­Ѕ НРђЮ­Ѕ НOle
1572 џџџџџџџџџџџџ‚ўџџџўџџџ„ўџџџ†‡ˆўџџџŠўџџџўџџџўџџџўџџџўџџџ‘’“”•ўџџџ—ўџџџўџџџўџџџўџџџœўџџџžŸ ЁЂўџџџЄўџџџўџџџўџџџўџџџЉўџџџЋЌ­ЎЏАБВГДЕўџџџЗўџџџўџџџКЛўџџџўџџџОўџџџРСТУФХЦЧШЩЪўџџџЬўџџџўџџџЯаўџџџўџџџгўџџџежзийклмнопрстуфхўџџџчўџџџўџџџъыўџџџўџџџюўџџџ№ёђѓєѕіїјљњћќ§ўџЩг\ cIДgI
1573 ƒG ƒw
1574 †=†" ‡v‚.†"ƒw        †+ ‚(ƒu ˆ2
1575 †+ƒv ˆ2
1576 ‚)ƒr–{–}                      +  2…Љƒucos„Ц        †"ƒg„Д„С„С ƒrƒeƒf
1577         †+ ƒF ƒw
1578 †+ƒD ƒw
1579 –}ƒCƒoƒrƒiƒoƒlƒiƒsƒbƒuƒoƒyƒaƒnƒcƒy–{L=4Д@шш=4f: P џџџ.1   &џџџџРџЅџрЅ & MathTypeP
1580 &
1581 џџџџPIC
1582 7:џџџџƒLMETA џџџџџџџџџџџџ…ШCompObj9;џџџџ‰ZObjInfoџџџџ<џџџџ‹ўџ
1583 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2АЫ 3t'2Д+2
1584 џ,(1'ј"іўyLэWTшшEquation Native џџџџџџџџџџџџŒ<_943428088џџџџџџџџ?ЮРF€и­Ѕ Н@Ќљ­Ѕ НOle
1585 џџџџџџџџџџџџPIC
1586 >AџџџџŽLMETA џџџџџџџџџџџџhCompObj@Bџџџџ–fObjInfoџџџџCџџџџ˜Equation Native џџџџџџџџџџџџ™8эWfh А џџџ.1   Р&џџџџРџЅџ€Х & MathType`ћ€ўTimes New Romand€- 2
1587 `FFъћџМTimes New Roman P-№ 2
1588 Рљv€
1589 &
1590 џџџџћМ"Systemn-№ўџ
1591 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩг,{I|I
1592 ƒD ‡vLэWTшшэW^X А џџџ.1   Р&џџџџРџЅџ€Х & MathType`ћ€ўTimes New Roman-_943428113Ь=FЮРF@Ќљ­Ѕ Н@Ќљ­Ѕ НOle
1593 џџџџџџџџџџџџšPIC
1594 EHџџџџ›LMETA џџџџџџџџџџџџh 2
1595 `FFъћџМTimes New Roman9-№ 2
1596 Рљv€
1597 &
1598 џџџџћМ"Systemn-№ўџ
1599 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩг№I$I
1600 ƒD ‡vCompObjGIџџџџЃfObjInfoџџџџJџџџџЅEquation Native џџџџџџџџџџџџІ8_943428160џџџџџџџџMЮРF@Ќљ­Ѕ Н п"ЎЅ НOle
1601 џџџџџџџџџџџџЇPIC
1602 LOџџџџЈLMETA џџџџџџџџџџџџЊшCompObjNPџџџџЖfLѕвМшшѕвЦT f џџџ.1  ` &џџџџРџЃџр & MathTypeрћ€ўTimes New Roman- 2
1603 p5G 2
1604 pрTз 2
1605 НбFъћџTimes New Roman)-№ 2
1606 а8T 2
1607 Tћ€ўPSymbol -№ 2
1608 pn=г 2
1609 pИ-г 2
1610 pаб 2
1611 Н+гћ€ўМTimes New Roman-№ 2
1612 pœvРћ€ўTimes New Roman)-№ 2
1613 pW.`2
1614 Н@ ````````
1615 &
1616 џџџџћМ"Systemn-№ ```````ўџ
1617 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqObjInfoџџџџQџџџџИEquation Native џџџџџџџџџџџџЙ _943428177KYTЮРF п"ЎЅ Н п"ЎЅ НOle
1618 џџџџџџџџџџџџМЩг„Ј–I”ŠI
1619 ƒG ƒT
1620 †=†"‡v‚.†"ƒT        †+ƒF ƒT
1621 †+ƒD ƒTL‹іиашш‹іЦT f џџџ.PIC
1622 SVџџџџНLMETA џџџџџџџџџџџџПшCompObjUWџџџџЫfObjInfoџџџџXџџџџЭ1  €Р&џџџџРџЈџ€( & MathType№ћ€ўTimes New Roman- 2
1623 k5G 2
1624 kЧSР 2
1625 НбFъћџTimes New Roman)-№ 2
1626 Ы>S€ 2
1627 ‡S€ћ€ўPSymbol -№ 2
1628 kU=г 2
1629 kŸ-г 2
1630 kЗб 2
1631 Н+гћ€ўМTimes New Roman-№ 2
1632 kƒvРћ€ўTimes New Roman)-№ 2
1633 k>.`2
1634 Н@ ````````
1635 &
1636 џџџџћМ"Systemn-№ ```````ўџ
1637 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩг„м‘IiI
1638 ƒG ƒS
1639 †=†"‡v‚.†"ƒS        †+ƒF Equation Native џџџџџџџџџџџџЮ _943428331џџџџџџџџ[ЮРF ˜MЎЅ Н`”‡ЎЅ НOle
1640 џџџџџџџџџџџџбPIC
1641 Z]џџџџвLƒS
1642 †+ƒD ƒSLсД
1643 фшшс<  џџџ.1    &џџџџРџЅџрE & MathType№њ-]Ї]Ÿ]ч]Ћ ]О
1644 ]} ]Х ]} ]–META џџџџџџџџџџџџдHCompObj\^џџџџцfObjInfoџџџџ_џџџџшEquation Native џџџџџџџџџџџџщР]ћ€ўPSymbol€- 2
1645 Р3б 2
1646 РЋКг 2
1647 Отц‘ 2
1648 ятш‘ 2
1649 щтч‘ 2
1650 Оі‘ 2
1651 яј‘ 2
1652 щї‘ћ€ўTms Rmn-№ 2
1653 ЫC1Рћ€ўTms Rmn-№ 2
1654 щОr• 2
1655 щ\r•ћ€ўTms Rmn-№ 2
1656 щ“cosЈР• 2
1657 Р+,`ћ€ўPSymbol-№ 2
1658 щ­fЧ 2
1659 ЫSЖМ
1660 2
1661 щёЖlМг 2
1662 Ы+ ЖМ
1663 2
1664 щЯ ЖfМЧ 2
1665 ЫоЖМ 2
1666 щ ЖМћ€ўTms Rmn-№
1667 2
1668 Рѓ  ,`` 2
1669 ЫН
1670 1Р 2
1671 щн
1672 r~ 2
1673 РХ  `
1674 &
1675 џџџџћМ"System-№ўџ
1676 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩгЄЌcIАgI
1677 †"†a"ˆ1ƒr‚c‚o‚s„Ц„"„"„Л ,1ƒr„"„"„Ц ‚,„"„"ƒr–(–)LБїфшшБ&H є џџџ._898095959џџџџџџџџbРF`”‡ЎЅ Н…ЁЎЅ НOle
1678 џџџџџџџџџџџџьPIC
1679 adџџџџэLMETA џџџџџџџџџџџџяўџџџ ўџџџўџџџ  ўџџџўџџџўџџџ !"#$%&'ўџџџ)ўџџџўџџџ,-.ўџџџўџџџ1ўџџџ3456789:;ўџџџ=ўџџџўџџџ@ўџџџўџџџCўџџџEFGHIJKLMўџџџOўџџџўџџџRўџџџўџџџUўџџџWXYZ[\]^_ўџџџўџџџўџџџўџџџdўџџџfghijkўџџџўџџџўџџџўџџџpўџџџўџџџўџџџўџџџuўџџџwxyz{|ўџџџ~ўџџџўџџџ1   Р&џџџџРџЅџ€E & MathType№њ-]3]+]4 ]ј
1680 ]+ ]ућ ўхPSymbol„-2
1681 ж(ћ ўхPSymbol„-№2
1682 ж)]5]Ц]]qћ€ўPSymbol.-№ 2
1683 Р3б 2
1684 РэКг 2
1685 Р§ +г 2
1686 ОnьМ 2
1687 nэМ 2
1688 EnюМ 2
1689 ОќМ 2
1690 §М 2
1691 EўМ 2
1692 Р+гћ€ўTms Rmn-№ 2
1693 Р<.` 2
1694 щcosЈР• 2
1695 Р€cosЈР• 2
1696 Ыњ(~ 2
1697 Ыф)~ћ€ўМTms Rmn-№ 2
1698 РУvРћ€ўTms Rmn-№ 2
1699 ЫЯ1Р 2
1700 Ы1Рћ џTms Rmn-№ 2
1701 = 2p 2
1702 C2pћ€ўTms Rmn-№ 2
1703 щJr• 2
1704 Ы
1705 uР 2
1706 РŸvЈ 2
1707 щLr• 2
1708 Ыƒr• 2
1709 Ыиw 2
1710 щGr•ћ€ўPSymbol-№ 2
1711 щ9fЧ 2
1712 ЫS ЖМ
1713 2
1714 щ> ЖlМг 2
1715 Ы‘ ЖМ
1716 2
1717 щ5 ЖfМЧ 2
1718 РšfЧ 2
1719 ЫЖМ 2
1720 щ‹ЖМћ€ўTms Rmn-№ 2
1721 Р@  `
1722 &
1723 џџџџћМ"System-№Tms Rmn-CompObjceџџџџZObjInfoџџџџfџџџџ
1724 Equation Native џџџџџџџџџџџџ ќ_898095928nсiРF…ЁЎЅ Н…ЁЎЅ Нўџ
1725 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ДЪрO@Ф_?T_?
1726 †б‚.‡v†Кˆ1ƒr‚c‚o‚s„f„Жƒu„Ж„l †+„Ж„Ж„fƒv‚c‚o‚s„f–(–)–{–}†+ˆ1ƒr ˆ2
1727 „Ж‚(ƒr ˆ2
1728 ƒw‚)„ЖƒrPSymbol„Ole
1729 џџџџџџџџџџџџPIC
1730 hkџџџџLMETA џџџџџџџџџџџџhCompObjjlџџџџ(ZL? hHшш? hD ž џџџ.1  @&џџџџРџКџК & MathTypeањ-§@§ §§ћЌ§РPSymbol„-2
1731 4(ћЌ§РPSymbol„-№2
1732 l )ћ€ўTms Rmn-№ 2
1733 kЋD
1734 2
1735 ‰jDtk 2
1736 `ЕuР 2
1737 `АvЈ 2
1738 `œ
1739 w
1740 2
1741 `^gzР• 2
1742 `!pР 2
1743 `УQћ€ўTms RmnМ9-№ 2
1744 k*1Р 2
1745 ‰*2Рћ џTms Rmn-№ 2
1746 Д”2p 2
1747 Д|2p 2
1748 ДП 2pћ€ўPSymbol-№ 2
1749 `‹+г 2
1750 `s +г 2
1751 `3 +г 2
1752 ЉOьМ 2
1753 ЁOэМ 2
1754 šOюМ 2
1755 ЉЧќМ 2
1756 ЁЧ§М 2
1757 šЧўМ 2
1758 `Э+г 2
1759 `юб 2
1760 `Œ=г 2
1761 `%+гћ€ўTms Rmn-№ 2
1762 `ї.` 2
1763 `s(~ 2
1764 `Ћ)~ћ€ўМTms RmnМ9-№ 2
1765 `сvР
1766 2
1767 `Lv.Р` 2
1768 `Fъћ џМTms Rmn-№ 2
1769 Рxvp
1770 &
1771 џџџџћМ"System-№џќ@@P@bџќ@@@џќўџ
1772 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2jЪР7@МG>ќ G>
1773 ƒDƒDƒtˆ1ˆ2ƒu ˆ2
1774 †+ƒv ˆ2
1775 †+ƒw ˆ2
1776 –(–)†+ƒgƒz–{–}†+†б‚.‚(ƒp‡v‚)†=ƒQ†+‡v‡.‡F ‡vem-ObjInfoџџџџmџџџџ*Equation Native џџџџџџџџџџџџ+м_898095927џџџџџџџџpРF…ЁЎЅ НРУЎЅ НOle
1777 џџџџџџџџџџџџ/PIC
1778 orџџџџ0LMETA џџџџџџџџџџџџ2hCompObjqsџџџџ<ZObjInfoџџџџtџџџџ>L!4œ@шш!4D  џџџ.1  `&џџџџРџЅџ Ѕ & MathTypePћ€ўМTms Rmn- 2
1779 `9vРћ€ўPSymbol-№ 2
1780 `d=гћ€ўTms Rmn-№ 2
1781 `˜(~ 2
1782 `е,` 2
1783 ` ,` 2
1784 `Ѕ)~ћ€ўTms Rmn-№ 2
1785 `uР 2
1786 `avЈ 2
1787 `™w
1788 &
1789 џџџџћМ"System-№АvЈ 2
1790 `œ
1791 w
1792 2
1793 `^gzР•ўџ
1794 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2jЪ@7@ьG>ЈG>
1795 ‡v†=‚(ƒu‚,ƒv‚,ƒw‚)Equation Native џџџџџџџџџџџџ?\_898095926фwРFРУЎЅ НрЗЪЎЅ НOle
1796 џџџџџџџџџџџџAPIC
1797 vyџџџџBLL3в„Мшш3в&D  џџџ.1  ` &џџџџРџБџ` & MathTypeњ-§Ш§Kћ€ўTms Rmn- 2
1798 `\pР 2
1799 kMETA џџџџџџџџџџџџDHCompObjxzџџџџNZObjInfoџџџџ{џџџџPEquation Native џџџџџџџџџџџџQ\pРћ џTms RmnИY-№ 2
1800 ъцrefWb>ћ€ўPSymbol-№ 2
1801 `‚=гћ€ўPSymbol-№ 2
1802 kDdМ 2
1803 ‰шrг
1804 &
1805 џџџџћМ"System-№}@?џџџџџ|ўџ
1806 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.24Щ@w:8+п5Ш,п5
1807 ƒp†=„dƒp„r ƒrƒeƒf1L4ф@шш4Ц  џџџ.1   &џџџџ{КК &_898095925џџџџџџџџ~РFрЗЪЎЅ Н€ЈфЎЅ НOle
1808 џџџџџџџџџџџџSPIC
1809 }€џџџџTLMETA џџџџџџџџџџџџVh MathTypePћ€ўPSymbolš- 2
1810 `3бћ€ўTms Rmn-№ 2
1811 `<.` 2
1812 `И(~ 2
1813 `№)~ћ€ўTms Rmn-№ 2
1814 `fpРћ€ўМTms Rmn-№ 2
1815 `&vР&,MathTypeUU 
1816 †б‚.‚(ƒp‡v‚)
1817 &
1818 џџџџћМ"System-№+г 2
1819 `3 +г 2
1820 ЉOьМ 2
1821 ObjInfoџџџџ`Equation Native џџџџџџџџџџџџa<_898095924)|„РF IьЎЅ Н IьЎЅ НOle
1822 џџџџџџџџџџџџbjЪ pŽR‡,
1823 †б‚.‚(ƒp‡v‚)l„LW4T@шшW4.  У џџџ.1   &џџџџ
1824 y# y & MathType0ћ€ўTms Rmn- 2
1825  PIC
1826 ƒ†џџџџcLMETA џџџџџџџџџџџџeЈObjInfo…‡џџџџlEquation Native џџџџџџџџџџџџm<;wћ џTms RmnЪП-№ 2
1827 є\2p&,MathTypeUU 
1828 ƒw ˆ2€
1829 &
1830 џџџџћМ"System-№џџџџџџџџџџџџџџџџџџџџџџџџџjЪ pŽR‡,
1831 ƒw ˆ2Ыўџ
1832 џџџџЮРFMicrosoft Equation 3.0 DS Eq_943428542RуŠЮРF IьЎЅ Н IьЎЅ НOle
1833 џџџџџџџџџџџџnCompObj‰‹џџџџofObjInfoџџџџŒџџџџquation Equation.3є9ВqЩгИcIМgI
1834 †" ˆ2LССшшСС@ Н џџџ.1  €€&џџџџРџІџ@& &Equation Native џџџџџџџџџџџџr8_898097203џџџџџџџџРF`qѕЎЅ Н`E&ЏЅ НOle
1835 џџџџџџџџџџџџsPIC
1836 Ž‘џџџџtLMETA џџџџџџџџџџџџvЈCompObj’џџџџ}ZObjInfoџџџџ“џџџџEquation Native џџџџџџџџџџџџ€< MathTypePњ-›@›Jћ€ўPSymbol5- 2
1837 рyћ џTms Rmn-№ 2
1838 ђHЁ
1839 &
1840 џџџџћМ"System-№.hlpџџџтџџџрџџџрџџџрўџ
1841 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ўџџџўџџџƒўџџџ…†‡ˆ‰Š‹ŒŽ‘’“ўџџџ•ўџџџўџџџ˜™ўџџџўџџџœўџџџžŸ ЁЂЃЄЅІЇЈЉЊЋЌўџџџЎўџџџўџџџБВГўџџџЕЖўџџџўџџџЙўџџџЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯабўџџџгўџџџўџџџжзиўџџџўџџџлўџџџнопрстуфхцчшщўџџџыўџџџўџџџюўџџџўџџџёўџџџѓєѕіїјљњћќ§ўџЬ ч5Мї4ќ ї4
1842 „y ƒHiLKЌфшшK&F у џџџ.1   р &џџџџРџЙџ  Y & MathTypeњ- A I==tћ€ўPSymboli- 2
1843  _898097202›в–РF`E&ЏЅ Н@7ЏЅ НOle
1844 џџџџџџџџџџџџPIC
1845 •˜џџџџ‚LMETA џџџџџџџџџџџџ„шy 2
1846  y 2
1847  Klг 2
1848  Љ fЧћ џTms RmnТ
1849 -№ 2
1850 єHЁ 2
1851 пСHЁћ€ўTms RmnФ%-№ 2
1852 Щ8H 2
1853   z•
1854 2
1855  @ dzР•ћ€ўPSymbol-№ 2
1856  Щ=гћР§PSymbol-№ 2
1857 &Нђ›ћ€ўTms RmnТ
1858 -№ 2
1859 Ћa1Рћ џTms RmnФ%-№ 2
1860 Cк0pћ€ўTms RmnТ
1861 -№ 2
1862  Т(~ 2
1863  / ,` 2
1864  
1865 ,` 2
1866  К )~
1867 &
1868 џџџџћМ"System-№§§_ѓ§_№ќўGќ№ќѓFќїIўџ
1869 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2UЬ€џDдCd C
1870 "„y ƒH
1871 †=ˆCompObj—™џџџџ”ZObjInfoџџџџšџџџџ–Equation Native џџџџџџџџџџџџ—œ_898097201џџџџџџџџРF@7ЏЅ Н6@ЏЅ Н1ƒH„y‚(„l‚,„f‚,ƒz‚)ƒdƒz ˆ0ƒH †ђL‡Eш lшш‡EvN т џџџ.1  р@&џџџџРџЕџ• & MathTypeРњ- @ Ole
1872 џџџџџџџџџџџџšPIC
1873 œŸџџџџ›LMETA џџџџџџџџџџџџшCompObjžЁџџџџ­Z§Ы§0  §Ш§щћ€ўPSymboli- 2
1874 `3б 2
1875 `…=г 2
1876 `kб 2
1877 `-г 2
1878 ^лбћ џTms RmnТ
1879 -№ 2
1880 Сchp 2
1881 d;HЁ 2
1882 С›hp 2
1883 rT HЁ 2
1884 П hpћ€ўTms RmnФ%-№ 2
1885 ‰єH 2
1886 `л H 2
1887 `фH 2
1888 ^­H 2
1889 ‰ЯHћ€ўPSymbol-№ 2
1890 `бy 2
1891 `ъ
1892 y 2
1893 `yћ€ўTms RmnФ%-№ 2
1894 k1Р 2
1895 `@ (~ 2
1896 `= )~ 2
1897 `I(~ 2
1898 `)~
1899 &
1900 џџџџћМ"System-№пО”шА`0ўџ
1901 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ObjInfoџџџџџџџџџџџџЏOle10Native ЂџџџџАФEquation Native џџџџџџџџџџџџДМ_898097200Б”ЅРF6@ЏЅ Н XЏЅ НР
1902 „Ж„y„Жƒx†=†-ƒH ƒx
1903 ƒH„y‚(ƒH‚)†+ˆ1ƒH„Ж„Жƒx‚(ƒH„y‚)ges to Equation in DEPџџџџUЬ џDФCTC
1904 †б ƒh
1905 „y ƒH
1906 †=ˆ1ƒH†б ƒh
1907 ‚(ƒH„y ƒH
1908 ‚)†-„y‚(ƒH‚)†б ƒh
1909 ƒHƒHOle
1910 џџџџџџџџџџџџЗPIC
1911 ЄЇџџџџИLMETA џџџџџџџџџџџџКШCompObjІЈџџџџвZLkhашшkhnD Ю џџџ.1  €&џџџџРџЙџ@Й & MathTypeРњ-›т›Ђ@ь8щ8? •К•zћŠќпPSymbol-2
1912 В [ћŠќпPSymbol-№2
1913 с]ћ€ўPSymbol-№ 2
1914 ‹JЖМ 2
1915 ЉvЖМћ€ўTms Rmn-№ 2
1916 ‹,(~ 2
1917 ‹_)~ 2
1918 €
1919 (~ 2
1920 €Щ)~ 2
1921 €™(~ 2
1922 €c)~ћ€ўTms Rmn-№ 2
1923 ‹ЧH 2
1924 Љ2tk 2
1925 €ЏH 2
1926 €ЅH 2
1927 €ЙpР 2
1928 €лpР 2
1929 €4H 2
1930 €ГHћ џTms Rmn-№ 2
1931 пзHЁ 2
1932 t HЁ 2
1933 сehp 2
1934 сhpћрўTms Rmn-№ 2
1935 дБHЯћ€ўМTms Rmn-№ 2
1936 ‹уvР 2
1937 €кG+ћ џМTms Rmn-№ 2
1938 žЇh} 2
1939 р%
1940 vpћ`џМTms Rmn-№ 2
1941 Є
1942 hYћ€ўPSymbol-№ 2
1943 €`=г 2
1944 €І -г 2
1945 €5б 2
1946 €’-г 2
1947 €сб
1948 &
1949 џџџџћМ"System-№ ЕЕц№nяіEŽ ЈцЊ6ўџ
1950 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.24Щрw:\+п5˜/п5
1951 „Ж‚(ƒH"‡v ƒH
1952  ‡h
1953 ‚)„Жƒt†=ƒH‡G ‡v ‡h 
1954  ƒH
1955 †-†б ƒh
1956 ‚(ƒH2ƒp
1957 ObjInfoџџџџЉџџџџдEquation Native џџџџџџџџџџџџеќ_898097199џџџџџџџџЌРF XЏЅ НРЧaЏЅ НOle
1958 џџџџџџџџџџџџй e ƒH‚)
1959 †-ƒp‚(ƒH‚)†б ƒh
1960 ƒH–[–]Lт
1961 ž+|шшт
1962 žO ‹ џџџ.1  `р &џџџџРџЄџ   & MathType`њ-А2Ађћ€ўPSymbol%- 2
1963  3б 2
1964  PIC
1965 ЋЎџџџџкLMETA џџџџџџџџџџџџмHCompObj­ЏџџџџъZObjInfoџџџџАџџџџь=гћ џTms RmnТ
1966 -№ 2
1967 chp 2
1968 є'HЁћ€ўTms RmnФ%-№ 2
1969  Hћ€ўTms RmnТ
1970 -№ 2
1971  .` 2
1972  |(~ 2
1973  Џ)~ћ€ўМTms RmnФ%-№ 2
1974  3vРћ џМTms RmnТ
1975 -№ 2
1976 Гїh}ћ€ўTms RmnФ%-№ 2
1977  Э0Р
1978 &
1979 џџџџћМ"System-№№ 2
1980 žЇh} 2
1981 “ ўџ
1982 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2UЬ`џDxCјC
1983 †б ƒh
1984 ‚.‚(ƒH"‡v ƒH
1985  ‡h
1986 ‚)†=ˆ0ŠќпPSyEquation Native џџџџџџџџџџџџэ|_898097198ИЊГРFРЧaЏЅ Н€YƒЏЅ НOle
1987 џџџџџџџџџџџџяPIC
1988 ВЕџџџџ№LLМф ИшшМžA 2 џџџ.1  Р &џџџџРџЉџ`i & MathTypepњ-ѕLѕ ˜ž ˜є ћ€ўPSymbol:- 2
1989 р3б 2
1990 р =г 2
1991 рDб 2
1992 рм+гћ џTms Rmn-№ 2
1993 AchMETA џџџџџџџџџџџџђˆCompObjДЖџџџџZObjInfoџџџџЗџџџџEquation Native џџџџџџџџџџџџМўџџџўџџџўџџџ 
1994 ўџџџўџџџ ўџџџўџџџўџџџўџџџ ўџџџўџџџ#ўџџџўџџџўџџџўџџџ(ўџџџ*+,-./ўџџџ1ўџџџўџџџўџџџўџџџ6ўџџџўџџџўџџџўџџџ;ўџџџ=>?@ABCDEFGHIJKLMNўџџџPўџџџўџџџSTUўџџџWXўџџџўџџџ[ўџџџ]^_`abўџџџdўџџџўџџџўџџџўџџџiўџџџklmnopqrstuvwxyўџџџ{ўџџџўџџџ~ўџџџp 2
1995 4AHЁ 2
1996 я)HЁћ€ўTms Rmn-№ 2
1997 р7H 2
1998 рKpР 2
1999 рd
2000 H 2
2001 рФHћ џTms Rmn-№ 2
2002 :і2pћ€ўTms Rmn-№ 2
2003 рœ(~ 2
2004 р*)~ 2
2005 рM .` 2
2006 рЩ (~ 2
2007 р)~ 2
2008 р)(~ 2
2009 рѓ)~ћ€ўМTms Rmn-№ 2
2010 р G+ћ џМTms Rmn-№ 2
2011 @к vpћ`џМTms Rmn-№ 2
2012 xY hYћ€ўPSymbol-№ 2
2013 рF#
2014 &
2015 џџџџћМ"System-№д(дд((§QЎ}(ўџ
2016 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.24Щ w:є)п5„+п5
2017 †б ƒh
2018  ˆ2
2019 ‚(ƒH2ƒp ƒH
2020 ‚)†=†б‚.‚(ƒH‡G ‡v ‡h 
2021  ƒH
2022 ‚)†+…F‚(ƒH‚)№ LС„шшСў6  џџџ.1  €  &џџџџРџЈџ` ( &_898097197ФџџџџКРF њŠЏЅ Н@ыЄЏЅ НOle
2023 џџџџџџџџџџџџ PIC
2024 ЙМџџџџ LMETA џџџџџџџџџџџџh MathTypepћы§тPSymbol„-2
2025 ОB(ћы§тPSymbol„-№2
2026 Оі )ћ€ўPSymbol-№ 2
2027  7F#ћ€ўTms Rmn-№ 2
2028  _(~ 2
2029  ))~ 2
2030  ђ.` 2
2031  ­(~ 2
2032  w )~ћ€ўTms Rmn-№ 2
2033  њH 2
2034  яpР 2
2035  HH 2
2036  Ч Hћ џTms Rmn-№ 2
2037 % hpћ€ўPSymbol-№ 2
2038  А=г 2
2039  щб 2
2040  ѕ б
2041 &
2042 џџџџћМ"System-№n-№ 2
2043 B vpўџ
2044 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ŸЬ`п20w6Аw6
2045 …F‚(ƒH‚)†=†б‚.ƒpCompObjЛНџџџџZObjInfoџџџџОџџџџEquation Native џџџџџџџџџџџџ|_943340070џџџџџџџџСЮРF@ыЄЏЅ Н@ыЄЏЅ Н‚(ƒH‚)†б ƒh
2046 ƒH–(–)ўџ
2047 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩг$`hI8cI
2048 …І‚(ƒH‚)†=ˆ0L{СhшшOle
2049 џџџџџџџџџџџџ!CompObjРТџџџџ"fObjInfoџџџџУџџџџ$Equation Native џџџџџџџџџџџџ%@_898097196џџџџџџџџЦРF@ыЄЏЅ Н}ЦЏЅ НOle
2050 џџџџџџџџџџџџ&PIC
2051 ХШџџџџ'LMETA џџџџџџџџџџџџ)Ј{С^> О џџџ.1  €@&џџџџРџІџ& & MathTypePњ-›@›ћ€ўTms Rmn- 2
2052 р\pРћ џTms Rmn-№ 2
2053 ђCHЁ
2054 &
2055 џџџџћМ"System-№hp 2
2056 схhpћрўCompObjЧЩџџџџ0ZObjInfoџџџџЪџџџџ2Equation Native џџџџџџџџџџџџ3<_943340352ПeЭЮРF}ЦЏЅ Н}ЦЏЅ Нўџ
2057 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ДЪ ї1И7>Р7>
2058 ƒp ƒHўџ
2059 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqOle
2060 џџџџџџџџџџџџ4CompObjЬЮџџџџ5fObjInfoџџџџЯџџџџ7Equation Native џџџџџџџџџџџџ88Щг cIДgI
2061 …І‚(ƒH‚)Lb W\Tшшb WЖ; G џџџ.1   `&џџџџРџЛџ л & MathType`ћ€ўTms RmnЫa- 2
2062 `\pР 2
2063 `nz• 2
2064 `гpР 2
2065 `%pР_898097480џџџџџџџџвРF ЮЏЅ НрЏяЏЅ НOle
2066 џџџџџџџџџџџџ9PIC
2067 бдџџџџ:LMETA џџџџџџџџџџџџ<Ј 2
2068 `­z• 2
2069 `epР 2
2070 `z•ћ џTms Rmnр-№ 2
2071 РSp
2072 2
2073 РіHYЁ}
2074 2
2075 Р9NH•Ёћ€ўTms RmnЫa-№ 2
2076 `(~ 2
2077 `‡,` 2
2078 `й,` 2
2079 `)~ 2
2080 `E (~ 2
2081 `В
2082 ,` 2
2083 ` )~ 2
2084 `Y(~ 2
2085 `Ц,` 2
2086 `,` 2
2087 `Q)~ 2
2088 `А(~ 2
2089 `,` 2
2090 `o,` 2
2091 `Ј)~ћ€ўPSymbol-№ 2
2092 `Ѓlг 2
2093 `fЧ 2
2094 `Ю lг 2
2095 `, fЧ 2
2096 `тlг 2
2097 `@fЧ 2
2098 `9lг 2
2099 `—fЧћ€ўTms RmnЫa-№ 2
2100 ` `ћ€ўPSymbol-№ 2
2101 `q=г 2
2102 `л +г 2
2103 `+г
2104 &
2105 џџџџћМ"System-№ѕн){tў.Ћў……ўџ
2106 џџџџРFMicrosoft Equation 2.0 DS EqCompObjгжџџџџOZObjInfoџџџџџџџџџџџџQOle10NativeезџџџџRФEquation Native џџџџџџџџџџџџVМuation Equation.2Р
2107 ƒp‚(ƒx‚,ƒy‚,ƒz‚)†=ƒp ƒS
2108 ‚(ƒx‚,ƒy‚)†+ƒp ƒH
2109 ‚(ƒx‚,ƒy‚,ƒz‚)†+ƒp ƒN
2110 ‚(ƒx‚,ƒy‚,ƒz‚)џџџџџЬ 3д76d 76
2111 ƒp‚(„l‚,„f‚,ƒz‚) †=ƒp ƒS
2112 ‚(„l‚,„f‚)†+ƒp ƒHƒY
2113 ‚(„l‚,„f‚,ƒz‚)†+ƒp ƒNƒH
2114 ‚(„l‚,„f‚,ƒz‚)LW,TшшWF3 Ј џџџ.1   р&џџџџРџЅџ Х & MathType`ћ€ўTms Rmn- 2
2115 `\pРћ џTms Rmn-№ _898097478пакРFрЏяЏЅ НрЏяЏЅ НOle
2116 џџџџџџџџџџџџYPIC
2117 ймџџџџZLMETA џџџџџџџџџџџџ\ˆ2
2118 Р&Sp
2119 &
2120 џџџџћМ"System-№mbolўџ
2121 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ŸЬ Џ1ИЧ4РЧ4
2122 ƒp ƒSTmCompObjлнџџџџcZObjInfoџџџџоџџџџeEquation Native џџџџџџџџџџџџf<_898097477џџџџџџџџсРFрЏяЏЅ Н зјЏЅ НOle
2123 џџџџџџџџџџџџgPIC
2124 руџџџџhLMETA џџџџџџџџџџџџjшCompObjтфџџџџzZLTфшшTЖ0 у џџџ.1    &џџџџРџЙџР Y & MathTypeћ€ўTms RmnЫa- 2
2125  \pР 2
2126  фz• 2
2127  л
2128 dР 2
2129  › z•ћ џTms Rmnр-№
2130 2
2131 -HYЁ} 2
2132 пиzWћ€ўTms RmnЫa-№ 2
2133  (~ 2
2134  §,` 2
2135  O,` 2
2136  ˆ)~ћ€ўPSymbol-№ 2
2137  lг 2
2138  wfЧћ€ўPSymbol-№ 2
2139  i=г 2
2140 ЄR Ђ`ћР§PSymbol-№ 2
2141 &Ўђ›ћ€ўџ@Script-№ 2
2142  y -Чћўџ@Script-№ 2
2143  @
2144 g™ћ џTms RmnЫa-№ 2
2145 CЫ0p
2146 &
2147 џџџџћМ"System-№№ 2
2148 ` `ўџ
2149 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Ь€3Ф76T76
2150 ƒp ƒHƒY
2151 ‚(„l‚,„f‚,ƒz‚)†=Script- eg ˆ0ƒz †ђ
2152 ƒd2ƒzObjInfoџџџџхџџџџ|Equation Native џџџџџџџџџџџџ}œ_898097475шРF зјЏЅ Н@2+АЅ НOle
2153 џџџџџџџџџџџџ€ўџџџ‚ўџџџ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™ўџџџ›ўџџџўџџџžŸ ўџџџўџџџЃўџџџЅІЇЈЉЊЋЌўџџџЎўџџџўџџџўџџџўџџџГўџџџЕЖЗИЙКўџџџМўџџџўџџџўџџџўџџџСўџџџУФХЦЧШўџџџЪўџџџўџџџўџџџўџџџЯўџџџбвгдежзиўџџџкўџџџўџџџнўџџџўџџџрўџџџтуфхцчўџџџщўџџџўџџџўџџџўџџџюўџџџ№ёђѓєѕўџџџїўџџџўџџџўџџџўџџџќўџџџўџL‡3ш „шш‡3>B С џџџ.1   @&џџџџРџРџ` & MathTypePњ-“ћЌ§РPSymbol€-2
2154 №l(ћЌ§РPSymbol€-№2
2155 №a )`PIC
2156 чъџџџџLMETA џџџџџџџџџџџџƒЈCompObjщыџџџџšZObjInfoџџџџьџџџџœы :Ÿ:Ќ–5–јћўџ@Script-№ 2
2157 @g™ћ€ўPSymbol-№ 2
2158 T=г 2
2159 r-г 2
2160 УУ
2161 +г 2
2162 ЃšьМ 2
2163 AšэМ 2
2164 šяМ 2
2165 рšюМ 2
2166 nšяМ 2
2167 ЃќМ 2
2168 A§М 2
2169 яМ 2
2170 рўМ 2
2171 nяМ 2
2172 -гћ€ўTms Rmn-№ 2
2173 —gР 2
2174 УэuР 2
2175 Уш vЈ 2
2176 )ж
2177 r• 2
2178 uРћ џTms Rmnf-№ 2
2179 ŠБrefWb>ћ€ўPSymbol-№
2180 2
2181 ўdrМг 2
2182 )Гrг 2
2183 &fЧћ џTms Rmnf-№ 2
2184 Ь 2p 2
2185 Д 2pћ€ўTms Rmn-№ 2
2186 *2Рћ€ўPSymbol-№ 2
2187 ёW'ћ€ўTms Rmn-№ 2
2188  cosЈР•
2189 &
2190 џџџџћМ"System-№ўџ
2191 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.24ЩРw:Ф)п5T+п5
2192 Script eg
2193 †=ƒg„d„r„r ƒrƒeƒf
2194 †-ƒu ˆ2
2195 †+ƒv ˆ2
2196 –(–)ƒr–{–}†-ˆ2…Equation Native џџџџџџџџџџџџм_898097474џџџџџџџџяРF@2+АЅ Н@2+АЅ НOle
2197 џџџџџџџџџџџџЁPIC
2198 юёџџџџЂLWƒu‚c‚o‚s„fьМLІ44@шшІ4іG § џџџ.1   &џџџџРџЅџрЅ & MathTypePћ€ўTms Rmn- 2
2199 `\pР 2
2200 `Ќz•ћ€ўTms Rmn§џџџ
2201     1 !"#$(%&')*+-,/.302N46587:9<;>=@?BACEDFGHKIJMLPOlQRSTUWVYX[Z]\_^a`cbdfeghijmkp‰noqsrtuvywx{z~|}‚META џџџџџџџџџџџџЄ(CompObj№ђџџџџ­ZObjInfoџџџџѓџџџџЏEquation Native џџџџџџџџџџџџА<-№ 2
2202 `(~ 2
2203 `])~ћ€ўPSymbol-№ 2
2204 `Б=гћ€ўTms Rmn-№ 2
2205 `”0Р
2206 &
2207 џџџџћМ"System-№є HЁ
2208 2
2209 РоNH•Ёћ€ўўџ
2210 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ŸЬ Џ1аЧ4ЬЧ4
2211 ƒp‚(ƒz†=ˆ0‚)LW,TшшWF3 Ј џџџ.1   р&џџџџРџЅџ Х & MathType`ћ€ўTms Rmn- 2
2212 `\pРћ џTms Rmn-№ _898097473ћэіРF`г2АЅ Н`г2АЅ НOle
2213 џџџџџџџџџџџџБPIC
2214 ѕјџџџџВLMETA џџџџџџџџџџџџДˆ2
2215 Р&Sp
2216 &
2217 џџџџћМ"System-№mbolўџ
2218 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ŸЬ Џ1ИЧ4РЧ4
2219 ƒp ƒSTmCompObjїљџџџџЛZObjInfoџџџџњџџџџНEquation Native џџџџџџџџџџџџО<_898097472џџџџџџџџ§РF`г2АЅ НРUnАЅ НOle
2220 џџџџџџџџџџџџПPIC
2221 ќџџџџџРLMETA џџџџџџџџџџџџТˆCompObjўџџџџЩZLWИTшшWЎ< Љ џџџ.1   Р&џџџџРџЅџ€Х & MathType`ћ€ўTms Rmn- 2
2222 `\pРћ џTms Rmn-№
2223 2
2224 Р0NH•Ё
2225 &
2226 џџџџћМ"System-№џџџџўџџџџџџў–<7р"я3t1EIыўџ
2227 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ŸЬ Џ14Ч4А$Ч4
2228 ƒp ƒNƒHLЩ4H@шшObjInfoџџџџџџџџЫEquation Native џџџџџџџџџџџџЬ<_898097471єРFРUnАЅ НРUnАЅ НOle
2229 џџџџџџџџџџџџЭPIC
2230 џџџџЮLMETA џџџџџџџџџџџџаCompObjџџџџйZObjInfoџџџџџџџџлЩ4Ж0 ь џџџ.1  @&џџџџРџЅџЅ & MathTypePћ€ўTms RmnЫa- 2
2231 `\pРћ џTms Rmnр-№
2232 2
2233 Р-HYЁ}ћ€ўPSymbol-№ 2
2234 `їКгћ€ўTms Rmnр-№ 2
2235 `40Р
2236 &
2237 џџџџћМ"System-№2
2238  §,` 2
2239  O,` 2
2240  ўџ
2241 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Ь@376˜76
2242 ƒp ƒHƒY
2243 †Кˆ0РFLWИTшшEquation Native џџџџџџџџџџџџм\_898097470џџџџџџџџ РFРUnАЅ Н€чАЅ НOle
2244 џџџџџџџџџџџџоPIC
2245 
2246  џџџџпLWЎ< Љ џџџ.1   Р&џџџџРџЅџ€Х & MathType`ћ€ўTms Rmn- 2
2247 `\pРћ џTms Rmn-№
2248 2
2249 Р0NH•Ё
2250 &
2251 џџџџћМ"System-№џџџџўџџџџџџў–<7р"я3t1EIыMETA џџџџџџџџџџџџсˆCompObj џџџџшZObjInfoџџџџџџџџъEquation Native џџџџџџџџџџџџы<ўџ
2252 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ŸЬ Џ14Ч4А$Ч4
2253 ƒp ƒNƒHLW,TшшWF3 Ј џџџ._898097469 РF€чАЅ Н ˆ—АЅ НOle
2254 џџџџџџџџџџџџьPIC
2255 џџџџэLMETA џџџџџџџџџџџџяˆ1   р&џџџџРџЅџ Х & MathType`ћ€ўTms Rmn- 2
2256 `\pРћ џTms Rmn-№ 2
2257 Р&Sp
2258 &
2259 џџџџћМ"System-№mbolўџ
2260 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2CompObjџџџџіZObjInfoџџџџџџџџјEquation Native џџџџџџџџџџџџљ<_898097468џџџџџџџџРF ˆ—АЅ Н`ЙАЅ НŸЬ Џ1ИЧ4РЧ4
2261 ƒp ƒSTmLW,TшшWF3 Ј џџџ.1   р&џџџџРџЅџ Х & MathType`ћ€ўTms Rmn- 2
2262 `Ole
2263 џџџџџџџџџџџџњPIC
2264 џџџџћLMETA џџџџџџџџџџџџ§ˆCompObjџџџџZўџџџўџџџўџџџўџџџўџџџ
2265 ўџџџ   !ўџџџ#ўџџџўџџџ&'()ўџџџўџџџ,ўџџџ./01234ўџџџўџџџ7ўџџџўџџџ:ўџџџ<=>?@ABCDEFGHIJKLMNOPQRSўџџџUўџџџўџџџXYZ[ўџџџўџџџ^ўџџџ`abcdeўџџџgўџџџўџџџўџџџўџџџlўџџџnopqrstuvwxyzўџџџ|ўџџџўџџџ€\pРћ џTms Rmn-№ 2
2266 Р&Sp
2267 &
2268 џџџџћМ"System-№mbolўџ
2269 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ŸЬ Џ1ИЧ4РЧ4
2270 ƒp ƒSTmObjInfoџџџџџџџџEquation Native џџџџџџџџџџџџ<_898097467x РF`ЙАЅ Н гАЅ НOle
2271 џџџџџџџџџџџџLƒ(qјѓшшƒ(qЖ0 З џџџ.1   Р$&џџџџРџІџ€$Ц & MathType њ-›• ›№"Ы„Ы{$›„›{$ћ€ўPSymbol3- 2
2272 р3б 2
2273 р+б 2
2274 рj=гPIC
2275 "џџџџ LMETA џџџџџџџџџџџџ ˆCompObj!#џџџџ"ZObjInfoџџџџ$џџџџ$ 2
2276 рV+г 2
2277 рwб 2
2278 рб 2
2279 рЫ-г 2
2280 рыбћ џTms Rmnр-№ 2
2281 Achp 2
2282 A[hp 2
2283 @кSp
2284 2
2285 @]
2286 HYЁ} 2
2287 AЇhp
2288 2
2289 @BNH•Ё 2
2290 A1hp 2
2291 Ahp
2292 2
2293 @…!NH•Ё 2
2294 ђ%#HЁћ€ўTms RmnЫa-№ 2
2295 рH 2
2296 рpР 2
2297 рnpР 2
2298 рTH 2
2299 ргH 2
2300 р[H 2
2301 рБ pРћ€ўTms Rmnр-№ 2
2302 р.` 2
2303 р|(~ 2
2304 р‰)~ 2
2305 рР (~ 2
2306 р- ,` 2
2307 рŒ)~ 2
2308 рD.` 2
2309 рР(~ 2
2310 рЙ(~ 2
2311 рƒ)~ 2
2312 р)~ 2
2313 рР(~ 2
2314 р$)~ћ€ўџ@Script-№ 2
2315 рА S™ћ€ўPSymbol-№ 2
2316 рI lг 2
2317 рЇ fЧћ џTms RmnЫa-№ 2
2318 42p
2319 &
2320 џџџџћМ"System-№(~ 2
2321  §ўџ
2322 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Ь 3076А76
2323 †б ƒh
2324 ‚.‚(ƒH†б ƒh
2325 ƒp ƒS
2326 ‚)†=ScriptS ƒHƒY
2327 ‚(„l‚,„f‚)†+†б ƒh
2328 ‚.‚(ƒp ƒNƒH
2329 Equation Native џџџџџџџџџџџџ%<_898097466џџџџџџџџ'РF гАЅ Н гАЅ НOle
2330 џџџџџџџџџџџџ*PIC
2331 &)џџџџ+L‚(ƒH‚)†б ƒh
2332 ƒH‚)†-†б ƒhˆ2
2333 ‚(ƒHƒp ƒNƒH
2334  ƒH
2335 ‚)Tms RmLž4|@шшž4І: г+ џџџ.1  `&џџџџ0 & & & MathTypePћ€ўџ@Script- 2
2336 `@META џџџџџџџџџџџџ-ШObjInfo(*џџџџ5Equation Native џџџџџџџџџџџџ6\_8980974652%-РF гАЅ НРœєАЅ НS™ћ џTms Rmnh-№
2337 2
2338 РэHYЁ}+&LMathTypeUU@
2339 ScriptS ƒHƒYРF 
2340 &
2341 џџџџћМ"System-№<<NMSG>>Ь@pŽR—$
2342 ScriptS ƒHƒYinteger divide by 0
2343 R60Ole
2344 џџџџџџџџџџџџ8PIC
2345 ,/џџџџ9LMETA џџџџџџџџџџџџ;(CompObj.0џџџџTZLэ(4Ишшэ(NC ј џџџ.1  Р %&џџџџРџЉџр$i & MathTypepњ-˜Ј ˜ў ›Џ›ѓћ€ўџ@Script- 2
2346 р@S™ћ џTms Rmnb-№
2347 2
2348 @эHYЁ} 2
2349 Afhp 2
2350 я3HЁ 2
2351 A5hp
2352 2
2353 @œHYЁ} 2
2354 ђ(HЁ 2
2355 A,hp
2356 2
2357 @ФHYЁ} 2
2358 AŸ"hpћ€ўTms Rmn-№ 2
2359 рn
2360 H 2
2361 рuH 2
2362 рЫpР 2
2363 рѓpР 2
2364 рТH 2
2365 рA#Hћ€ўTms Rmnb-№ 2
2366 рP(~ 2
2367 рН,` 2
2368 р)~ 2
2369 рг (~ 2
2370 р)~ 2
2371 рк(~ 2
2372 р)~ 2
2373 рЩ.` 2
2374 рE(~ 2
2375 р'(~ 2
2376 рё )~ 2
2377 рp$)~ћ€ўPSymbol-№ 2
2378 рйlг 2
2379 р7fЧћ€ўPSymbol-№ 2
2380 р§=г 2
2381 р6б 2
2382 рE з` 2
2383 рх-г 2
2384 рб 2
2385 рл+г 2
2386 рќб 2
2387 рo!бћ€ўМTms Rmn-№ 2
2388 р™ G+ћ џМTms Rmnb-№ 2
2389 @ф vpћ`џМTms Rmn-№ 2
2390 xc hYћ џTms Rmnb-№ 2
2391 442p
2392 &
2393 џџџџћМ"System-№ЌEž џџи F*Fdмєp`b>w=‚;w=ўџ
2394 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ДЪ o=дŸ=d Ÿ=
2395 ScriptS ƒHƒY
2396 ObjInfoџџџџ1џџџџVEquation Native џџџџџџџџџџџџW<_898097464џџџџџџџџ4РFр=ќАЅ Нр=ќАЅ НOle
2397 џџџџџџџџџџџџ\‚(„l‚,„f‚)†=†б ƒh
2398 †з‚(ƒH‡G ‡v ‡h 
2399  ƒH
2400 ‚)†-†б ƒhˆ2
2401 ‚(ƒHƒp ƒHƒY
2402  ƒH
2403 ‚)†+†б ƒh
2404 ‚.‚(ƒp ƒHƒY
2405 ‚(ƒH‚)†б ƒh
2406 ƒH‚)џўџџџџџџџLW,TшшWF3 Ј џџџ.PIC
2407 36џџџџ]LMETA џџџџџџџџџџџџ_ˆCompObj57џџџџfZObjInfoџџџџ8џџџџh1   р&џџџџРџЅџ Х & MathType`ћ€ўTms Rmn- 2
2408 `\pРћ џTms Rmn-№ 2
2409 Р&Sp
2410 &
2411 џџџџћМ"System-№mbolўџ
2412 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ŸЬ Џ1ИЧ4РЧ4
2413 ƒp ƒSTmLЯW‡ TшшЯWі: š џџџ.1   @&џџџџРџЛџл & MathType`ћ€ўPSymbolЇ- 2
2414 `3Equation Native џџџџџџџџџџџџi<_898097463G+;РFр=ќАЅ Н`ї&БЅ НOle
2415 џџџџџџџџџџџџjPIC
2416 :=џџџџkLMETA џџџџџџџџџџџџmhCompObj<>џџџџ{ZObjInfoџџџџ?џџџџ}Equation Native џџџџџџџџџџџџ~œб 2
2417 `+б 2
2418 `j=гћ џTms RmnЄŠ-№ 2
2419 Сchp 2
2420 С[hp 2
2421 РкSp
2422 2
2423 Р]
2424 HYЁ}ћ€ўTms Rmn-№ 2
2425 `H 2
2426 `pРћ€ўTms RmnЄŠ-№ 2
2427 `.` 2
2428 `|(~ 2
2429 `‰)~ 2
2430 `Р (~ 2
2431 `- ,` 2
2432 `Œ)~ћ€ўџ@Script-№ 2
2433 `А S™ћ€ўPSymbol-№ 2
2434 `I lг 2
2435 `Ї fЧ
2436 &
2437 џџџџћМ"System-№ўџ
2438 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Ь€3(76Ќ)76
2439 †б ƒh
2440 ‚.‚(ƒH†б ƒh
2441 ƒp ƒS
2442 ‚)†=ScriptS ƒHƒY
2443 ўџџџўџџџƒўџџџ…†‡ˆ‰Š‹ŒŽ‘’ўџџџ”ўџџџўџџџ—ўџџџўџџџšўџџџœžŸ ЁўџџџЃўџџџўџџџўџџџўџџџЈўџџџЊЋЌ­ЎЏўџџџБўџџџўџџџўџџџўџџџЖўџџџИЙКЛМНОПўџџџСўџџџўџџџўџџџўџџџЦўџџџШЩЪЫЬЭЮЯабвгдежўџџџиўџџџўџџџлмнўџџџўџџџрўџџџтуфхцчшщъыьэюя№ўџџџђўџџџўџџџѕіўџџџўџџџљўџџџћќ§ўџ‚(„l‚,„f‚)lг 2
2444 `L“ фшш“ v> Ј џџџ.1   €
2445 &џџџџРџЙџ@
2446 Y & MathTypeћ€ўTms Rmn- 2
2447  ;w 2
2448  adР 2
2449  ! z•ћ џ_898097462џџџџџџџџBРF`ї&БЅ Н€˜.БЅ НOle
2450 џџџџџџџџџџџџPIC
2451 ADџџџџ‚LMETA џџџџџџџџџџџџ„ˆTms Rmn-№ 2
2452 цhp 2
2453 пўzWћ€ўPSymbol-№ 2
2454  Ј=г 2
2455  ъ-г 2
2456  Жб 2
2457 Єи Ђ`ћР§PSymbol-№ 2
2458 &дђ›ћ€ўTms Rmn-№ 2
2459  ƒ.`ћ€ўМTms Rmn-№ 2
2460  рvРћ џМTms Rmn-№ 2
2461 Сh}ћ џTms Rmn-№ 2
2462 Cё0p
2463 &
2464 џџџџћМ"System-№џџ!kўџ
2465 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.25Щ`‡6\&—5ь'—5
2466 ƒw†=†-†б ƒh
2467 ‚.‡v ‡hˆ0ƒz †ђ
2468 ƒd2ƒzћР§CompObjCEџџџџ“ZObjInfoџџџџFџџџџ•Equation Native џџџџџџџџџџџџ–|_898097461N@IРF€˜.БЅ Н@*PБЅ НOle
2469 џџџџџџџџџџџџ˜PIC
2470 HKџџџџ™LMETA џџџџџџџџџџџџ›ˆCompObjJLџџџџЂZLW,TшшWF3 Ј џџџ.1   р&џџџџРџЅџ Х & MathType`ћ€ўTms Rmn- 2
2471 `\pРћ џTms Rmn-№ 2
2472 Р&Sp
2473 &
2474 џџџџћМ"System-№mbolўџ
2475 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ŸЬ Џ1ИЧ4РЧ4
2476 ƒp ƒSTmLWИTшшObjInfoџџџџMџџџџЄEquation Native џџџџџџџџџџџџЅ<_898097460џџџџџџџџPРF@*PБЅ Н@*PБЅ НOle
2477 џџџџџџџџџџџџІPIC
2478 ORџџџџЇLMETA џџџџџџџџџџџџЉˆCompObjQSџџџџАZObjInfoџџџџTџџџџВW^9 Љ џџџ.1   Р&џџџџРџЅџ€Х & MathType`ћ€ўTms Rmn- 2
2479 `\pРћ џTms Rmn-№
2480 2
2481 Р0NH•Ё
2482 &
2483 џџџџћМ"System-№ўџ
2484 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.25Щ ‡6А&—5р)—5
2485 ƒp ƒNƒHLэфшшэ^- є џџџ.Equation Native џџџџџџџџџџџџГ<_8980974599WРF`ЫWБЅ НМqБЅ НOle
2486 џџџџџџџџџџџџДPIC
2487 VYџџџџЕLMETA џџџџџџџџџџџџЗCompObjXZџџџџРZObjInfoџџџџ[џџџџТEquation Native џџџџџџџџџџџџУ<1  Р &џџџџРџГџ`s & MathType0ћ€ўPSymbol- 2
2488 `3б 2
2489 `Ф=гћ€ўTms Rmnаl-№ 2
2490 `<.`ћ€ўМTms Rmns-№ 2
2491 `™vРћ€ўTms Rmnаl-№ 2
2492 `Ї0Р
2493 &
2494 џџџџћМ"System-№ўџ
2495 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.25Щ 7ш_3 _3
2496 †б‚.‡v†=ˆ0бLvŒМ ”шшvŒP Ю џџџ._898097458џџџџџџџџ^РF ]yБЅ Н ]yБЅ НOle
2497 џџџџџџџџџџџџФPIC
2498 ]`џџџџХLMETA џџџџџџџџџџџџЧШ1   `&џџџџРџЅџ Х & MathTypeРњ-=G =fћ€ўPSymbol+- 2
2499  3б 2
2500  Ы=г 2
2501  б 2
2502   +г 2
2503  к=гћ џTms Rmnw-№ 2
2504 єb2p 2
2505 њЧ2p 2
2506 ѓQ 2p 2
2507 К2pћ€ўTms Rmn-№ 2
2508  pР 2
2509  }pР 2
2510 ŸpР 2
2511 Щџ z•ћ џTms Rmnw-№
2512 2
2513 ьNH•Ё 2
2514 4hp
2515 2
2516 Q NH•Ё
2517 2
2518 џлNH•Ё
2519 2
2520 аNH•Ёћ€ўPSymbol-№ 2
2521 ŸQ ЖМ 2
2522 ЩC ЖМћ€ўџ@Script-№ 2
2523   S™
2524 &
2525 џџџџћМ"System-№№ 2
2526 ‰}opћ€ўўџ
2527 џџџџРFMicrosoft Equation 2.0 DS EqCompObj_aџџџџзZObjInfoџџџџbџџџџйEquation Native џџџџџџџџџџџџкм_898097457j\eРF ]yБЅ НрюšБЅ Нuation Equation.2jЪР—34_ _ 
2528 †б ˆ2
2529 ƒp ƒNƒH
2530 †=†б ƒh
2531  ˆ2
2532 ƒp ƒNƒH
2533 †+„Ж ˆ2
2534 ƒp ƒNƒH
2535 „Жƒz ˆ2
2536 †=ScriptS ƒNƒHLи{@ hшшOle
2537 џџџџџџџџџџџџоPIC
2538 dgџџџџпLMETA џџџџџџџџџџџџсШCompObjfhџџџџёZи{F; Ю џџџ.1  @&џџџџРџОџРў & MathType`ћ€ўџ@Script- 2
2539 €@S™ћ џTms Rmnь-№
2540 2
2541 р№NH•Ё 2
2542 с"
2543 hp 2
2544 рг Sp
2545 2
2546 рчHYЁ}ћ€ўTms Rmn-№ 2
2547 € pР 2
2548 €pРћ€ўPSymbol-№ 2
2549 €Я=г 2
2550 €б 2
2551 €в-г 2
2552 €ђб 2
2553 €Ь +гћ€ўTms Rmn-№ 2
2554 €.` 2
2555 €[ (~ 2
2556 €Q)~ћ€ўМTms Rmnь-№ 2
2557 €G+ћ џМTms Rmn-№ 2
2558 рлvpћ џTms Rmnь-№ 2
2559 кЕ
2560 2p
2561 &
2562 џџџџћМ"System-№thType`ћ€ўџ@Scўџ
2563 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Ь 3l(76ќ)76
2564 ScriptS ƒNƒH
2565 †=†б‚.‡G ‡v
2566 †-†б ƒh
2567  ˆ2
2568 ‚(ƒp ƒS
2569 †+ƒp ƒHƒY
2570 ‚)€ўџ@ScObjInfoџџџџiџџџџѓEquation Native џџџџџџџџџџџџєМ_898097455џџџџџџџџlРFрюšБЅ Н€пДБЅ НOle
2571 џџџџџџџџџџџџїPIC
2572 knџџџџјLMETA џџџџџџџџџџџџњЈCompObjmoџџџџZObjInfoџџџџpџџџџLЗW`TшшЗWЎ( 9 џџџ.1   &џџџџРџГџРг & MathType`ћ€ўPSymbol- 2
2573 `3б 2
2574 `=гћ€ўTms Rmns-№ 2
2575 `CpРћ џTms Rmnрe-№
2576 2
2577 РNH•Ёћ€ўTms ўџџџўџџџўџџџ ўџџџўџџџ ўџџџўџџџўџџџўџџџўџџџўџџџўџџџ !ўџџџ#ўџџџўџџџўџџџўџџџ(ўџџџ*+,-./ўџџџ1ўџџџўџџџўџџџўџџџ6ўџџџ89:;<=>ўџџџ@ўџџџўџџџўџџџўџџџEўџџџGHIJKLMNOPQўџџџSўџџџўџџџVWўџџџўџџџZўџџџ\]^_`abcdўџџџfўџџџўџџџiўџџџўџџџlўџџџnopqrўџџџўџџџўџџџўџџџwўџџџyz{|}~€Rmns-№ 2
2578 `†.`ћ€ўМTms Rmnрe-№ 2
2579 `рnзћ€ўTms Rmns-№ 2
2580 `џ0Р
2581 &
2582 џџџџћМ"System-№Ђ)~ћ€ўМTms Rmnsўџ
2583 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Equation Native џџџџџџџџџџџџ\_898097454csРF €МБЅ Н €МБЅ НOle
2584 џџџџџџџџџџџџ
2585 PIC
2586 ruџџџџ L5Щ@7 _3< _3
2587 †бƒp ƒNƒH
2588 ‚.‡n†=ˆ0FLWИTшшW^9 Љ џџџ.1   Р&џџџџРџЅџ€Х & MathType`ћ€ўTms Rmn- 2
2589 `META џџџџџџџџџџџџ ˆCompObjtvџџџџZObjInfoџџџџwџџџџEquation Native џџџџџџџџџџџџ<\pРћ џTms Rmn-№
2590 2
2591 Р0NH•Ё
2592 &
2593 џџџџћМ"System-№ўџ
2594 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.25Щ ‡6А&—5р)—5
2595 ƒp ƒNƒH_898097453џџџџџџџџzРF €МБЅ Н €МБЅ НOle
2596 џџџџџџџџџџџџPIC
2597 y|џџџџLMETA џџџџџџџџџџџџˆLWИTшшWЎB Љ џџџ.1   Р&џџџџРџЅџ€Х & MathType`ћ€ўTms Rmn- 2
2598 `\pРћ џTms Rmn-№
2599 2
2600 Р0NH•Ё
2601 &
2602 џџџџћМ"System-№ўџ
2603 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.24Щ w:а)п5Р0п5
2604 ƒp ƒNƒHџџџџџLW,TшшCompObj{}џџџџ"ZObjInfoџџџџ~џџџџ$Equation Native џџџџџџџџџџџџ%<_898097452†xРF€IЭБЅ НрЫВЅ НOle
2605 џџџџџџџџџџџџ&PIC
2606 €ƒџџџџ'LMETA џџџџџџџџџџџџ)ˆCompObj‚„џџџџ0ZWF3 Ј џџџ.1   р&џџџџРџЅџ Х & MathType`ћ€ўTms Rmn- 2
2607 `\pРћ џTms Rmn-№ 2
2608 Р&Sp
2609 &
2610 џџџџћМ"System-№mbolўџ
2611 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ŸЬ Џ1ИЧ4РЧ4
2612 ƒp ƒSTmLџWDTшшџW–8 Ъ џџџ.ObjInfoџџџџ…џџџџ2Equation Native џџџџџџџџџџџџ3<_898097451џџџџџџџџˆРFрЫВЅ Нр5!ВЅ НOle
2613 џџџџџџџџџџџџ4PIC
2614 ‡Šџџџџ5LMETA џџџџџџџџџџџџ7ШCompObj‰‹џџџџ?ZObjInfoџџџџŒџџџџA1    &џџџџРџГџ`г & MathType`ћ€ўPSymbol‚- 2
2615 `3бћ€ўTms Rmn-№ 2
2616 `CpРћ џTms Rmn-№
2617 2
2618 РNH•Ё
2619 &
2620 џџџџћМ"System-№ўџ
2621 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ŸЬ Џ1”&Ч4Д*Ч4
2622 †бƒp ƒNƒHL“ Elшш“ EцC e џџџ.1  р€
2623 &џџџџРџПџ@
2624 Ÿ &Equation Native џџџџџџџџџџџџB<_898097450ФqРFр5!ВЅ НРў1ВЅ НOle
2625 џџџџџџџџџџџџCPIC
2626 Ž‘џџџџDLMETA џџџџџџџџџџџџFшCompObj’џџџџRZObjInfoџџџџ“џџџџTEquation Native џџџџџџџџџџџџUœ MathTypeРњ-§@§§§5
2627 ћ€ўPSymbol/- 2
2628 kJЖМ 2
2629 ‰ЖМ 2
2630 _ЖМ 2
2631 ‰ёЖМћ€ўTms Rmn‰-№ 2
2632 kw 2
2633 ‰Ktk 2
2634 `ЮG 2
2635 _жpР 2
2636 ‰­z•ћ џTms Rmnд:-№ 2
2637 {w•
2638 2
2639 ПЊNH•Ёћ€ўPSymbol-№ 2
2640 `“=г 2
2641 #чйц 2
2642 `у-г
2643 &
2644 џџџџћМ"System-№=г 2
2645 ­Ђ
2646 ўџ
2647 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.25Щ€Я:фч8tч8
2648 „Жƒw„Жƒt†='ƒG 
2649 †й ƒw
2650 †-„Жƒp ƒNƒH
2651 „Жƒz- 2
2652 kJЖМ_898097449џџџџџџџџ–РFРў1ВЅ Н`яKВЅ НOle
2653 џџџџџџџџџџџџXPIC
2654 •˜џџџџYLMETA џџџџџџџџџџџџ[HL •(шш •оK  џџџ.1  @@&џџџџРџЋџы & MathType€ћ€ўTms Rmn- 2
2655 @5G 2
2656 @пGћ џTms Rmn-№ 2
2657 [ow• 2
2658  їw•ћ€ўPSymbol-№ 2
2659 Nйц 2
2660 @Є=г 2
2661 @+гћўџ@Script-№ 2
2662 @Cg™
2663 &
2664 џџџџћМ"System-№2
2665 ЃU ќМ 2
2666 AU §М ўџ
2667 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2CompObj—™џџџџeZObjInfoџџџџšџџџџgEquation Native џџџџџџџџџџџџh|_898097448Ё”РF`яKВЅ Н€SВЅ НUЬ`ŸBА"Я @$Я 
2668 'ƒG 
2669 †й ƒw
2670 †=ƒG ƒw
2671 †+Script eg  &џџL=эДшш=эFO   џџџ.1  Р &џџџџУ+уы & MathType€ћўџ@Script- 2
2672 Р@Ole
2673 џџџџџџџџџџџџjPIC
2674 œŸџџџџkLMETA џџџџџџџџџџџџmhObjInfož џџџџsg™&,MathTypeUU 
2675 Script eg
2676 &
2677 џџџџћМ"System-№џџџџџ№џ№џ№џ№џ№џ№ђ№ђџђџђ№ф№фџфџф№UЬ pŽRџ)
2678 Script egLЯW‡ TшшEquation Native џџџџџџџџџџџџt<_898097447џџџџџџџџЃРF€SВЅ НJ~ВЅ НOle
2679 џџџџџџџџџџџџuPIC
2680 ЂЅџџџџvLMETA џџџџџџџџџџџџxhCompObjЄІџџџџ†ZObjInfoџџџџЇџџџџˆEquation Native џџџџџџџџџџџџ‰œ‚ƒ„…ўџџџ‡ўџџџўџџџŠ‹ўџџџўџџџŽўџџџ‘’“”•–—˜™š›œžўџџџ ўџџџўџџџЃЄўџџџўџџџЇўџџџЉЊЋЌ­ЎЏАБВГДЕЖЗўџџџЙўџџџўџџџМНўџџџўџџџРўџџџТУФХЦЧШЩЪЫЬЭЮЯабўџџџгўџџџўџџџжзўџџџўџџџкўџџџмноўџџџрўџџџўџџџўџџџўџџџхўџџџчшщъыьэюя№ёђѓєѕіїўџџџљўџџџўџџџќ§ўџџџўџџџЯWN: š џџџ.1   @&џџџџРџЛџл & MathType`ћ€ўPSymbolЇ- 2
2681 `3б 2
2682 `+б 2
2683 `j=гћ џTms RmnЄŠ-№ 2
2684 Сchp 2
2685 С[hp 2
2686 РкSp
2687 2
2688 Р]
2689 HYЁ}ћ€ўTms Rmn-№ 2
2690 `H 2
2691 `pРћ€ўTms RmnЄŠ-№ 2
2692 `.` 2
2693 `|(~ 2
2694 `‰)~ 2
2695 `Р (~ 2
2696 `- ,` 2
2697 `Œ)~ћ€ўџ@Script-№ 2
2698 `А S™ћ€ўPSymbol-№ 2
2699 `I lг 2
2700 `Ї fЧ
2701 &
2702 џџџџћМ"System-№х4ЌE FтЌEz џџўџ
2703 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Ь€3и(76h*76
2704 †б ƒh
2705 ‚.‚(ƒH†б ƒh
2706 ƒp ƒS
2707 ‚)†=ScriptS ƒHƒY
2708 ‚(„l‚,„f‚)nЄŠ-Lx4фшшxn; Ы џџџ._898097446Ж›ЊРFJ~ВЅ НJ~ВЅ НOle
2709 џџџџџџџџџџџџŒPIC
2710 ЉЌџџџџLMETA џџџџџџџџџџџџШ1    &џџџџРџЙџр Y & MathTypeћ€ўTms Rmn- 2
2711  \pР 2
2712  фz• 2
2713  ї
2714 dР 2
2715  З z•ћ џTms Rmn-№
2716 2
2717 -HYЁ} 2
2718 пиzWћ€ўTms Rmn-№ 2
2719  (~ 2
2720  §,` 2
2721  O,` 2
2722  ˆ)~ћ€ўPSymbol-№ 2
2723  lг 2
2724  wfЧћ€ўPSymbol-№ 2
2725  i=г 2
2726  ™ -г 2
2727 Єn Ђ`ћР§PSymbol-№ 2
2728 &Ўђ›ћ€ўџ@Script-№ 2
2729  „
2730 gsћ џTms Rmn-№ 2
2731 CЫ0p
2732 &
2733 џџџџћМ"System-№љџџџџјџџџџњmџџџџќџџџџјџџџџњ
2734 џџџџљџџџџўџ
2735 џџџџРFMicrosoft Equation 2.0 DS EqCompObjЋ­џџџџŸZObjInfoџџџџЎџџџџЁEquation Native џџџџџџџџџџџџЂœ_898097445џџџџџџџџБРF ы…ВЅ Нр|ЇВЅ Нuation Equation.2Ь€3Ќ(76<*76
2736 ƒp ƒHƒY
2737 ‚(„l‚,„f‚,ƒz‚)†=†-Scriptg ˆ0ƒz †ђ
2738 ƒd2ƒz)~ћ€ўL ž€ |шшOle
2739 џџџџџџџџџџџџЅPIC
2740 АГџџџџІLMETA џџџџџџџџџџџџЈШCompObjВДџџџџИZ žN: Ш џџџ.1  `&џџџџРџЄџР & MathType`ћ€ўPSymbolЇ- 2
2741  3б 2
2742  Ы=г 2
2743  б 2
2744  Ю -г 2
2745  ю
2746 б 2
2747  Ш+гћ џTms Rmnь-№ 2
2748 єb2p 2
2749 њБ 2pћ€ўTms Rmn-№ 2
2750  pР 2
2751  pР 2
2752  pРћ џTms Rmnь-№
2753 2
2754 ьNH•Ё 2
2755  hp 2
2756 ЯSp
2757 2
2758 уHYЁ}ћ€ўTms Rmn-№ 2
2759   .` 2
2760  W (~ 2
2761  M)~ћ€ўМTms Rmnь-№ 2
2762  ŒG+ћ џМTms Rmn-№ 2
2763 зvp
2764 &
2765 џџџџћМ"System-№НрћПїџцџНрћПїџцџНрћПїџцџНсћПюџџцНтћПюџџцўџ
2766 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Ь 3є(76„*76
2767 †б ˆ2
2768 ƒp ƒNƒH
2769 †=†б‚.‡G ‡v
2770 †-†б ƒh
2771  ˆ2
2772 ‚(ƒp ƒS
2773 †+ƒp ƒHƒY
2774 ‚)ms Rmnь-LwEx
2775 lшшObjInfoџџџџЕџџџџКEquation Native џџџџџџџџџџџџЛМ_898097444НЏИРFр|ЇВЅ Нр|ЇВЅ НOle
2776 џџџџџџџџџџџџОPIC
2777 ЗКџџџџПLMETA џџџџџџџџџџџџСCompObjЙЛџџџџвZObjInfoџџџџМџџџџдwEN: ь џџџ.1  рР&џџџџРџНџ€ & MathTypeРњ-§@§Ќћ€ўPSymbol- 2
2778 aJЖМ 2
2779 ‰аЖМћ€ўМTms RmnI-№ 2
2780 avР 2
2781 ‰Œt~ 2
2782 `WG+ћ џМTms Rmn-№ 2
2783 Счh} 2
2784 РЂvp 2
2785 Рg h}ћ`џМTms RmnI-№ 2
2786 ј!hYћ€ўPSymbol-№ 2
2787 ` =г 2
2788 `-г 2
2789 `8б 2
2790 `‰ +гћ€ўTms RmnI-№ 2
2791 `
2792 (~ 2
2793 `)~ћ€ўTms Rmn-№ 2
2794 `Ц
2795 pР 2
2796 `г pРћ џTms RmnI-№ 2
2797 Р Sp
2798 2
2799 РЄHYЁ}
2800 &
2801 џџџџћМ"System-№и F*Fdмє`в я0.я0ўџ
2802 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Ь 3<)76Ь*76
2803 „Ж‡v ‡h
2804 „Ж‡t†=‡G ‡v ‡h 
2805 †-†б ‡h
2806 ‚(ƒp ƒS
2807 †+ƒp ƒHƒY
2808 ‚) 2
2809 РЂvp Equation Native џџџџџџџџџџџџеМ_898097443џџџџџџџџПРFр|ЇВЅ Н`6вВЅ НOle
2810 џџџџџџџџџџџџиPIC
2811 ОСџџџџйLL=4Д@шш=4і@ P џџџ.1   &џџџџРџЅџрЅ & MathTypeP
2812 &
2813 џџџџннннннннннннннннннннннннннннннннўџ
2814 џџџџРFMicrosoft Equation 2.0 DS Eq§џџџƒ„†…‡ˆŠА‹ŒŽ‘’“”•—–˜™š›œžŸ ЂЁЃЅЄІЇЈЊЉЋ­ЌЎБЏВжДГЕЖЗЙИКМЛНПОРСТФУХЧЦЩШЫЪЬЭЮЯбавгедкзюийлмнропстуцфхчъшщыьэ№я
2815 ђёіѓєѕјїњљћ§ќўџMETA џџџџџџџџџџџџлШCompObjРТџџџџпZObjInfoџџџџУџџџџсEquation Native џџџџџџџџџџџџт<uation Equation.25Щ Я:%ч8-ч8
2816 РџЅџрЅ & MathTyLрEј lшшрE:  џџџ.1  рР&џџџџРџНџ€ &_898097442ЃЈЦРF`6вВЅ Н` ъВЅ НOle
2817 џџџџџџџџџџџџуPIC
2818 ХШџџџџфLMETA џџџџџџџџџџџџцH MathTypeРњ-§@§Ќћ€ўPSymbol- 2
2819 aJЖМ 2
2820 ‰аЖМћ€ўМTms RmnЄŠ-№ 2
2821 avР 2
2822 ‰Œt~ 2
2823 `WG+ћ џМTms Rmnь-№ 2
2824 Счh} 2
2825 РЂvp 2
2826 Рg h}ћ`џМTms RmnЄŠ-№ 2
2827 ј!hYћ€ўPSymbol-№ 2
2828 ` =г 2
2829 `-г 2
2830 `8б 2
2831 `‰ +г 2
2832 `X+гћ€ўTms RmnЄŠ-№ 2
2833 `
2834 (~ 2
2835 `є)~ћ€ўTms Rmnь-№ 2
2836 `Ц
2837 pР 2
2838 `г pР 2
2839 `ЂpРћ џTms RmnЄŠ-№ 2
2840 Р Sp
2841 2
2842 РЄHYЁ}
2843 2
2844 РvNH•Ё
2845 &
2846 џџџџћМ"System-№ЌEž џџи F*Fdмє`в я0я0CompObjЧЩџџџџјZObjInfoџџџџЪџџџџњEquation Native џџџџџџџџџџџџћМ_898097441џџџџџџџџЭРF` ъВЅ Н` ъВЅ Нўџ
2847 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Ь 3 )76А*76
2848 „Ж‡v ‡h
2849 „Ж‡t†=‡G ‡v ‡h 
2850 †-†б ‡h
2851 ‚(ƒp ƒS
2852 †+ƒp ƒHƒY
2853 †+ƒp ƒNƒH
2854 ‚)L“ фшшOle
2855 џџџџџџџџџџџџўPIC
2856 ЬЯџџџџџLMETA џџџџџџџџџџџџˆCompObjЮаџџџџZўџџџ 
2857    ўџџџўџџџўџџџўџџџўџџџўџџџ !"#ўџџџ%ўџџџўџџџ()ўџџџўџџџ,ўџџџўџџџ/ўџџџўџџџ2ўџџџўџџџ56ўџџџўџџџ9ўџџџўџџџ<ўџџџўџџџ?ўџџџўџџџўџџџўџџџDўџџџўџџџўџџџўџџџIўџџџўџџџLMўџџџўџџџPўџџџўџџџўџџџўџџџUўџџџўџџџXўџџџўџџџ[ўџџџўџџџўџџџўџџџ`ўџџџўџџџcўџџџўџџџfўџџџўџџџiўџџџўџџџlўџџџўџџџўџџџўџџџqўџџџўџџџtўџџџўџџџwўџџџўџџџzўџџџўџџџ}ўџџџўџџџўџџџ“ v> Ј џџџ.1   €
2858 &џџџџРџЙџ@
2859 Y & MathTypeћ€ўTms Rmn- 2
2860  ;w 2
2861  adР 2
2862  ! z•ћ џTms Rmn-№ 2
2863 цhp 2
2864 пўzWћ€ўPSymbol-№ 2
2865  Ј=г 2
2866  ъ-г 2
2867  Жб 2
2868 Єи Ђ`ћР§PSymbol-№ 2
2869 &дђ›ћ€ўTms Rmn-№ 2
2870  ƒ.`ћ€ўМTms Rmn-№ 2
2871  рvРћ џМTms Rmn-№ 2
2872 Сh}ћ џTms Rmn-№ 2
2873 Cё0p
2874 &
2875 џџџџћМ"System-№џџ!kўџ
2876 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.25Щ`‡6\&—5ь'—5
2877 ƒw†=†-†б ƒh
2878 ‚.‡v ‡hˆ0ƒz †ђ
2879 ƒd2ƒzћР§L“ ElшшObjInfoџџџџбџџџџEquation Native џџџџџџџџџџџџ|_898097440ЫдРF` ъВЅ НрYГЅ НOle
2880 џџџџџџџџџџџџPIC
2881 гжџџџџLMETA џџџџџџџџџџџџшCompObjезџџџџ$ZObjInfoџџџџиџџџџ&“ E–C e џџџ.1  р€
2882 &џџџџРџПџ@
2883 Ÿ & MathTypeРњ-§@§§§5
2884 ћ€ўPSymbolT- 2
2885 kJЖМ 2
2886 ‰ЖМ 2
2887 _ЖМ 2
2888 ‰ёЖМћ€ўTms Rmnb-№ 2
2889 kw 2
2890 ‰Ktk 2
2891 `ЮG 2
2892 _жpР 2
2893 ‰­z•ћ џTms Rmn-№ 2
2894 {w•
2895 2
2896 ПЊNH•Ёћ€ўPSymbol-№ 2
2897 `“=г 2
2898 #чйц 2
2899 `у-г
2900 &
2901 џџџџћМ"System-№~ 2
2902 р'(~ ўџ
2903 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ДЪ€o=ФŸ=TŸ=
2904 „Жƒw„Жƒt†='Equation Native џџџџџџџџџџџџ'œ_943430162<џџџџлЮРFрYГЅ НћГЅ НOle
2905 џџџџџџџџџџџџ*CompObjкмџџџџ+fƒG 
2906 †й ƒw
2907 †-„Жƒp ƒNƒH
2908 „ЖƒzРџЉџр$i & MathTyўџ
2909 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩг(`hI8cI
2910 ‡F  ‡v‡hObjInfoџџџџнџџџџ-Equation Native џџџџџџџџџџџџ.D_944035311ђрЮРFћГЅ НћГЅ НOle
2911 џџџџџџџџџџџџ0ўџ
2912 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqдpМcIАgI
2913 ‡F ‡v ‡h 
2914 †=ˆ1„С ƒrƒeƒf
2915 †"‡X†"ƒzCompObjпсџџџџ1fObjInfoџџџџтџџџџ3Equation Native џџџџџџџџџџџџ4Œ_943431059шїхЮРFћГЅ Н`}XГЅ НOle
2916 џџџџџџџџџџџџ7CompObjфцџџџџ8fObjInfoџџџџчџџџџ:Equation Native џџџџџџџџџџџџ;tўџ
2917 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩгXЄЗI •I
2918 ‡X‚(ƒz†=ˆ0‚)†=‚(„Ф ƒu
2919 ‚,„Ф ƒv
2920 ‚)ўџ
2921 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9Вq_943430818йэъЮРF€`ГЅ Н€`ГЅ НOle
2922 џџџџџџџџџџџџ=CompObjщыџџџџ>fObjInfoџџџџьџџџџ@Щг€ŸI ЁI
2923 „Ф ƒuўџ
2924 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩгьГI<ДI
2925 „Ф ƒvEquation Native џџџџџџџџџџџџA8_943430851џџџџџџџџяЮРF€`ГЅ Н@FiГЅ НOle
2926 џџџџџџџџџџџџBCompObjю№џџџџCfObjInfoџџџџёџџџџEEquation Native џџџџџџџџџџџџF8_944035329џџџџџџџџєЮРF`чpГЅ Н`чpГЅ НOle
2927 џџџџџџџџџџџџGCompObjѓѕџџџџHfObjInfoџџџџіџџџџJEquation Native џџџџџџџџџџџџK_943431474џџџџџџџџљЮРF@АГЅ Нр
2928 ДГЅ Нўџ
2929 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9Вqдt,zI|zI
2930 ƒF ƒT
2931 †=ˆ1„С ƒrƒeƒf
2932 ƒC ƒp
2933 †"ƒQ†"ƒzўџ
2934 џџџџЮРFMicrosoft Equation 3.0 DS EqOle
2935 џџџџџџџџџџџџNCompObjјњџџџџOfObjInfoџџџџћџџџџQEquation Native џџџџџџџџџџџџR8uation Equation.3є9ВqЩгœ•IpЇI
2936 ƒC ƒpўџ
2937 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩг8 cIДgI
2938 ƒQ‚(ƒz†=ˆ0‚)†=_943431855ˆўЮРFр
2939 ДГЅ Нр
2940 ДГЅ НOle
2941 џџџџџџџџџџџџSCompObj§џџџџџTfObjInfoџџџџџџџџVEquation Native џџџџџџџџџџџџWT_943431931џџџџџџџџЮРFр
2942 ДГЅ НЌЛГЅ НOle
2943 џџџџџџџџџџџџYCompObjџџџџZfƒQ ˆ0џџўџ
2944 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩг„lIќhI
2945 ƒQ ˆ0ўџ
2946 џџџџЮРFMicrosoft Equation 3.0 DS EqObjInfoџџџџџџџџ\Equation Native џџџџџџџџџџџџ]8_944035342о.ЮРFЌЛГЅ НЌЛГЅ НOle
2947 џџџџџџџџџџџџ^CompObj џџџџ_fObjInfoџџџџ
2948 џџџџaEquation Native џџџџџџџџџџџџbT_943432363 ЮРFЌЛГЅ Н`.їГЅ Нuation Equation.3є9Вqд84I@ŽI
2949 ƒF ƒS
2950 †=†"ƒe†"ƒzўџ
2951 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqOle
2952 џџџџџџџџџџџџdCompObj џџџџefObjInfoџџџџџџџџgEquation Native џџџџџџџџџџџџhpЩгTДcIИgI
2953 ƒe‚(ƒz†=ˆ0‚)†=ƒS ƒrƒeƒf
2954 ‚(ƒE†"ƒP‚)ўџ
2955 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩг$œcIАgI
2956 ƒS ƒrƒeƒf _943432534џџџџџџџџЮРF`.їГЅ Н€ЯўГЅ НOle
2957 џџџџџџџџџџџџjCompObjџџџџkfObjInfoџџџџџџџџmEquation Native џџџџџџџџџџџџn@_943433200 ЮРF€ЯўГЅ Н€ЯўГЅ НOle
2958 џџџџџџџџџџџџoCompObjџџџџpfўџ
2959 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩгH`hI8cI
2960 „Л ƒT
2961 ‚(ƒT†"ƒT ƒoƒbƒs
2962 ‚)ўџ
2963 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqObjInfoџџџџџџџџrEquation Native џџџџџџџџџџџџsd_943433264џџџџџџџџЮРF€ЯўГЅ Н€ЯўГЅ НOle
2964 џџџџџџџџџџџџuCompObjџџџџvfObjInfoџџџџџџџџxEquation Native џџџџџџџџџџџџyd_943433324$!ЮРF@їДЅ Н@їДЅ НЩгH}I8~I
2965 „Л ƒS
2966 ‚(ƒS†"ƒS ƒoƒbƒs
2967 ‚)1ўџ
2968 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩгl‡I|‘I
2969 „Л ƒTOle
2970 џџџџџџџџџџџџ{CompObj "џџџџ|fObjInfoџџџџ#џџџџ~Equation Native џџџџџџџџџџџџ8_943433349џџџџџџџџ&ЮРF РДЅ Н у[ДЅ НOle
2971 џџџџџџџџџџџџ€CompObj%'џџџџfObjInfoџџџџ(џџџџƒўџџџ‚ўџџџўџџџўџџџўџџџ‡ўџџџўџџџŠ‹Œўџџџўџџџўџџџўџџџўџџџўџџџ”ўџџџўџџџўџџџўџџџ™ўџџџўџџџўџџџўџџџžўџџџўџџџЁЂўџџџўџџџЅўџџџўџџџўџџџўџџџЊўџџџўџџџўџџџўџџџЏўџџџўџџџВГўџџџўџџџЖўџџџўџџџўџџџўџџџЛўџџџўџџџўџџџўџџџРўџџџТУФХЦўџџџШўџџџўџџџўџџџўџџџЭўџџџЯабвгдўџџџжўџџџўџџџйўџџџўџџџмўџџџопрстуўџџџхўџџџўџџџшўџџџўџџџыўџџџэюя№ёђўџџџєўџџџўџџџїўџџџўџџџњўџџџќ§ўџ ўџ
2972 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩгdІIиЅI
2973 „Л ƒSўџ
2974 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqEquation Native џџџџџџџџџџџџ„8_944035580ьџџџџ+ЮРF у[ДЅ Н MtДЅ НOle
2975 џџџџџџџџџџџџ…CompObj*,џџџџ†fObjInfoџџџџ-џџџџˆEquation Native џџџџџџџџџџџџ‰ф_944035624)30ЮРF MtДЅ Н@>ŽДЅ НOle
2976 џџџџџџџџџџџџдШ cIДgI
2977 ‡D ‡V
2978 †=„Х ƒh
2979 †" ƒhˆ2
2980 ‡v†+„Х ƒv
2981 †" ˆ2
2982 ‡v†"ƒz ˆ2
2983 †+„Х ˆ4
2984 †" ƒhˆ4
2985 ‡vўџ
2986 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqCompObj/1џџџџŽfObjInfoџџџџ2џџџџEquation Native џџџџџџџџџџџџ‘8_944035636џџџџ85ЮРF@>ŽДЅ Н@>ŽДЅ НдШ{Iˆ}I
2987 „Х ƒhўџ
2988 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqдрŽIьI
2989 „Х ƒvOle
2990 џџџџџџџџџџџџ’CompObj46џџџџ“fObjInfoџџџџ7џџџџ•Equation Native џџџџџџџџџџџџ–8_944035653џџџџџџџџ:ЮРF@>ŽДЅ Н qЗДЅ НOle
2991 џџџџџџџџџџџџ—CompObj9;џџџџ˜fObjInfoџџџџ<џџџџšўџ
2992 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9Вqдр‹IL…I
2993 „Х ˆ4ўџ
2994 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqEquation Native џџџџџџџџџџџџ›8_943435301ќЩ?ЮРF qЗДЅ НРaбДЅ НOle
2995 џџџџџџџџџџџџœCompObj>@џџџџfObjInfoџџџџAџџџџŸEquation Native џџџџџџџџџџџџ Р_943435527џџџџџџџџDЮРF ”њДЅ Н ”њДЅ НOle
2996 џџџџџџџџџџџџЃЩгЄ cIДgI
2997 ƒD ƒT‚,ƒS
2998 †=†"‚.‡K†"‚(ƒT‚,ƒS‚)–[–]†+ƒK ˆ4
2999 †" ƒhˆ4
3000 ‚(ƒT‚,ƒS‚)@ўџ
3001 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩгш}Iф\I
3002 ‡KCompObjCEџџџџЄfObjInfoџџџџFџџџџІEquation Native џџџџџџџџџџџџЇ0_943435589BLIЮРFРaбДЅ Н€ѓђДЅ НOle
3003 џџџџџџџџџџџџЈCompObjHJџџџџЉfObjInfoџџџџKџџџџЋEquation Native џџџџџџџџџџџџЌ8ўџ
3004 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩгIаcI
3005 ƒK ˆ4ўџ
3006 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9Вq_943435782џџџџџџџџNЮРF ”њДЅ Н ”њДЅ НOle
3007 џџџџџџџџџџџџ­CompObjMOџџџџЎfObjInfoџџџџPџџџџАЩг`hI8cI
3008 ‡K†=ƒK ƒh
3009 ˆ0ˆ0ˆ0ƒK ƒh
3010 ˆ0ˆ0ˆ0ƒK ƒv
3011 –(–)ўџ
3012 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqEquation Native џџџџџџџџџџџџБЌ_943435965GЁSЮРF ”њДЅ Н`МЕЅ НOle
3013 џџџџџџџџџџџџДCompObjRTџџџџЕfObjInfoџџџџUџџџџЗEquation Native џџџџџџџџџџџџИ8_943435996џџџџџџџџXЮРF€] ЕЅ Н€] ЕЅ НOle
3014 џџџџџџџџџџџџЙЩгРcIДgI
3015 ƒK ƒhўџ
3016 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩг„lIќhI
3017 ƒK ƒvL,,шшCompObjWYџџџџКfObjInfoџџџџZџџџџМEquation Native џџџџџџџџџџџџН8_898096615i ]РF`&ЕЅ НРЈWЕЅ НOle
3018 џџџџџџџџџџџџОPIC
3019 \_џџџџПLMETA џџџџџџџџџџџџСHCompObj^`џџџџЧZю  џџџ.1  рр&џџџџРџЄџ „ & MathType`ћ€ўTms Rmn- 2
3020 \pР 2
3021 ”
3022 s•
3023 &
3024 џџџџћМ"System-№X+@@2@?џџџџџIЏўџ
3025 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Ь o1ь@р@
3026  e€ƒpƒsџџџLф4Є@шшф4V; Љ џџџ.1   &џџџџРџЅџ`Ѕ &ObjInfoџџџџaџџџџЩEquation Native џџџџџџџџџџџџЪ<_898096614џџџџџџџџdРFРЈWЕЅ НРЈWЕЅ НOle
3027 џџџџџџџџџџџџЫPIC
3028 cfџџџџЬLMETA џџџџџџџџџџџџЮˆCompObjegџџџџеZObjInfoџџџџhџџџџз MathTypePћ€ўTms Rmn- 2
3029 `\pРћ џTms Rmn-№
3030 2
3031 Р-HYЁ}
3032 &
3033 џџџџћМ"System-№–## ƒvьўџ
3034 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Equation Native џџџџџџџџџџџџи\_898096613pbkРFРЈWЕЅ НРpЕЅ НOle
3035 џџџџџџџџџџџџкPIC
3036 jmџџџџлL3Ъ@'/дŸ;d Ÿ;
3037  e€ƒp ƒHƒY e€LWИTшшW@ Љ џџџ.1   Р&џџџџРџЅџ€Х & MathType`ћ€ўTms Rmn- 2
3038 `META џџџџџџџџџџџџнˆCompObjlnџџџџфZObjInfoџџџџoџџџџцEquation Native џџџџџџџџџџџџч\\pРћ џTms Rmn-№
3039 2
3040 Р0NH•Ё
3041 &
3042 џџџџћМ"System-№.1   &џџўџ
3043 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.23Ъ@'/ФŸ;TŸ;
3044  e€ƒp ƒNƒH e€РFLWИTшшW@ Љ џџџ.1   Р&џџџџРџЅџ€Х & MathType`ћ€ўTms Rmn- 2
3045 `\pРћ џTms Rmn-№
3046 _898096612џџџџџџџџrРF€:yЕЅ Н€:yЕЅ НOle
3047 џџџџџџџџџџџџщPIC
3048 qtџџџџъLMETA џџџџџџџџџџџџьˆ2
3049 Р0NH•Ё
3050 &
3051 џџџџћМ"System-№.1   &џџўџ
3052 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.23Ъ@'/ФŸ;TŸ;
3053  e€ƒp ƒNƒH e€РFCompObjsuџџџџѓZObjInfoџџџџvџџџџѕEquation Native џџџџџџџџџџџџі\_861704528џџџџџџџџyРF€:yЕЅ Н@ЬšЕЅ НOle
3054 џџџџџџџџџџџџјPIC
3055 x{џџџџљLMETA џџџџџџџџџџџџћшCompObjz|џџџџ fLkваМшшkвюg ъ џџџ.1  `€&џџџџРџМџ@ & MathTypeР њ"-}@}+ њ"-W]
3056 Wљ
3057 ћс§тPSymbol|-2
3058 ”{ћс§тPSymbol       
3059      ўџџџ ўџџџўџџџ    ўџџџўџџџ ўџџџ ! " # $ % & ' ( ) * + , - . / 0 1 ўџџџ3 ўџџџўџџџ6 7 8 ўџџџўџџџ; ўџџџ= > ? @ A B C D E F G H I J K L M ўџџџO ўџџџўџџџR S ўџџџўџџџV ўџџџX Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o ўџџџq ўџџџўџџџt u v ўџџџўџџџy ўџџџ{ | } ~ ўџџџ€ |-№2
3060 Ђ}М М<ћ€ўМTimes New Roman!-№ 2
3061 пYvР 2
3062 пrvР 2
3063 ррG'ћџМTimes New Roman P-№ 2
3064 ?;h 2
3065 ?Th 2
3066 D, v€ 2
3067 „И hћџTimes New Roman!-№ 2
3068 3=n€ 2
3069 3Vn€ 2
3070 ™, n€ 2
3071 Aс h€ 2
3072 @2S€
3073 2
3074 @bHYИ‘
3075 2
3076 @NHЋИ 2
3077 ўon€ћ€ўTimes New Roman P-№ 2
3078
3079 rtk 2
3080 рfpР 2
3081 рŽpР
3082 2
3083 рqqpРРћџPSymbol-№ 2
3084 3Ь+Œ 2
3085 ™Л +Œ 2
3086 ўў+Œћ€ўPSymbol-№ 2
3087 пH-г 2
3088 рЄ=г 2
3089 р‹ -г 2
3090 рЏ б 2
3091 р@+г 2
3092 рF+гћџTimes New Roman!-№ 2
3093 3R1€ 2
3094 ђk
3095 1€ 2
3096 dk
3097 2€ 2
3098 WЎ1€ 2
3099 ЩЎ2€ћ€ўPSymbol-№ 2
3100
3101 ˆDъ
3102 &
3103 џџџџћМ"Systemn-№w Roman!ўџ
3104 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqЭпD$яClяC
3105 ‡v ‡hƒn†+ˆ1
3106 †-‡v ‡hƒn
3107 …Dƒt†=‡G ‡v ‡h ObjInfoџџџџ}џџџџ Equation Native џџџџџџџџџџџџ _861704814w…€РF@ЬšЕЅ Н •ЋЕЅ НOle
3108 џџџџџџџџџџџџ ƒn†+ˆ1ˆ2
3109 †-†б ƒh
3110 ƒp ƒS
3111 †+ƒp ƒHƒY
3112 †+ƒqƒp ƒNƒH
3113 –{–} ƒn†+ˆ1ˆ2mbolLНь 
3114 [шшНьоf U џџџ.1  `&џџџџРџРџР  &PIC
3115 ‚џџџџ LMETA џџџџџџџџџџџџ ШCompObjƒџџџџ2 fObjInfoџџџџ„џџџџ4  MathTypeР њ"-}@}Ј њ"-^Ь
3116 ^h SЛSW-}х }Љћ€ўTimes New Roman P- 2
3117 ы[w 2
3118 ыИw 2
3119
3120 Бtk 2
3121 рaG 2
3122 мЋ pР 2
3123
3124 вz•ћџTimes New Roman-№ 2
3125 ?n€ 2
3126 ?оn€ 2
3127 @{ wЋ 2
3128  › n€
3129 2
3130 <‚NHЋИ 2
3131 •Šn€ћџPSymbol-№ 2
3132 ?+Œ 2
3133  *
3134 +Œ 2
3135 •+Œћ€ўPSymbol-№ 2
3136 ыŒ-г 2
3137 р!=г 2
3138  йц 2
3139 рД -гћџTimes New Roman-№ 2
3140 ?–1€ 2
3141 љк
3142 1€ 2
3143 kк
3144 2€ 2
3145 юЩ1€ 2
3146 `Щ2€ћ€ўPSymbol-№ 2
3147
3148 ЧDъћ€ўPSymbol-№ 2
3149 мя ЖМ 2
3150
3151 ЖМ
3152 &
3153 џџџџћМ"Systemn-№-№ 2
3154 ўџ
3155 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqЭРпDˆяCяC
3156 ƒw ƒn†+ˆ1
3157 †-ƒw ƒn
3158 …Dƒt†='ƒG ƒwƒn†+ˆ1ˆ2
3159 †й†-„Жƒp ƒNƒHƒn†+ˆ1ˆ2Equation Native џџџџџџџџџџџџ5 м_861705027џџџџџџџџ‡РF •ЋЕЅ Н •ЋЕЅ НOle
3160 џџџџџџџџџџџџ9 PIC
3161 †‰џџџџ: L
3162 „ЖƒzњLxŒ4”шшxŒоf  џџџ.1    &џџџџРџЏџр Я & MathTypeР њ"-=@=ёћ€ўPSymbolЃ- 2
3163 ЋJЖМ 2
3164 ЩgMETA џџџџџџџџџџџџ< HCompObjˆŠџџџџN fObjInfoџџџџ‹џџџџP Equation Native џџџџџџџџџџџџQ œЖМћ€ўTimes New Roman-№ 2
3165 Ћw 2
3166 Щ#z•ћџTimes New Roman)-№ 2
3167 џ*n€ 2
3168 Ÿh€ 2
3169 єШn€ћџPSymbol-№ 2
3170 џИ+Œ 2
3171 єV +Œћ€ўPSymbol-№ 2
3172  N+г 2
3173  oб 2
3174  у
3175 =гћџTimes New Roman)-№ 2
3176 џ=1€ 2
3177 єл 1€ћ€ўTimes New Roman-№ 2
3178   0Рћ€ўМTimes New Roman)-№ 2
3179  V.` 2
3180  цvРћџМTimes New Roman-№ 2
3181 Цh
3182 &
3183 џџџџћМ"Systemn-№Times New Roman-ўџ
3184 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqЭ€пD яC|яC
3185 „Жƒw ƒn†+ˆ1
3186 „Жƒz†+†б ƒh
3187 ‡.‡v ‡hƒn†+ˆ1
3188 †=ˆ0РџЏџр Я & MathTyL‘ь [шш‘ьp ћ џџџ._861705209~šŽРF •ЋЕЅ Н iмЕЅ НOle
3189 џџџџџџџџџџџџT PIC
3190 џџџџU LMETA џџџџџџџџџџџџW 1  `Р&џџџџРџЕџ€ & MathType0 њ"-@жћ€ўTimes New Roman- 2
3191 Ћ1РћџTimes New Roman)-№ 2
3192 Y1€ 2
3193 …г2€ 2
3194 œО1€ћ€ўPSymbol-№ 2
3195 )^Dъћ€ўTimes New Roman)-№ 2
3196 )Htk 2
3197 ж‡SР 2
3198 ~Tз 2
3199 жЇ SР 2
3200 ž Tз 2
3201 sGћџTimes New Roman-№ 2
3202 Fn€ 2
3203 f n€ 2
3204 Й'S€ 2
3205 Й!T 2
3206 Ћn€ћ€ўPSymbol-№ 2
3207 Хц‘ 2
3208 Хш‘ 2
3209 >Хч‘ 2
3210 oі‘ 2
3211 oј‘ 2
3212 >oї‘ 2
3213 I-г 2
3214 хц‘ 2
3215 хш‘ 2
3216 >хч‘ 2
3217 
3218 і‘ 2
3219 
3220 ј‘ 2
3221 >
3222 ї‘ 2
3223 Ўц‘ 2
3224 ш‘ 2
3225 йч‘ 2
3226 Єч‘ 2
3227 Ў і‘ 2
3228  ј‘ 2
3229 й ї‘ 2
3230 Є ї‘ 2
3231 8 =гћџPSymbol-№ 2
3232 д+Œ 2
3233 тœцa 2
3234 Кœшa 2
3235 (œчa 2
3236 тЬіa 2
3237 КЬјa 2
3238 (Ьїa 2
3239 9+Œћ€ўTimes New Roman-№ 2
3240 v `
3241 &
3242 џџџџћМ"Systemn-№a 2
3243 тCompObj‘џџџџp fObjInfoџџџџ’џџџџr Equation Native џџџџџџџџџџџџs ќ_861707464џџџџџџџџ•РF iмЕЅ Н2эЕЅ Нўџ
3244 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqЭрпD№яCАяC
3245 ˆ1…DƒtƒSƒT–(–) ƒn†+ˆ1
3246 †- ƒSƒT–(–) ƒn
3247 –(–)†=ƒG  ƒSƒT–(–) ƒn†+ ˆ2ˆ1џјјOle
3248 џџџџџџџџџџџџw PIC
3249 ”—џџџџx LMETA џџџџџџџџџџџџz (CompObj–˜џџџџ ZLЪэшшЪэ8 † џџџ.1  Р &џџџџРџЈџ`h & MathType0ћ€ўМTms Rmn- 2
3250 `1G+
3251 &
3252 џџџџћМ"System-№џџџџџџџџџџџџџЯџџџ‡џџўџ
3253 џџџџРFMicrosoft Equation 2.0 DS Eqўџџџўџџџўџџџўџџџ… ўџџџ‡ ˆ ‰ Š ‹ Œ  Ž   ‘ ’ “ ” • – — ˜ ™ š › œ  ўџџџŸ ўџџџўџџџЂ Ѓ Є ўџџџўџџџЇ ўџџџЉ Њ Ћ Ќ ­ Ў Џ А ўџџџВ ўџџџўџџџЕ ўџџџўџџџИ ўџџџК Л М Н О П Р С Т У Ф ўџџџЦ ўџџџўџџџЩ ўџџџўџџџЬ ўџџџЮ Я а б в г д е ж з и й к л м н ўџџџп ўџџџўџџџт у ф ўџџџўџџџч ўџџџщ ъ ы ь э ю я № ё ђ ѓ є ѕ і ї ј љ њ ўџџџќ ўџџџўџџџџ
3254 uation Equation.2)Щ п;А"?:ˆ%?:
3255 ‡G``aaцˆ=Lпв<МшшпвЮ< ж џџџ.1  ``&џџџџРџКџ  &ObjInfoџџџџ™џџџџ Equation Native џџџџџџџџџџџџ‚ <_861708164“йœРFРYіЕЅ НРYіЕЅ НOle
3256 џџџџџџџџџџџџƒ PIC
3257 ›žџџџџ„ LMETA џџџџџџџџџџџџ† ШCompObjŸџџџџž ZObjInfoџџџџ џџџџ   MathTypeрњ-8y8њ-=З=Ђ =М=Їћ€ўTms Rmn€-2
3258  @ ````` 2
3259  1 `ћ€ўМTms Rmn+-№ 2
3260   G+ 2
3261  š G+ 2
3262  ŸG+ћ џTms Rmn€-№ 2
3263 qjnp 2
3264 єф np 2
3265 єщnpћ џPSymbol-№ 2
3266 qщ+{ 2
3267 єh-{ћ€ўPSymbol-№ 2
3268  =г 2
3269  џ +г 2
3270 щђц‘ 2
3271 „ђш‘ 2
3272 Љђч‘ 2
3273 щп і‘ 2
3274 „п ј‘ 2
3275 Љп ї‘ 2
3276  й-г 2
3277  +г 2
3278 щїц‘ 2
3279 „їш‘ 2
3280 Љїч‘ 2
3281 щфі‘ 2
3282 „фј‘ 2
3283 Љфї‘ 2
3284 Щ<ц‘ 2
3285 Є<ш‘ 2
3286 Щ<ч‘ 2
3287 Щqі‘ 2
3288 Єqј‘ 2
3289 Щqї‘ћ џTms Rmn+-№ 2
3290 о…1p 2
3291 $…2p 2
3292 єп1pћ€ўTms Rmn€-№ 2
3293 Ћв3Р 2
3294 ЩЬ2Р 2
3295 Ћб1Р 2
3296 Щб2Рћ€ўPSymbol-№ 2
3297   eЈ 2
3298  !eЈ
3299 &
3300 џџџџћМ"System-№§џёџџџнёџџџžёџџџџўџ
3301 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2+ЩР?2д6d 6
3302      ‡G ƒn†+ˆ1ˆ2
3303  †=ˆ3ˆ2†+„e–(–)‡G ƒn
3304 †-ˆ1ˆ2†+„e–(–)‡G ƒn†-ˆ1
3305 –(–), LWСTшшEquation Native џџџџџџџџџџџџЁ м_943703546V!ЃЮРFРYіЕЅ Н€ыЖЅ НOle
3306 џџџџџџџџџџџџЅ PIC
3307 ЂЅџџџџІ LMETA џџџџџџџџџџџџЈ CompObjЄІџџџџБ fObjInfoџџџџЇџџџџГ Equation Native џџџџџџџџџџџџД DWСN5 ш џџџ.1  € &џџџџРџЋџр+ & MathType€њ-Jвћ џTms Rmn- 2
3308 €;npћ џPSymbol-№ 2
3309 €К+{ћ џTms Rmn-№ 2
3310 эV1p 2
3311 3V2p
3312 &
3313 џџџџћМ"System-№@џџџџќ@@ @џџџџќџўџ
3314 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩг(МcIАgI
3315  eрƒn†+ˆ1ˆ2LРŒд”шш_868766702џџџџџџџџЊРF ŒЖЅ Н ŒЖЅ НOle
3316 џџџџџџџџџџџџЖ PIC
3317 ЉЌџџџџЗ LMETA џџџџџџџџџџџџЙ ШРŒf< R џџџ.1    &џџџџРџНџрн & MathType№њ-нDн/DŸШŸDЃШЃнwнгћ€ўPSymbolŽ- 2
3318 @>Dъ 2
3319 KАDъћ€ўTms Rmn+-№ 2
3320 @(tkћ€ўPSymbol-№ 2
3321 @Ѓгћ€ўTms Rmn+-№ 2
3322 KY1Р 2
3323 iY2Рћ€ўМTms Rmn-№ 2
3324 iЦvР
3325 &
3326 џџџџћМ"System-№%RШVWџv
3327 џvџvh?(ўџ
3328 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2CompObjЋ­џџџџХ ZObjInfoџџџџЎџџџџЧ Equation Native џџџџџџџџџџџџШ \_868766814gНБРF ŒЖЅ Н FJЖЅ Н+Щ@?2 '6`+6
3329 …Dƒt†Ѓˆ1ˆ2…D‡v–a–bLќh шшќhО;  џџџ.1  €&џџџџРџЙџ@Й & MathTypeРњ-—ˆOle
3330 џџџџџџџџџџџџЪ PIC
3331 АГџџџџЫ LMETA џџџџџџџџџџџџЭ (CompObjВДџџџџо Z§џџџ    #= !"$&%'()+*,-.2/013456789:;<>?ђ@ABCDE‡ˆ§џџџHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€аž) 
3332 \
3333 0ћ€ўPSymbol- 2
3334 €/eЈћ€ўPSymbol-№ 2
3335 €W>г 2
3336 €ћ+гћ€ўTms Rmn-№ 2
3337 ‹Џ1Р 2
3338 ЉГ4Р 2
3339 ‹> 1Р 2
3340 Љ> 2Рћ џTms Rmn-№ 2
3341 пp2p 2
3342 пф2p 2
3343 §л2p 2
3344 п 4p 2
3345 пw 4p 2
3346 §l 4pћ€ўPSymbol-№ 2
3347 ‹юDъ 2
3348 ЉјDъ 2
3349 ‹z
3350 Dъ 2
3351 Љ… Dъћ€ўTms Rmn-№ 2
3352 ‹иtk 2
3353 ‹d tkћ€ўМTms Rmn-№ 2
3354 ‹vР 2
3355 ‹’ vР
3356 &
3357 џџџџћМ"System-№џ№>џјяџ€§Ріўџ
3358 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ObjInfoџџџџЕџџџџр Equation Native џџџџџџџџџџџџс м_870157940џџџџџџџџИРF FJЖЅ Н АbЖЅ НOle
3359 џџџџџџџџџџџџх +ЩР?28'6x+6
3360 „e†>ˆ1ˆ4…Dƒt ˆ2
3361 ‡v ˆ2
3362 …D ˆ2
3363 †+ˆ1ˆ2…Dƒt ˆ4
3364 ‡v ˆ4
3365 …D ˆ4Tms Rmn-L€Eь lшшPIC
3366 ЗКџџџџц LMETA џџџџџџџџџџџџш ЈCompObjЙЛџџџџћ fObjInfoџџџџМџџџџ§ €E–j L џџџ.1  рр&џџџџРџКџ š & MathType€ њ"-848Тћ€ўPSymbol|- 2
3367 р3б 2
3368 р%бћџPSymbol-№ 2
3369 ›“+ŒћрўPSymbol-№ 2
3370 рЮ =žћрўTimes New Roman4-№ 2
3371 —bh 2
3372 —Thћ€ўTimes New Roman-№ 2
3373 рH 2
3374 р(pРћџTimes New Roman4-№ 2
3375 AђS€ 2
3376 ›n€
3377 2
3378 @k HYИ‘ћрўTimes New Roman-№ 2
3379 р%.H 2
3380 р“(^ 2
3381 р )^ 2
3382 рќ (^ 2
3383 р,H 2
3384 р@)^ћ џTimes New Roman4-№ 2
3385 єC1p 2
3386 eC2pћ€ў0Courier<-№ 2
3387 рk
3388 SцћрўPSymbol-№ 2
3389 рk lž 2
3390 рŒf•
3391 &
3392 џџџџћМ"Systemn-№-ўџ
3393 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqЭРпDxяCФяC
3394 †б e 
3395  e ƒh
3396  e ‚.‚(
3397 ƒH†б e 
3398  e ƒh
3399 ƒp ƒSƒn†+ eр  Equation Native џџџџџџџџџџџџў м_870157938YЖПРFрзkЖЅ НР |ЖЅ НOle
3400 џџџџџџџџџџџџ
3401 PIC
3402 ОСџџџџ
3403 L
3404 ўџџџўџџџ
3405 ўџџџ
3406 
3407 
3408
3409
3410
3411
3412
3413
3414 
3415 
3416 
3417 
3418 
3419 
3420 
3421 
3422 
3423 ўџџџ
3424 ўџџџўџџџ
3425 
3426 ўџџџўџџџ
3427 ўџџџ!
3428 "
3429 #
3430 $
3431 %
3432 &
3433 '
3434 (
3435 )
3436 *
3437 +
3438 ,
3439 -
3440 .
3441 /
3442 0
3443 1
3444 2
3445 3
3446 4
3447 5
3448 ўџџџ7
3449 ўџџџўџџџ:
3450 ;
3451 <
3452 =
3453 ўџџџўџџџ@
3454 ўџџџB
3455 C
3456 D
3457 E
3458 F
3459 G
3460 H
3461 I
3462 J
3463 K
3464 L
3465 M
3466 N
3467 O
3468 P
3469 Q
3470 R
3471 S
3472 T
3473 U
3474 V
3475 W
3476 X
3477 Y
3478 Z
3479 ўџџџ\
3480 ўџџџўџџџ_
3481 `
3482 a
3483 b
3484 c
3485 ўџџџўџџџf
3486 ўџџџh
3487 i
3488 j
3489 k
3490 l
3491 m
3492 n
3493 o
3494 p
3495 q
3496 r
3497 s
3498 t
3499 u
3500 v
3501 w
3502 x
3503 y
3504 z
3505 {
3506 |
3507 }
3508 ~
3509 
3510 €
3511 eрˆ1  eрˆ2 e ‚)†=Courier
3512 S e  ƒHƒY
3513  e ‚(„l‚,„f‚)€ўL іlашш іюx  џџџ.1  €р &џџџџРџКџ  : & MathTypeа њ"-8h8іMETA џџџџџџџџџџџџ
3514 HCompObjРТџџџџ
3515 fObjInfoџџџџУџџџџ
3516 Equation Native џџџџџџџџџџџџ
3517 œћ€ўTimes New Roman4- 2
3518 р\pРћџTimes New Roman-№
3519 2
3520 @.HYИ‘ 2
3521 ›9n€ћрўTimes New Roman4-№ 2
3522 рђzp
3523 2
3524 рЎ gd 2
3525 рЮ
3526 zp 2
3527 ГXzpћџPSymbol-№ 2
3528 ›Ч+Œ 2
3529 хiђEћрўPSymbol-№ 2
3530 р;=ž 2
3531 рј-ž 2
3532 уL ЂHћ џTimes New Roman4-№ 2
3533 єw1p 2
3534 ew2pћрўTimes New Roman-№ 2
3535 G0 2
3536 р6(^ 2
3537 рX,H 2
3538 рp,H 2
3539 рu)^ћрўPSymbol-№ 2
3540 рЅlž 2
3541 рЦf•
3542 &
3543 џџџџћМ"Systemn-№-№ 2
3544 рўџ
3545 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqЭ€пDяC8яC
3546 ƒp ƒHƒYƒn†+ eр  eрˆ1  eрˆ2 e ‚(„l‚,„f‚,ƒz‚)†=†-ƒgƒd2ƒzˆ0ƒz†ђLА pшш_861778243ŒЦРFР |ЖЅ НрA„ЖЅ НOle
3547 џџџџџџџџџџџџ
3548 PIC
3549 ХШџџџџ
3550 LMETA џџџџџџџџџџџџ
3551 Hўr ’ џџџ.1  €€&џџџџРџМџ@< & MathTypeа њ"-6ј6† њ"-}@}ж-8Л
3552 8I ћрўPSymbol|- 2
3553 оPЖ 2
3554 '–ЖћрўTimes New Roman4-№ 2
3555 22 2
3556 {И2ћ џTimes New Roman-№ 2
3557 ђ1p 2
3558 c2p 2
3559 єЪ
3560 1p 2
3561 eЪ
3562 2pћџTimes New Roman4-№ 2
3563 4ш2€ћ€ўTimes New Roman-№ 2
3564 оьpР 2
3565 рЏpР 2
3566 р§ SРћџTimes New Roman4-№
3567 2
3568 >СNHЋИ 2
3569 ™Щn€ 2
3570 Aъh€
3571 2
3572 @„ NHЋИ 2
3573 ›Œ n€
3574 2
3575 @Э NHЋИћрўTimes New Roman-№ 2
3576 '#zp 2
3577 р*qћџPSymbol-№ 2
3578 ™W+Œ 2
3579 ›
3580 +ŒћрўPSymbol-№ 2
3581 р4+ž 2
3582 рю =žћ€ўPSymbol-№ 2
3583 рКб
3584 &
3585 џџџџћМ"Systemn-№2
3586 ™W+Œ 2
3587 ›
3588 ўџ
3589 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqCompObjЧЩџџџџ6
3590 fObjInfoџџџџЪџџџџ8
3591 Equation Native џџџџџџџџџџџџ9
3592 _861778242џџџџџџџџЭРFрA„ЖЅ Н`ћЎЖЅ НЭпD№яCАяC
3593  e 
3594  e „Ж  e ˆ2
3595 ƒp ƒNƒHƒn†+ eр  eрˆ1  eрˆ2
3596  e „Жƒz  e ˆ2†+ƒq
3597 †б ƒhˆ2
3598 ƒp ƒNƒHƒn†+ eр  eрˆ1  eрˆ2 e †=
3599 ƒS e  ƒNƒH8Л
3600 8I LшEАlшшOle
3601 џџџџџџџџџџџџ>
3602 PIC
3603 ЬЯџџџџ?
3604 LMETA џџџџџџџџџџџџA
3605 HCompObjЮаџџџџ[
3606 fшEЎ{  џџџ.1  р€&џџџџРџКџ@š & MathType€ њ"-8U
3607 8у
3608 >>ћ€ўМTimes New Roman4- 2
3609 р9vР 2
3610 рNvР 2
3611 рќG'ћџМTimes New Roman-№ 2
3612 @h 2
3613 @.hћ џМTimes New Roman4-№ 2
3614 CG vp 2
3615 ƒФ h}ћрўМTimes New Roman-№ 2
3616 RŠ hЁћџTimes New Roman4-№ 2
3617 4n€ 2
3618 40n€ 2
3619 @дS€
3620 2
3621 @ЦHYИ‘ћ€ўTimes New Roman-№ 2
3622 р$tk 2
3623 р
3624 pР 2
3625 рєpРћ џTimes New Roman4-№ 2
3626 ›F np 2
3627 ЁђnpћрўPSymbol-№ 2
3628 рC=ž 2
3629 рA+ž 2
3630 рp -ž 2
3631 рн+žћ џPSymbol-№ 2
3632 ›Х +{ 2
3633 Ёq+{ћ€ўPSymbol-№ 2
3634 р] б 2
3635 р:DъћрўTimes New Roman4-№ 2
3636 р—[aћ€ўTimes New Roman-№ 2
3637 р\(~ 2
3638 рZ)~ 2
3639 ра]‚ћ џTimes New Roman4-№ 2
3640 єd
3641 1p 2
3642 ed
3643 2p 2
3644 њ1p 2
3645 k2p
3646 &
3647 џџџџћМ"Systemn-№[aћ€ўўџ
3648 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqЭ@пD|яC яC
3649 ‡v ‡hƒn e †=
3650 ‡v ‡hƒn e †+
3651 …Dƒt e ‚[
3652 ‡G eр  eр‡v ObjInfoџџџџбџџџџ]
3653 Equation Native џџџџџџџџџџџџ^
3654 \_917417677ќџџџџдЮРF`ћЎЖЅ Н@ФПЖЅ НOle
3655 џџџџџџџџџџџџd
3656  eр‡h   eрƒn†+  eрˆ1  eрˆ2 e †-
3657 †б e   e ‡h 
3658 ‚(ƒp ƒS e †+
3659 ƒp e  ƒHƒY
3660 ‚) eр  eрƒn†+  eрˆ1  eрˆ2
3661 ‚]
3662 рќG'ћџМLŽEфlшшŽEю{  џџџ.PIC
3663 гжџџџџe
3664 LMETA џџџџџџџџџџџџg
3665 HCompObjезџџџџ…
3666 fObjInfoџџџџиџџџџ‡
3667
3668 ‚
3669 ƒ
3670 „
3671 ўџџџ†
3672 ўџџџўџџџ‰
3673 Š
3674 ‹
3675 Œ
3676 
3677 ўџџџўџџџ
3678 ўџџџ’
3679 “
3680 ”
3681 ўџџџ–
3682 ўџџџўџџџўџџџўџџџ›
3683 ўџџџ
3684 ž
3685 Ÿ
3686  
3687 Ё
3688 Ђ
3689 Ѓ
3690 Є
3691 Ѕ
3692 І
3693 Ї
3694 Ј
3695 Љ
3696 Њ
3697 Ћ
3698 Ќ
3699 ­
3700 ўџџџЏ
3701 ўџџџўџџџВ
3702 Г
3703 ўџџџўџџџЖ
3704 ўџџџИ
3705 Й
3706 К
3707 Л
3708 М
3709 Н
3710 О
3711 П
3712 Р
3713 С
3714 Т
3715 У
3716 Ф
3717 Х
3718 Ц
3719 Ч
3720 Ш
3721 Щ
3722 Ъ
3723 Ы
3724 Ь
3725 Э
3726 Ю
3727 Я
3728 а
3729 ўџџџв
3730 ўџџџўџџџе
3731 ж
3732 з
3733 и
3734 ўџџџўџџџл
3735 ўџџџн
3736 о
3737 п
3738 р
3739 с
3740 ўџџџу
3741 ўџџџўџџџўџџџўџџџш
3742 ўџџџъ
3743 ы
3744 ь
3745 э
3746 ю
3747 ўџџџ№
3748 ўџџџўџџџўџџџўџџџѕ
3749 ўџџџї
3750 ј
3751 љ
3752 њ
3753 ћ
3754 ќ
3755 §
3756 ўџџџџ
3757 ўџџџ1  р &џџџџРџКџ`š & MathType€ њ"-8] 8ы >(>Жћ€ўМTimes New Romanp- 2
3758 р9vР 2
3759 рBvР 2
3760 р G'ћџМTimes New Romanфt-№ 2
3761 @h 2
3762 @"hћрўМTimes New Romanp-№ 2
3763 R’hЁћџTimes New Romanфt-№ 2
3764 4n€ 2
3765 4$n€ 2
3766 CM
3767 vp 2
3768 „Н
3769 h€ 2
3770 @УS€
3771 2
3772 @ЕHYИ‘
3773 2
3774 @яNHЋИћ€ўTimes New Romanp-№ 2
3775 рtk 2
3776 рљpР 2
3777 руpР 2
3778 рpРћ џTimes New Romanфt-№ 2
3779 ›N
3780 np 2
3781 ЁnpћрўTimes New Romanp-№ 2
3782 рŠqћџPSymbol-№ 2
3783 4Љ+ŒћрўPSymbol-№ 2
3784 р7=ž 2
3785 р5+ž 2
3786 рx -ž 2
3787 рЬ+ž 2
3788 р”+žћ џPSymbol-№ 2
3789 ›Э
3790 +{ 2
3791 Ё˜+{ћ€ўPSymbol-№ 2
3792 рe бћџTimes New Romanфt-№ 2
3793 4.1€ћ џTimes New Romanфt-№ 2
3794 єl 1p 2
3795 el 2p 2
3796 њ71p 2
3797 k72pћ€ўPSymbol-№ 2
3798 р.Dъћ€ўTimes New Romanфt-№ 2
3799 рƒ[‚ 2
3800 рї]‚ћрўTimes New Romanфt-№ 2
3801 рh(^ 2
3802 р)^
3803 &
3804 џџџџћМ"Systemn-№ўџ
3805 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqEquation Native џџџџџџџџџџџџˆ
3806 €_861778241рЫлРF@ФПЖЅ Н@.иЖЅ НOle
3807 џџџџџџџџџџџџŽ
3808 PIC
3809 кнџџџџ
3810 LkбdpcIgI
3811 ‡v ‡hƒn†+ˆ1 e †=
3812 ‡v ‡hƒn e †+
3813 …”ƒt‚[‡G ƒv ƒh  eрƒn†+  eрˆ1  eрˆ2 e †"
3814 †" e   e ‡h  e ‚(
3815 ƒp e  ƒS e †+
3816 ƒp ƒHƒY e †+ƒq
3817 ƒp ƒNƒH e ‚) eр  eрƒn†+  eрˆ1  eрˆ2
3818 ‚]L=4Д@шш=4і@ P џџџ.1   &џџџџРџЅџрЅ & MathTypeP
3819 &
3820 џџџџннннннннннннннннннннннннннннннннўџ
3821 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2META џџџџџџџџџџџџ‘
3822 ШCompObjмоџџџџ•
3823 ZObjInfoџџџџпџџџџ—
3824 Equation Native џџџџџџџџџџџџ˜
3825 <5Щ Я:%ч8-ч8
3826 РџЅџрЅ & MathTyLT"XшшT" + џџџ.1  Р &џџџџРџЃџР c & MathTypeРћ€ўTimes New Romanx- 2
3827 @;w 2
3828 @г
3829 dР 2
3830 @“ z•ћџ_861778238џџџџџџџџтРF@.иЖЅ Н@.иЖЅ НOle
3831 џџџџџџџџџџџџ™
3832 PIC
3833 сфџџџџš
3834 LMETA џџџџџџџџџџџџœ
3835 hTimes New Roman4-№ 2
3836 ”_n€ 2
3837 ”1 n€ћрўTimes New Romanx-№ 2
3838 Жh 2
3839 MzpћџPSymbol-№ 2
3840 ”э+Œ 2
3841 ”П +ŒћрўPSymbol-№ 2
3842 @{=ž 2
3843 @Š-ž 2
3844 RZђMћ€ўPSymbol-№ 2
3845 @шб 2
3846 DJ Ђ`ћџTimes New Romanx-№ 2
3847 ”r1€ 2
3848 ”D
3849 1€ћрўTimes New Roman4-№ 2
3850 p<0 2
3851 @к.Hћ€ўМTimes New Romanx-№ 2
3852 @OvРћџМTimes New Roman4-№ 2
3853  / h
3854 &
3855 џџџџћМ"Systemn-№OvРўџ
3856 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqCompObjухџџџџЎ
3857 fObjInfoџџџџцџџџџА
3858 Equation Native џџџџџџџџџџџџБ
3859 М_861779220џџџџџџџџщРF@.иЖЅ НРљЖЅ НЭ пDœяCTяC
3860 ƒw ƒn†+ˆ1 e †=†-
3861 †б e   e ƒh  e ‚.
3862 ‡v ‡hƒn†+ˆ1 e ˆ0  e ƒz†ђ
3863 ƒd2ƒzћ€ўTiLДV, ˜шшДV6~  џџџ.Ole
3864 џџџџџџџџџџџџД
3865 PIC
3866 шыџџџџЕ
3867 LMETA џџџџџџџџџџџџЗ
3868 HCompObjъьџџџџб
3869 f1  Рр&џџџџРџЙџ y & MathTypeР њ"-žк žh _э њ"-н­ н=ћ€ўTimes New Romanфt- 2
3870 @;w 2
3871 @ˆw 2
3872 @Ѓtk 2
3873 @“ G 2
3874 ?spР 2
3875 i€z•ћџTimes New Roman-№ 2
3876 ”_n€ 2
3877  Ћ
3878 wЋћрўTimes New Romanфt-№ 2
3879 ”Ћnћ џTimes New Roman-№ 2
3880 Ы
3881 np
3882 2
3883 ŸGNH•Ё 2
3884 PnpћџPSymbol-№ 2
3885 ”э+ŒћрўPSymbol-№ 2
3886 @{=ž 2
3887 @Р+ž 2
3888 @Г -žћ џPSymbol-№ 2
3889 J +{ 2
3890 Я+{ћ€ўPSymbol-№ 2
3891 LЈ
3892 йцћџTimes New Roman-№ 2
3893 ”r1€ћ џTimes New Roman”А-№ 2
3894 Zщ 1p 2
3895 Ыщ 2p 2
3896 Yn1p 2
3897 Ъn2pћ€ўPSymbol-№ 2
3898 @ЙDъћ€ўTimes New Roman”А-№ 2
3899 @ [‚ћрўTimes New Roman-№ 2
3900 @R]aћ€ўPSymbol-№ 2
3901 ?З ЖМ 2
3902 iФЖМ
3903 &
3904 џџџџћМ"Systemn-№№ 2
3905 @ўџ
3906 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqЭпD”яCияC
3907 ƒw e  ƒn†+ˆ1 e †=
3908 ƒw e   e ƒn†+
3909 …Dƒt‚['ƒG ƒw eрƒn†+  eрˆ1  eрˆ2
3910 †й e †-
3911 „Жƒp eр  eрƒNƒH  eрƒn†+  eрˆ1  eрˆ2
3912 „ЖƒObjInfoџџџџэџџџџг
3913 Equation Native џџџџџџџџџџџџд
3914 _919240264вѕ№ЮРFРчЗЅ НРчЗЅ НOle
3915 џџџџџџџџџџџџй
3916 z e ‚]н=ћ€ўL{h,шш{vІ І џџџ.1  р@&џџџџРџМџœ & MathType ћ€ў ArialЉ- 2
3917  5VћџPSymbol-№ 2
3918 єPIC
3919 яђџџџџк
3920 LMETA џџџџџџџџџџџџм
3921 hCompObjёѓџџџџт
3922 fObjInfoџџџџєџџџџф
3923 FJЁ
3924 &
3925 џџџџћМ"Systemn-№џџџџћўџ
3926 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЇг$cIАgI
3927 Arial~V „бL{h,шшEquation Native џџџџџџџџџџџџх
3928 @_919240309џџџџ
3929 їЮРFРчЗЅ НРQЗЅ НOle
3930 џџџџџџџџџџџџц
3931 PIC
3932 іљџџџџч
3933 L{ўe Ћ џџџ.1  р@&џџџџРџМџœ & MathType ћ€ўTimes New Roman- 2
3934  QAъћџPSymbol-№ 2
3935 єCJЁ
3936 &
3937 џџџџћМ"Systemn-№"Systemnўџ
3938 џџџџЮРFMicrosoft Equation 3.0 DS EqMETA џџџџџџџџџџџџщ
3939 hCompObjјњџџџџя
3940 fObjInfoџџџџћџџџџё
3941 Equation Native џџџџџџџџџџџџђ
3942 8uation Equation.3є9ВqЇг\zIиjI
3943 ƒA „бTiL{žh|шш{žо- б џџџ.1  `@&џџџџРџМџ &_898276524џџџџџџџџўРF€y$ЗЅ Н€y$ЗЅ НOle
3944 џџџџџџџџџџџџѓ
3945 PIC
3946 §џџџџє
3947 LMETA џџџџџџџџџџџџі
3948 Ш MathType`ћ€ўTimes New RomanPЊ- 2
3949  QAъћџTimes New Roman-№ 2
3950 >xpћџPSymbol-№ 2
3951 єCJЁ
3952 &
3953 џџџџћМ"Systemn-№"Systemn-№ўџ
3954 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqCompObjџџџџџў
3955 fObjInfoџџџџџџџџ Equation Native џџџџџџџџџџџџ <_919626635юЮРF€y$ЗЅ Н@ FЗЅ Нўџџџўџџџўџџџ ўџџџ  
3956 ўџџџ ўџџџўџџџўџџџўџџџ ўџџџ       ўџџџ ўџџџўџџџўџџџўџџџ" ўџџџўџџџ% & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N ўџџџўџџџQ R S T U V W X ўџџџўџџџ[ ўџџџ] ^ _ ` a b c d e f g h i j k l m n o p ўџџџr ўџџџўџџџu v w ўџџџўџџџz ўџџџ| } ~  € uг зB їADїA
3957 ƒA ƒx„JL{Сhшш{Сžb б џџџ.1  €@&џџџџРџМџ< & MathTypepћ€ўTimes New RomanF-Ole
3958 џџџџџџџџџџџџ PIC
3959 џџџџ LMETA џџџџџџџџџџџџ ШCompObjџџџџ f 2
3960  QAъћџTimes New Roman-№ 2
3961 =ypћџPSymbol-№ 2
3962 єCJЁ
3963 &
3964 џџџџћМ"Systemn-№"Systemn-№ўџ
3965 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqObjInfoџџџџ џџџџ Equation Native џџџџџџџџџџџџ <_919626630џџџџџџџџ ЮРF@ FЗЅ Н@ FЗЅ НOle
3966 џџџџџџџџџџџџ ^л xIPxI
3967 ƒA ƒy„б0L{{hhшш{{Ўa б џџџ.1  @@&џџџџРџМџќ & MathTypePћ€ўTimes New Roman5- 2
3968  QAъћџTimes New RomanXPIC
3969  џџџџ LMETA џџџџџџџџџџџџ ШCompObj џџџџ fObjInfoџџџџџџџџ -№ 2
3970 7zcћџPSymbol-№ 2
3971 єCJЁ
3972 &
3973 џџџџћМ"Systemn-№"Systemn-№ўџ
3974 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9Вq^л pcIgI
3975 ƒA ƒz„бEquation Native џџџџџџџџџџџџ <_919669514џџџџџџџџd›OЯ†ъЊЙ)ш`ЌMЗЅ НgЗЅ НOle
3976 џџџџџџџџџџџџ CompObjџџџџ! u‚ƒ„…†h‰БŠ‹Œщ‘’“”•–—˜™š›œžŸ ЁЂЃЄЅІЇЈЉЊЋЌ­ЎЏАўџџџыГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯабвгдежзийклмнопрстуфхцчшўџџџъьяэю№ёѓієѕїћјљњќ§ўџџ3`!№+Мюк3!HЂ@>КхјЛjФР8РHЕљўxœcdрd``~ФРРРФ ЪЌ@ЬЩbБ€DС"ŒLџџџ‹ш1J€E ™ЁЊЙ™`њx˜• Yjlќ R џAš€ќ@ж1 >4Ђ Ј‘Њ†‡С7Б$#ЄВ •Сь‚пL џРa˜Рvƒ@HfnjБ‚_jЙBP~nbƒи%К@y mФ•Рј…ЄиЮ7cёѕРvЃ™Ш„С•ЙIљ9 PsСє$ѓ}g чы1€јб\И‡‰А !&3ТMšvY4ИРЁі*дЕ ьHІ321)W—Єц2фЁЛ–ЌBž†Dd$ шш№BВ
3977 №
3978 S №A?П џ№€2№№:ьЌ8оѕ“XыhgџЬ `!№Ф:ьЌ8оѕ“Xыhgj €˜Ћ
3979 ’ўxœuRЭJУ@ž™ДiK ў€ѕ
3980
3981 +ЈgЁ7{Љ‡Ж`…@ MShPzы#^=дƒ'ЯzQЉјОB_@AOZїЏAЃйАйљ6ѓ}ѓevLэй V4›&ё(Х&!ŠЄ0 ХЮ6Ў‰B•Н@s^–†њ(ЗФЂM}ж!ф$А~dб›G9€ qTNЊЭ еє\€2/№A’СGAT,ЁT_Ё=*‹h™Eф~?i8“ЙgШ§ЄьFлsћЮЁ{ъд|Џй…МRAАиКkДЉЩ,@ек~з{чT08ПЕ-Ё@М
3982 $T)Њ*$жWЦ6TЕ ““…ЏгeиўЋLьБыяия@фZъ‘тзвяТщ‹Т]т™ТOєћћD“јKс”x
3983 ѓ?Яe8~ŽАЎs\ŠpEœєОъ„JПї”д‰|B'ош.Х•Nb=MV*&єрœZW:Pј ”ЪёžтП=;kq&З‘^EaKнSKмeqјЊ† ™ю‘ЈPєзƒnмГ&ђО!х~2VDd|Јшш№BВ
3984 №
3985 S №A?П џ№€2№Р`§ЦфуЌ%>‘d;к nџœ’`!№”`§ЦфуЌ%>‘d;к nа`
3986 @€–bўxœ…RЛJQ=3Лy­ VK v
3987 ZйщДбТЭa!B6В )„|Xњ6b-‚bяXх,,%jж{чо$•Ьrwч 3gЮBpъЄ^X„ЖŒ:жžЋI„8MS‰Ќб’Dж™lі ыŠ\qМ9х­dgБŒTСWјQywъ№юЈ›SФn-ЉW;ЧагZаgSЁ­$WЩА/pРёц•з'­їƒЛ“{AZЫ№ЋGqдіЂ“`Пзšx}6,$ќ^—Џr:жIоF.]Н ƒoœMaK,>ЇМрІgNыYЖЪYОo*Я0ѕјо§Щ4VЉъ nQЮъH ЬџЭХъёУN|иjр-/ЮYFЇ,~bƒП,О&ƒ?1œRCўљ&ћбŸ§ЦЇS=…ЎПMuЧbЯnƒ'#ЃА=|ф=ШŽs)ьД“(FsђNŽф}АGiqЫDdЄшш№BВ
3988 №
3989 S №A?П џ№ €2№5н5.5]tЄ2Г‚[py+9џш!`!№ н5.5]tЄ2Г‚[py+9d € hпзўxœ…?AA‡3ў?/ Њ…DAТ%T8ХK(BtЯMT V8Š#ш%жьXЂГЩdg™љђ-!$Юeи“’ЪБэ’6%в„иЃI›*št˜мtž?{ŽљШ%щщ"j0v ОМЏвЄ&2лЪЛ™њгЭlМ_…@ЌŒŠрђЖ`јуyЎƒAИ †ЫhК@UMZ"•Лынш@жfыёѓЁщЄї§KŠЉ KъСs†žў‚”ч+нGц‡NЬѕб~Н #,>Vo&!Ёs/jG6ПDdPМшш№BВ
3990 №
3991 S №A?П џ№€2№nVЮ˜Щ2ђЫ‹ГфЌџуГ#`!№лnVЮ˜Щ2ђЫ‹ГфЌШ€`ањ%PЧЉўxœ“ПKУ@ЧпНДiЋ §ЁХЉTp‘к]tА…т"­­`Zm‹Ѕ[G….Nў
3992 ŠнœХеQpqpV0оЛЄзЦ‚Иф}.яоћц{€ђТј т@—Ÿ )ђёŒ‰†Жm‹™ Kˆ™,27;„§ua,љ:‰f:LƒM‹Ррмуб5 €/rsТАZnV
3993 э“šp-№Ю
3994 КRЂcš9еcиа)ŠђHоOLкNю­ЃС(ьYf#ЙfЖ’ы5Ћ\…Ќ[…Сц‚=М™"эG’+1/Ÿ1‡ЏП:lИP<пeЇžLRЅ%ЩЧQтeЩ‡ФЛ’УУJJј№ђЯЫ ^Ž ”vi’{FОmmеіA:ршCЙ~3NЉs’Ы/Ч‰г’gBФW’4тЂфWе›я'~|т}!Nб<xїВ+ќџm/NkЂв›rn(<Њ›;#^АyqЊ\ъдЕюr•=ыДслѕ8ŒxћOm§ЏT…K9Щ-сJ‚ю_Š(ьЊ7@:s 1•o7šІеŸъ‘ї ќ\ё@DdдTшш№BВ
3995 №
3996 S №A?П џ№€2№ЊщЯ}ЄЄš„Г)pBЄDџ†P&`!№~щЯ}ЄЄš„Г)pBЄDи  PхXJLўxœ…’ЭJУ@Чg&ik>ЊAФS№ I@я"ˆU,bѓ
3997 M[hQzЫ#Џžе—№рЩЛoаG№"уЮ$.iKiТВѓлЬЬfВ€бA‚ рЇЂ–El™jЂœ eY&'!nЪЩ>aсэаœK>љЋыЪкЉЎСdžт7e=Ћ5ЉМЋ@Ї№qсЂ=М‰F§рR*ј!?“B`ŒЌ`xбmќf|я_ѕ’vЉ$PŸWд~`OАYgпHѓЗ5ЭG˜sЎў.Sh
3998 (ћЇVJёих˜ЭЛЂtЊљЉZVN1ц3™BY™‡Ћ^Џ5JЎ{ахzЈу=‡]ї4еІљЁТќЁљХ`4їх?ЮuKf;пљЃ(ћšЯE9œЩќJ‹27і869гиХ­АхцH‰Хм<Ј•В#бvk4Ц tgЋ5Фя‚?f<DdРhшш№BВ
3999 №
4000 S №A?П џ№€2№І[з8 яŒ›ыфџѕ,џ‚(`!№z[з8 яŒ›ыфџѕ,Ш@Дј|Hўxœcdрd``Nad``beV цdБX€˜‰‘,ТШєџџАˆЃXФ‰Њš› І‡Щ‰OШRcуgbјвФ фВ–ё^†g@мP5< О‰%!•Љ `ќfRјvУF ,L !™ЙЉХ
4001 ~Љх
4002 AљЙ‰y &`—шЅ9€ДзFc^к`8џ'*?€Т‡иа№ КPСєИM Œb< =.pўп Ю_Ш†lsЃˆяd›A „С•ЙIљ9 pAьc„ыТRЊ чŸeGхїБ‚јсќХЬ О.œŸŽ'[ Ÿ3р№ЙNŸЛmвC3i.“LpњЉ‡dR4pS
4003 иIаp``G2‘‰I)ИВИ$5—!нuЬ`uњ"fдDdhTшш№BВ
4004 №
4005 S №A?П џ№€2№> ';%8џГџGFSG=ГџЬ*`!№ ';%8џГџGFSG=Гd@ ј|XJрўxœ…O;
4006 Т@}3~AЋ hЇ 'А;E4Аh‘((ˆG№Р:…•wАѓі‚ыю$Бua™™ЗяН}CА€мЃs
4007 њZlКМA‰!VJ вЃ† }І”]сLчАЧCЎщЎSЌЂ eDpѕ|гнХLš{зТJЪq0YюWўq3I№fOIœЩќgИў: vо48xѓMИŒ?L’Ў~.ы:АŸ4ЎŸ:œ>џкHHъычtЂ1Œf;MhЫ$~ЎИЛ(ЩЫоФмZwћ D”ЅJ< 9с}IЉ6ђЮDdThшш№BВ
4008 №
4009 S №A?П џ№€2№8ћїю иАЎИPы6[Аџ ,`!№ ћїю иАЎИPы6[Аd @XJј|кўxœOЛ
4010 Т@œ]п‰`Б
4011 v
4012 њbЇ…ё а"*(ˆ]>СЏ№Ќ-ќ+k{Сsoж,З;737K(™3F іфЄJlЛЌE‰!6Ц(вЁК"]І”эђWWц>ћ\•Ў•Џ cE№dОJw’К‰ш.хІœ2Fсn1=l"`І žь ‚#йВ oКŒЃ­?Žіўd‡+Д5I[ž‹rїœЭ•ЄЩы_вћёsJhЋРI:КЉŸЇю
4013 :]tobn‡э.ŠБњІњx2Ъ{cE6БгDdTшш№BВ
4014 №
4015 S №A?П џ№€2№=ЇИш€Y 07+kЋББЊГџn.`!№ЇИш€Y 07+kЋББЊГdР HЕXJпўxœcdрd``оФРРРФ ЪЌ@ЬЩbБ€DС"ŒLџџџ‹ш1J€E ™ЁЊЙ™`њx˜˜0
4016 Yjlќ R џAš€ќ@ж2 nj:ФмP5< О‰%!•Љ `ќfRјvУF ,L !™ЙЉХ
4017 ~Љх
4018 AљЙ‰y ‚`—шЅ9€ДзЦћ Е!Pў2с#дF0§nRЃ иЄ2.Ј ЙРО`›'6]€Ьлі7#“RpeqIj.CЬU3˜Съј;7фћDd˜@шш№BВ
4019 №
4020 S №A?П џ№€2№e1КœAъMлЃ>riŽНыџAA0`!№91КœAъMлЃ>riŽНыР№ш ўxœ…P=kA}3чзBAVG@;$}šєŠDI­Тм)(Шu’_“2…•}ўIъМЬNжCЮТ…aчЭОyћf.рT `Д`NYТe“•$˜H+ФY–i%Єk­м1Yv} яЪMЩК•+Д‘™&ј‚w’э%ЖBлKcнrшOзѓqКŒ€Ё:јхэAрдУПФб*D›рiOtдIOоkrп{њ(ђmŽ`pЈХ#ќQЯЏА:Єїї‰о›cЈ9~$ƒПЮвE‡џЪ”+=ыо–ЅOО4ыЙЧPgLрй]zКo]šлGѕD˜oFщjХHŠюх§#fM5мDdhшш№BВ
4021 № 
4022 S №A ?П џ№€2№F‚мЋ~J'@ЗŸ”К9lџ"<2`!№‚мЋ~J'@ЗŸ”К9lЎ@€ј|hпшўxœ…Я
4023 AQ‡3ў_ЪM)Yн,ьм№vV,№”[,.ŠШF^@y [O`сьМ†Нrœ3ЩЦЉщЬL3_п9„Й`фaNLGŠM5]"щ+ЅЄуSA:5&;цї^†ЗмрœЮЪё,ŠPf ЎЎЯ:;šJЯњ:вv&ƒж`1ъ­gаƒ;{JDpzY0мо8 ц^;Xyi8˜ *&-дwнёxGЦfi лЧ?ТСHюл‡t&†дќ!эщПЫ‹D–tСPH8і­Žќ‡€фOюь"ёхIЬЅюzОBL~э"2їР+B#Ddдшш№BВ
4024 №"
4025 S №A"?П џ№!€2№lвТ5MЧј­$tˆ‰аЄљAџH4`!№@вТ5MЧј­$tˆ‰аЄљA €~ hпўxœcdрd``fgd``beV цdБX€˜‰‘,ТШєџџАˆЃXФ‰Њš› І‡ЉIMШRcуgbјвФ фВжё 2= znЈпФ’ŒЪ‚T†А ~35ќ;„a#иL !™ЙЉХ
4026 ~Љх
4027 AљЙ‰y ’`—шх9€ДзFmVb(џC
4028 ˆ_ЖЭD& ЎЬMЪЯa€šУІ? ™ї“ЄдЭE{˜Лb#мЄh&&Н<_ь2wЈЩšœŠУ
4029 L}Œ “ЪИ aЩop A§-РРŽd:#“RpeqIj.CКk™Съ5щNрDd˜@шш№BВ
4030 №#
4031 S №A#?П џ№"€2№kq#Џ`й’3™ŸE}б+џG6`!№?q#Џ`й’3™ŸE}б+Р№ш  ўxœcdрd``fgd``beV цdБX€˜‰‘,ТШєџџАˆЃXФ‰Њš› І‡‰щЋЅЦЦЯ Х№Є‰AШ?dт Вc@мP5< О‰%!•Љ `ќfjјvУFА+˜B2sS‹ќRЫ‚ђsѓLn\Ђ ”чвF\ Œ›Y@Š рќŸ Оиn4ndЎЬMЪЯјQшG§ЩМFfR[8п‘ФПˆсBF‚.„˜Ь7)nh&эaТхз‡qЙQьЧ<.hXrУhP 0А#™ЮШФЄ\Y\’šЫ‡ю:fА:ŽP`EDd|pшш№BВ
4032 №)
4033 S №A(?П џ№(€2№Џ €{щ_Y&v]Й2џ‹8`!№ƒ €{щ_Y&v]Й2Ќ`"€ J5аэQўxœ•–ЯOAЧgЇ;Лн•Zhb№Rz№ Ё"Gг"б Єœ(ЅкMh—Д…Jд@ˆсрСhМcј<*ў8тU<-бФp jŒЃ@_;йi$Р6mчѓїоМ}ѓІ[ЦTќЂ€\П HFXPQЈЂРzНN•„r‚*ч Т­-шљйp)4рб)­ Д‚:qaЬЏёˆМcq’!ьУmlp9]Ю.Ьfшр\РШ<ШЇ+Ж+,z \D1DFЭxє[cкюiCКЇ-ЂAЯюBˆi5уЋЭДšБ!+ќ…їv?вuю“[јYШOЙ3€ЏЋ€ ўю4ЧŒK*1Й чщїŸџV„˜оцўK{р€u™?фўOэ[-ФєЛЧ–ЬM™7‚2ЧCŒПyіš<џЩМЌЪ Ш<Ѕ3Ўq^Uo‹ќжšхќdоЪœДя‰ќфљi$ѓЏ€ЬS:у]Юw уЮЌ№Сч~NOB„Ч?ГфљЧš<џ’іCЛ`ЯуЋњXШ?mc/ПšЪxGиOЈў§iгз„=cЏОU4ЌћзЋ"y§|…Пќ a>EOo=ѓў~$ЊŠћqдЩgKБ+йJlиЭЇ рј>НnOДŸ>ЩŒOŸ4ёЈЯ)•œйtйq-ЎFu<ъw‹Їp0uХьˆ’8Нnбqgœ’IUMыŽjx”Я–‹N†Х]QКЃфз!==ŸЭрЈБ“.­DŸрZЉ~Б3ыЧWПЁіѓœ-§ЎIИ(*Н$?gsѓоќs$Я'Џx•|O;cNT6№ЪЦъU6КЯ™яВ—ƒўШ]v/ђѓ[8 0nмCpф=œm%NgЩГ€жp5L,bјВЙђй6ЙТ.OВюэТškLьŠІ2Ж8'щŒь•2њš™•СyЛ)€GЗ$voг&‚'-йуQx”œ‚Ај„d e’2фL ~žіB^ Ояƒ&‰\ND'lў{Ќ"9rЩ‘-о#–_ЕЙњPџ_sАBГOˆючk4>G”C=GRЄЯЁk‚—M?здЄЭXюЉ5xдžЪС*;gфОШ“оЄџhsђьУ@їEW Œ,”Ъй<(4f vџq&)z}Dd€ Xшш№BВ
4034 №+
4035 S №A*?П џ№*€2№чбэяфКž|WvЧѕ )ЕwџУ`<`!№ЛбэяфКž|WvЧѕ )ЕwИР р 7‰ўxœ••ЯkAЧпЬўШю&еиД ž–‚^Є O‚аƒV)ў€6 HІm%?Є‰)QЩЙh…ќES
4036 о<ьСЋˆН{ѕЄFФ“‰3o~АГZ7l3Ÿ7п7ѓо›з РZБи˜ў8ьѕ)йьЅ„ …абh„–ˆœDЫyJЄ:K•_ŽЦY˜šdЃГюq8 #юyЦ1эБ7.ld™дфрFЉЙVl?,3 eБР/*<ј3ƒ;ЮБњэасЃ}v…mЫUЖ-WйbЛт)нв_э€:УOИц6›ВO~Й]]­W@юAРcпsС+яŠЭ%Oрh~ПП'ќп\њTњ?Т!ћ
4037 *§їƒ РЅ}ЩЋОЩ?2&Г‚‡Jя˜ѓлЖЩЁerЧќ[ђ.<м"—ѓ9Э­$їМчлšХќЌфїС„Ÿ`Еп)[№@ыя`§ПiНрЏZ/ј‹ЪЧ™Я$у sџ.йХј>jюЄцБ“/aџаpЄЮ‹[mv^ХѕjЙо,o†KѕjЉgЦœќ­lЫу>-Э N’’E"x:еуv*щ‘~psОЌЙ‚5Yаg№Яь‘фыюsьЩ Щ‘§и3чїsў‚УџЉ[›ЊFямd&]чЋeџYГ~рbф!оœчq&”ЪЇ•/y'УЎ,hЌзtЦp9Э`ЌлѓЬu}й+ћ',ae7‘АL :ЅŒь•€+›ЅšЎбР;ЈО3wd}љLКd +щJ^“^щюWЩq=бБюћЂщ{‡щоъy/бџžЮЏ˜lžё[zиЇ#ы’зЖш^Y~ыјЫ€)ЪhѓIЌN(Yn7šх*двбZЈћ&…лXDdь шш№BВ
4038 №-
4039 S №A+?П џ№,€2№|SyS(\є\жB*№B;УzџXн?`!№PSyS(\є\жB*№B;УzрРP%шƒўxœ•пKTAЧgfямЛwлЛЎaТХБB!щI ‹zЩ№Ч‚/AЙЖ›†ы†Ћй’bџ@A`D"є"l њ $О'О>hХњVъ6?Юю,‰]йu>п{fю™я9Г#ЁˆmА/tё‹ВCјˆ‰ˆ`,LjЕšP:№Ё\$Ђc$˜ч’фNSЕš tеј$ф1о`ЃeіYlBш~’ЭѕOfЪrЅ – њEф ~Еˆ'ЖcЙz#™# Ѕиша’ZŸвњ”жO[ЉдњщzTjЭV 5[ЖэlТмmg ДŒ;qЗб–ZO2qlфH­Ailф№Œ“Й#™їSn aо`Й-Ž#иF6ћпэI\JђР[qГЎЮеЈЮЃžфяРЗl§ўЎЉѓ,ей5tžw$яП"’wпyS^8О'ЁѓV\чЌЋs5ЊѓЄфЃ ожя?ВtЖM_:ЗEtžw$ЏaЩРCоm“ѓХ]‘0ЏИ’лгЮх<мmmGУљяSЩСѓ– Щ*ўŽЎз>•МЇт%~0ž[с|*TЯЏŠk"ŸЯŠпkљVёcq:/‹3юKЎЌ/3c…\ЩП™›ёŠ…с дН";”ˆN§ЩтbbЅјз$_3;],OŒ”cр‡TЏ'ЧŠуcЅРХg"ыЋЪеqБЋkЪUЩї”ЋІˆŸўb.
4040 žT.Ќиœ*^Ѓсј*N‰јХˆѓuиЕ_;iзЯЅм5•VНЗvxхUЏ—JvdцЇ–ЬЯ4—‡ˆвeDНушП\3…K>T`ШK‹;>\1№RW!/gгтyKЪc_dоЉxV8_Ч/Ёг\рДиs№ЈаюDDъYЁГБh8вЊv^œ…sЊŠ]"Ѓ6елњ~+TпYPлU1ЋCеzfезњ8ПЋuЪxт„JЏMЩѕПщјŸПщѕѕл‰ПЁс.ўћFљ ђюdр№'ёМ|]ЇЌ““:Ѕ>ѓ*>4фљрОѓЗiTМq…Н‡Ќаъ˜–Сri*W@ѕйGDмжшЙгDdThшш№BВ
4041 №/
4042 S №A,?П џ№.€2№=QЭуЃl‹/Ач‡^NСtˆџяC`!№QЭуЃl‹/Ач‡^NСtˆd @XJј|пўxœcdрd``оФРРРФ ЪЌ@ЬЩbБ€DС"ŒLџџџ‹ш1J€E ™ЁЊЙ™`њx˜˜˜„€,56~)†џ M @ў k?jzФмP5< О‰%!•Љ `ќfRјvУˆ+˜B2sS‹ќRЫ‚ђsѓ nгšУЄИ0І1‚\S5ЁсФ„ `Ql&(BM`гр&50К1€єИ0pA]Ші#и<Ащ ьHюcdbR
4043 Ў,.IЭeШƒЙ
4044 b&#3XxV6ЪгDdThшш№BВ
4045 №0
4046 S №A-?П џ№/€2№=МO8эя…ёйъЭ\\s,џТE`!№МO8эя…ёйъЭ\\s,d @XJј|пўxœcdрd``оФРРРФ ЪЌ@ЬЩbБ€DС"ŒLџџџ‹ш1J€E ™ЁЊЙ™`њx˜˜˜„€,56~)†џ M @ў k?jzФмP5< О‰%!•Љ `ќfRјvУˆ+˜B2sS‹ќRЫ‚ђsѓ nгšУЄИ0І1‚\S5ЁсФ„ `Ql&шBM`гр&50К1€єИ0pA]Ші#и<Ащ ьHюcdbR
4047 Ў,.IЭeШƒЙ
4048 b&#3X}f6жFDd№ашш№BВ
4049 №1
4050 S №A.?П џ№0€2№АјЧђ>аы7&–іІтOњєШџŒ•G`!№„јЧђ>аы7&–іІтOњєШо€ €(К№љRўxœRЭJУ@ž™Є?I
4051 AOСC/в E!бS=иНV(4вЂфЖ7ЏBё
4052 ОƒOо}ЁwСИ;йЎЁRtУВѓЭЮ|пЬd+C‚ PЋ&ЗCЪВх&Dі EСž7йГGЈЃ=ZфЕHиТY—VЛО[PЈ$№%~•жLюHЪЕ%ЇcZаLЎтќ&˜sŸ\<ЂRА ќј:MЦСYrœgщ`}ЎЄ#Џ›ђмwліДЉbcƒkUќ–ИT_)ьjфsn”оЌ‡†Ъ96xh+|ЂБРчzUY`
4053 ŸђЊЪjИђѓ{yz™ СtTъЁсП`ОƒЌ*јФОџшѓ}Чр[ўOGП:‡wюiхˆ9Нќ]ж—ј_hEЇЇ<Щ;pѕлpљ§pЁzz>4*ьHДнЫЧ“$…бrЭЧ}xgfэJDdмашш№BВ
4054 №2
4055 S №A/?П џ№1€2№ДaŽpєв$gž‘aЛйЯ)џлI`!№ˆaŽpєв$gž‘aЛйЯ)о` €ˆ‡№љVўxœcdрd``Юgd``beV цdБX€˜‰‘,ТШєџџАˆЃXФ‰Њš› І‡Љ%SШRcуgbјвФ фВVБа:M 1мP5< О‰%!•Љ Р.јЭЄ№ь† Œ X˜B2sS‹ќRЫ‚ђsѓ4С.бJsi#.5–y ЕСpО+2џ.c #„БЁс!tЁ60‚щp›Ž17ВƒєИРљй, О”_ЫИ” йцZF=п
4056 Ш6ƒ‚+s“ђsр>‚иЧ7?lž6œoХŒЬЏeœіщE„§`y]8?OЖ>gРсs ŸsCmv›Љ0ѓ=СіыЁ™П‡ —љš8|ZЫиЩ2.hкрЇАCЁЁ'РРŽd:#“RpeqIj.CК›™Съsxf:дDdhTшш№BВ
4057 №5
4058 S №A?П џ№4€2№> ';%8џГџGFSG=Гџ%L`!№ ';%8џГџGFSG=Гd@ ј|XJрўxœ…O;
4059 Т@}3~AЋ hЇ 'А;E4Аh‘((ˆG№Р:…•wАѓі‚ыю$Бua™™ЗяН}CА€мЃs
4060 њZlКМA‰!VJ вЃ† }І”]сLчАЧCЎщЎSЌЂ eDpѕ|гнХLš{зТJЪq0YюWўq3I№fOIœЩќgИў: vо48xѓMИŒ?L’Ў~.ы:АŸ4ЎŸ:œ>џкHHъычtЂ1Œf;MhЫ$~ЎИЛ(ЩЫоФмZwћ D”ЅJ< 9с}IЉ6ђЮDdThшш№BВ
4061 №6
4062 S №A?П џ№5€2№8ћїю иАЎИPы6[АџљM`!№ ћїю иАЎИPы6[Аd @XJј|кўxœOЛ
4063 Т@œ]п‰`Б
4064 v
4065 њbЇ…ё а"*(ˆ]>СЏ№Ќ-ќ+k{Сsoж,З;737K(™3F іфЄJlЛЌE‰!6Ц(вЁК"]І”эђWWц>ћ\•Ў•Џ cE№dОJw’К‰ш.хІœ2Fсn1=l"`І žь ‚#йВ oКŒЃ­?Žіўd‡+Д5I[ž‹rїœЭ•ЄЩы_вћёsJhЋРI:КЉŸЇю
4066 :]tobn‡э.ŠБњІњx2Ъ{cE6БЎDdŒ
4067 ашш№BВ
4068 №7
4069 S №A0?П џ№6€2№з–чЋ*~kt‹žD| џєЧO`!№ьз–чЋ*~kt‹žD| др€(№љКўxœ•“;KAЧgчN/w“УˆUИТJэ§Z+ЛD"xFŒ(щќb%‚Ќ,$XHБААДЌХJƒU*Я}с)^имќўѓийI– `=1ў@O_.’eѓ…Œ …aЧBcƒBGІЂ}дyiмВяƒ^n wgabJ‚€ѓ%Зh58Lё2ОŠIУLaН2__-tЈxC™AO(veВz?NсОEVЗŽжкŽжšЎжv=­U|­јZлшбкBFkwYкѕЗ>хо;t<фŸ _ŠеePН0Hёї„7be
4070 yQМ‡ImЩЏŠ™фg“+&јhђ“к’л&_ђƒт1тsУc@|#~Чяч ецч˜_ŠJЕмli37W
4071 + O„тн1'ЛЖТ,хЌ>і’|jIў91іЧФd}4љХ хЗ7йn‚Џ­3ё—j•ЕпM'§Gј—Е:•єv—Mў9‰^ѕPвˆс С9гљ˜ЬИёИЩјІ+у]ейЖmqkБZ3&ЛdOнOмбЊšoŽ  qЯb˜ЏзжKЌќœЏ%тОˆ†БнDdT@шш№BВ
4072 №>
4073 S №A7?П џ№=€2№GФж8z”O™Љ“ЪЭD$‘–џ#uR`!№Фж8z”O™Љ“ЪЭD$‘–Z XJ щўxœMOjТPЦПЕжD0‚t]ИkАоЃ.j. hС$‚ЩЮ#єН@зйИшМAаEw‚ЯyуKщƒaўМя›ї{„ајРРž–D‡mеДS"ctбP'OLNэsэы28фОT“Л`Ќ є_RUпbЊ$|ЇщтyYМЦх6ІJpца(оI)Aќ–&ЛpžьУ—<]f)ЩЃмпKžyПX“Яє­3.џ6‚E™Ўђ œ4џќљ?(‚•žр9.OйРэ ажюЈП%цёЂмIŠЌfЙэ$4Twй3pјDdќ@шш№BВ
4074 №F
4075 S №A??П џ№E€2№bчŒжЉјЩг]bа˜^Kџ>RT`!№6чŒжЉјЩг]bа˜^Kд`ис ўxœcdрd``~ХРРРФ ЪЌ@ЬЩbБ€DС"ŒLџџџ‹ш1J€E ™ЁЊЙ™`њx˜˜и„€,56~)†џ M @ў ы+А10jф†Њсa№M,ЩЉ,He`Лр7SУ?АC&0‚]СФ ’™›ZЌр—ZЎ”Ÿ›˜Ч`
4076 v‰.PžHq%0ЦА‚РљnЬ О&œŸЦтk€н‚fаЭ С•ЙIљ9 PsСє$ѓЕX@Jmс|п УХŒ] 1™nвА.hˆpC ьuЈkиСМ=рpfdbR
4077 Ў,.IЭeШCw-3XHŸAбяDd@шш№BВ
4078 №H
4079 S №AA?П џ№G€2№YЬЂ­Aйш:IњЩ<§’хFHџ5JV`!№-ЬЂ­Aйш:IњЩ<§’хFHД@2 ћўxœcdрd``ОХРРРФ ЪЌ@ЬЩbБ€DС"ŒLџџџ‹ш1J€E ™ЁЊЙ™`њx˜€ЦАYjlќ R џAš€ќ@ж1 >РЬРp Ј‘Њ†‡С7Б$#ЄВ •!ь‚пL џРa˜Рvƒ@HfnjБ‚_jЙBP~nbУ›+ —шх9€ДWЃ3HБ&œŸЦтk`˜ШˆУФBˆ‰Œ`њ’ЩРz<РО@sШЗС•ЙIљ9 0Aє3Тѕ›0€”К1pA}ЬАз f
4080 0Аƒy{РсШШФЄ\Y\’šЫ‡ю&fА:]oA{аDdT|шш№BВ
4081 №И
4082 S №AЂ?П џ№h€2№:M6пUœ Мє_$‰XьВџ9X`!№M6пUœ Мє_$‰XьВt `XJ0Ўмўxœ…Я
4083 AQЦПџ/qS
4084 Ћ›…EžСŽїЎХ-Edчi<„,<ŠGАWŽ9уSгЬ|}ѓы;„:`д`_FЊРvJ[•HbcŒ*]ЊЋвcrю"юJqРU™кй
4085 š0іОьW™NR79ЪŠПш<%ŒfлyxXЧРZ<82—w
4086 †.’xŒу}0Y%ГЅјl’ŽАђвћ^ž#ВiцnПQYї#Ÿџˆ G$эї/љHXвžKьщЏHyОв}ф~шФмš6л8Сђ“ђЭ$ЄдїЄл7LlDd Мшш№BВ
4087 №i
4088 S №AW?П џ№[€2№жћЭТFрmš0Адˆїм6{ЗџВМњ`!№ЊћЭТFрmš0Адˆїм6{З€ `рѓ PЧxўxœ•’ПKУPЧя.iкДEу/(JЁtpSЈtuuSаvpL…HгJ[”8љ:њјЈƒCммœќмEСxяђRkЅV_xЩнqїyпЛ<Р‘_0jЅxлЄ,“7!J)Š"‰,cA"BЃЄ.OЎ і4[‹ж$ЬCЄŠРa?dы†w˜(0&ЇsђАош5ыСЇa-№Fq…Ze9q cњ,=Ъša+А’и•ФЎ3Њ‡w:љˆыЯQi4 œњžяuKоQiЋэ7ZАЉЩ,VВЇЦ}ZхCL(EуEM љОpž-Єg#2иъxЛвЧ 5P~œZряДїЁЏ!&P_Ы„hЙв~ ­AпЅK™§*|яі6ўkПtћЅ5!ŸЩIл}r”ПІЩn4Ž\бУ+]ШфšCѓMЊŽав‚Lџ8Э)Sеw`јnќZBЊ@VпоЌмpiuЄњDЂr-ші<ZУъ ЩћП€ЯCDdDhшш№BВ
4089 №h
4090 S №AX?П џ№j€2№­ИˆЙ[. Дю5 ŽФБ–cџ‰t\`!№ИˆЙ[. Дю5 ŽФБ–cј  @€ј|Oўxœ…’ЭJУ@…ЯН§I“Œ‚ Ў‚ (ЈTСЅP—КА]ˆnZ! аДBЃRщ"р#Иђ)\јКwхжЎм37щ`[‹ УЬЙsюс›d6ыРX„~
4091 jиЌWy5˜H*ФI’He›–ЄВУ”Й]ѕ•ЙЪю‚Z­чАŒD7СSњE­žдhИР‡jt3OGЭшВоЛ€†|s<<P0МњUt§урЮ?щ„Э6V…dKэ—дМыФєцhѓ†бŸ%­7.ZZЏ=Шћ+Ђ+FŸQъO‰ќdDD3ˆ3"’y`ШоiOШn>В›ЉГЮJž7gM“Щ0~IЯН|п‰$VЏWы…fХtnыўШш–•ъЩ<ќ™7ЭѓZаж}Ѓ‡œъё“>ѓušД
4092 t
4093 'Л5Žм,Й­ыW:1Џдzн(бžЄЭ‰яIРlŠнDdhшш№BВ
4094 №i
4095 S №AY?П џ№k€2№GjjлпЅnеМ 7­Ыzџ#З^`!№jjлпЅnеМ 7­ЫzZ @„ј|щўxœcdрd``^ЫРРРФ ЪЌ@ЬЩbБ€DС"ŒLџџџ‹ш1J€E ™ЁЊЙ™`њx˜˜0
4096 Yjlќ R џAš€ќ@ж2 NjzФмP5< О‰%!•Љ `ќfRјvУF ,L !™ЙЉХ
4097 ~Љх
4098 AљЙ‰y `—шЅ9€ДзЦw ЕЅ`Л~35ќC2 ‚+s“ђs њСєИўF1Аў.ЈЛИРng›1S€Ьлі-#“RpeqIj.CЬ-3˜Съ Џ4kзDdhшш№BВ
4099 №j
4100 S №AZ?П џ№l€2№Ay@єш’‘Ÿ ЖaТсAїџ”``!№y@єш’‘Ÿ ЖaТсAїZ @„ј|уўxœMOKA}UўCb"!b5БА#с.Р@2 ‰AbBfчŽ`eчŽbem/бЊЫнЉTеыїЊ^r@т €Q†=)‰л*iQ"Eˆ1ŠДЈЊH›)fчљЋ+p—T’Њ‘.ЂcEpЅПJu’‹ш.‘9є&сl­}`Ќžь5‚й I†;šўЦыћ;oА
4101 &KЬдISžГ’;ЮАм­юzђўѕ7хКУ(˜ЎˆuЄљёгяЉЂњNьЫQяЄS>3]dДЛшo‰Й>Œ6Ё`љѕђ™IH(я _4n`Dd|Мшш№BВ
4102 №q
4103 S №A]?П џ№_€2№ЪNУYы’Ўъ*ь щ^ПџІ(§`!№žNУYы’Ўъ*ь щ^Пт`
4104 `€PЧlўxœ…R1KУPОЛ—к6-Д•ъ:ИUЈЛ“PAPацЄBЄ‚Ik[:98vшЏG'qpш_№GЈ‹ƒГ‚ёнх5и*є…—мwЙћОЛ{! .PП  М2zч‰-KoBRЧтйТŠxъ„&К@гМ"љ–oЏhksi6 ц$p4žhыQoзЈhš‚‰)ТAkаі†н€Et-№IIЏЊ(ж0a/аbkU[ЯйЉo=7ѕ•lюс‹ЎП“ќ1rу…Aп= .нуNиŠрЮ0#фєwлЉjžcЏ Ž№-Чј(§џšaМkАO `м€Dб)ОE’яGЊќЎЪYЮщђIОЕ”ЖzСЉ‰˜аšАz2—пнёщЧiУ“Ю9Є=%
4105 ”жо–^воj3иЇ=9Ы?ќј/џ|#uЏ8Пѓг‡…гŸ­4Т}™rls?lЙCBdЊs +шInU›Уў !šЏNIмц1c‰ЮDdT|шш№BВ
4106 №l
4107 S №A\?П џ№n€2№87Б]Ц/œ'—kсŒлuV5џвd`!№ 7Б]Ц/œ'—kсŒлuV5d `XJ0Ўкўxœ…OЛ
4108 Т@œ]у#Q0‚X ;§k-дVа" E4€Єѓќ
4109 ?РкТOёьЯН5Бѕ`ЙнЙ™ЙY‚ ”ЎmиS–rйvŽE‰!6Ц(2ЄŽ"#Іœ]чBзр5м’Ў_iЂ cE№eОKw‘zˆЈ"ќzЮi`КIЗЫ,XМ80gВ?8 Й‹Т$˜…Ч`~ˆ6{L5Щ@žkrН­”[8œоџкЙщ§ќ9hЋ™РЫzКЉŸЏю>Њ:нtobю-В$ #ь‹T_OBIyг6Ddxhшш№BВ
4110 №?
4111 S №Ak?П џ№j€2№zдеjOшшЌЧ<Џ'’ХРuџVиI`!№NдеjOшшЌЧ<Џ'’ХРu>Р@ ј|ўxœcdрd``–gd``beV цdБX€˜‰‘,ТШєџџАˆЃXФ‰Њš› І‡Щщ‡ЅЦЦЯ Х№Є‰AШ?d-т†g@мP5< О‰%!•Љ `ќfRјvУFА+˜B2sS‹ќRЫ‚ђsѓиР.бЪc0тzРШХRl5ЁсБ&0‚щp“ŸА€4iТљ*,“a|?F_У&F‚n…иФ7щ HO œџ
4112 lFœЏЧ‘Рє
4113 Wц&хч0рєЩ VR[8џ„Я {.pќ€ƒj‡;˜ЗЃŒLLJС•Х%ЉЙ yш~`Ћ8'RnаDd@hшш№BВ
4114 №К
4115 S №AЄ?П џ№o€2№:DЫxn;АTЦ%п—вџАh`!№DЫxn;АTЦ%п—вd@ ј|мўxœuOЛAQœ]яKт’HDuЃа|BKтё7ЁИHHDч|…P+|ŠJ­—8іЌsuNВйн93“YBH\0*А/%•c;%-JЄБ1F‘Uщ09vžc]{ .ЫдHQƒБ"јВпd:KнDєЪ;Nƒљn1=lB`І ^ ‚i
4116 †?]Fс6†ћ`МŽц+”4ISўГвЛоњdЩmчp|ЧєЧЁтHћѓчtЄЌfЯ%єє
4117 Ђ—МиGFЗЋоMЬѕЩaЛ #ЌтT_OBByйN5яDd[lшш№BВ
4118 №y
4119 S №Ac?П џ№c€2№‰ЮЌ<lZИvЈЧчУ
4120 PЩџeˆџ`!№]ЮЌ<lZИvЈЧчУ
4121 PЩ`ррS+ўxœ…QСJУ@™MЌ‰ƒUOЁ=)(^=zГˆщЄТ‚‚I…$žњ<ˆј%тСCСё<+gfЗAНИavч яэМЬ"D&Bо`d…IpЂVъКжЪnjeŸаГWhЁkг›ЩУ5ЮЖ—Va jAТxЮй3GЪДGУЯiУёhz>ЌЎ,sФ |SШъjЧ]tЗЏаЬHжс,
4122 Хя'ЭОїХO@ /
4123 ;Iі:=Ѓ_н-Ы|ФЗц$юЧ%[sъƒр>Иi§_ы}’žяMЇ9эЈ&г?њщUFЫ_’UХйј`сащЉqњ`„њд8Нџ…sъщ+AьчыЬQЛИž ДНш+!Q7Ћ&S[@љзГQо7k+HD=Dd„|шш№BВ
4124 №m
4125 S №A]?П џ№q€2№ЇzпsШіjFИћЎ џƒЅl`!№{zпsШіjFИћЎ   `0ЎIўxœcdрd``і`d``beV цdБX€˜‰‘,ТШєџџАˆЃXФ‰Њš› І‡)iЏЅЦЦЯ Х№Є‰AШ?d-т^6 znЈпФ’ŒЪ‚T†А ~35ќ;„a#иL !™ЙЉХ
4126 ~Љх
4127 AљЙ‰y В`—шх9€ДWу=bM8џˆЏчWА Ъя`ё рќG ѕш.`ФсKЈ Сє$—Мрщ €ѓ‹8A|W8ˆ чзэЈ‚ѓMР.I…КDс?!—є\„…Ф%Œ šє€Б‚Ш*JMЧZИ2Ё@penR~NПьс)е…ѓcXA|[8П Тч‚Ц&8ЦСбЕS€ЬлN#ŒLLJС•Х%ЉЙ yшЎfЋ›Ј\ќаDd|шш№BВ
4128 №n
4129 S №A^?П џ№r€2№:eZеЪ[w”ЏЄШALљџтn`!№eZеЪ[w”ЏЄШALљf€`hп0ЎмўxœOKA}Uу;$& 2БА#с.РТ8‹ƒ Л9‚SИ€­…Ѓ8‚НDЋ.cЏ“JПz§ъѕ+B№Ў5И“•*ВCЧ)Cl­UІGueњLЉКФПЙ2Я8сЊ NЎ‚&ЌB §]аEj(кœT)е”1š–ггж[M№таjœЩ§aгUlісиУЩ&žЏба$]y–єјj‘'hgЉGђўзƒє~ŠЌ ^ сf"јiF_ї ѕ д=@^Л›nNЬэшД?˜ы_ЎЏ'СSн :6M DdУhшш№BВ
4130 №o
4131 S №A_?П џ№s€2№ŠЬqK=@4˜‡СDRЏжЯUvџfВp`!№^ЬqK=@4˜‡СDRЏжЯUv` @иа ј|,ўxœuQAJУP}3i“ BA\Ђ‹ŠŠ№ъТцm! а4b
4132 pб#x.ФSИ№ЎК—юуќЩOcўМЩ{Ч‚80z0Ї-хБщZRLЄтВ,uВO›:9dВь.зК€OјбнnЇГŽ-”F„P№ЋtЯRCxaзrœf—qqCM№Хѓo ‚{вŒ0ОJ“<:OnЃ‹,Mм™$}љП&ї‘?ЇŽ!я-ёМkЃВvЄŽ=TŽЄїЇа<uZаMл‘.чж{AžКФДЋМгVоДLљдЊœj|Ъ›яРђ…ƒ"g4ВжњЧPћ =§Ћoц9†бOрлэјКA]ƒѕ с*zбѓі ШgIŠщпLŽђ~ђMYnDdиhшш№BВ
4133 №p
4134 S №A`?П џ№t€2№„_+;qh[Бјўч}—ЗК2џ`вr`!№X_+;qh[Бјўч}—ЗК2`Р@x ј|&ўxœuQAJУP}3iM“ BAК
4135 .Dр1=€-DšFHAВЫЄ‡№ .\єЎЛrэО`œ?љЉ`ьУŸ7yяёјC№ч”FцДЅ<6]KЉtB\–ЅNNh_'gL–нхZзуK^К{вюьb€вˆ^Jї*UИРЇЛ–гУеxў0ЪŸbрNЌЙјж x!MСFIœ…зёsx›&уn4ЩPўwф>ї ъИ†|МСd№‘u Ык‘Ж8Т:’о_BѓдiE‹Ж#]:ЩЌїŠъ5вnѓўM[yг&х[ЋrЊё=W8hОЫDy2IЇЭЌЕ~съАЁЇѕЭ<0њ)|Л_7ЈkАž\EяКsb>ˆђl'˜§Эф(яГ X˜рDd,Tшш№BВ
4136 №q
4137 S №Aa?П џ№u€2№JЊ­љiлќг9РkUЪПТџ&ьt`!№Њ­љiлќг9РkUЪПТZр шчXJьўxœcdрd``^ЫРРРФ ЪЌ@ЬЩbБ€DС"ŒLџџџ‹ш1J€E ™ЁЊЙ™`њx˜˜0
4138 Yjlќ R џAš€ќ@ж2 ^дt ˆЙЁjx|K2B* RР.јЭЄ№ь† Œ X˜B2sS‹ќRЫ‚ђsѓўlЙD(ЭЄИ0r‚冈эњЭд№Щ& ЎЬMЪЯјI(
4139 Ђ?Рѕ70š0€єч0pAнХv;#иˆ™ ь`оАo™˜”‚+‹KRsђ`n˜ЩШР V~œ4ђзDd@hшш№BВ
4140 №r
4141 S №Ab?П џ№v€2№A“в†С№щц†ЏЯНдтџЬv`!№“в†С№щц†ЏЯНдтZ@ ј|уўxœMOM Q=їњЪЄ”Ќ& ;ŠЌЌќ’ёPS”AQšŸрWиљ~Š•ЕНђмw yu{їžwЮЙчr@т €Q†=)Љл.iQ"Eˆ1Š4ЉЂH‹)fчљЋ+pС%щъщ"Њ0VWцЋt'ЉЋˆюRљ˜S@К›ЃML4С“=ЃAp$Л!ЩpЧ‹0иzƒ`яжсt…Ё&iШsVюЖsЃЎr}нѕфУыЯAСѕЃpЖ^"ж‘оŸў@X§NœЫбьЄ.O.њ[bЎљбv„X}Г|< хН<”3UŸDdє ”шш№BВ
4142 №š
4143 S №A}?П џ№j€2№ Gа0=œx Е79”wVМAџхЇ`!№нGа0=œx Е79”wVМA  ˆЅрdЋўxœ•S=KУPНїО~І­M[…ъ ъ
4144 –NBССU[\ЅBЁлŠ­J\м]мГ
4145 "8XPФЭQ§Ю.:tR0О“h)&Мфž—{Я9ях>„(‹Рˆ+ШG”Dрƒх ’eYrfГrfаЮŽбw]œŒ€‘Iѓh:”„ АDшпђш”gўёžё;'+•N­мнЎђсоIUˆ+'чPБвНj"Ъ№h#!ќ~асЇЪНQž єrНQmЋе}c­еЈ4САY"ќзLŠЄ…ї=ŸуQмMJ…Нx^ЅhXУkwJ‘Єђ›Ѓ ЌŽ‚iнЧtŒУН+&В™њXO‰Ђ‚У|‘tуv"з”З1сKЬћИRияџП&щЄцрqЭН{Р”вЯї^@aяџЌ<hžиЃ\гь7“h\~ыЅncГЕ№Зs“
4146 КH}p№UBрY‡?+љ{NŸ06i*тЮ7ЉєђЩ3Rќхџєч_ŸI—#Ђ~зС“Q/Оf
4147 kіiвф‰“Эdkъvѕ*хJнvЇк€ІO˜ЬћуаŒнDdhшш№BВ
4148 №
4149 S №A~?П џ№k€2№GР%axSQЕ1Z&Qўђџ#F`!№Р%axSQЕ1Z&QўђZР@HЕј|щўxœcdрd``^ЫРРРФ ЪЌ@ЬЩbБ€DС"ŒLџџџ‹ш1J€E ™ЁЊЙ™`њx˜˜0
4150 Yjlќ R џAš€ќ@ж2 njzФмP5< О‰%!•Љ `ќfRјvУF ,L !™ЙЉХ
4151 ~Љх
4152 AљЙ‰y WС.бJsi#ЎŒ<`Е`Л~35ќC2 ‚+s“ђs њСєИўFўR.ЈЛИРng›1S€Ьлі-#“RpeqIj.CЬ-3˜СъД4%мDdhшш№BВ
4153 № 
4154 S №A?П џ№l€2№F(а–ГюˆEۘіскј†џ"#`!№(а–ГюˆEۘіскј†ZР@HЕј|шўxœMOAjAЌn7ъЎ‚ƒ ˆЇХƒƒѓ‚|@ъЂА рЊАkdoћ„МТ[~ƒOЩЩГwСБЇ]%34н]Sе]C№вF юМHјь*ЯЁDŠ[kyЃЖ"І‚]у‡ЎЮ|ЄІTНrX'‚‘ў(еA"бIЂVpъЮвХ4лFРЇ:ИphеОЩm№fКŒЃ$EћpМ‰gkМЊ“О<W%ПTUю—юКp~§7хšIЯ7+:в|~ъs2pњ‚ТW оIЇмgTДћепsw’%ic§№rŸI()я›е3ƒлDdTшш№BВ
4155 №Ѓ
4156 S №A€?П џ№m€2№EЏЁ =he„nš;’6Г|–џ!џ`!№ЏЁ =he„nš;’6Г|–ZР HЕXJчўxœ=OKjA}U“Ю 8шjШТˆз0„Œ˜@ƒ‚ЃGТьцž"ЛмРХЌrр^АS]щБЁшЊзяН~EшСЦмЙ•ъВыnJЄБЕV‘gzTф…ЩГ#nu1ЇмP_Кб]CX'B"s#нЗT-Ђ_ЉШsbЬђr1Џ> №І ЮœZ ‚=i
4157 F2_f›ОšЏє}Sфk 4ЩXо;rOТ#ХфШS§ыЬѕЅu ǘ8dUёБYСыHягU_SЇп!єЙBЭЎМg‚{К-1?eеЖ4жm–OB М?$)2фЕDd шш№BВ
4158 №z
4159 S №Aj?П џ№{€2№Љфr…Сгб3DПѓыеџћЕ€`!№ѓЉфr…Сгб3DПѓыеtр€8\ hпСўxœ•“=KA†g&1пš3‰ VСBдЈ ј;Б0h‘cЁˆ`>@AвK+СZ ў  KKЕA‚…B0шЙГ{Ys‰ЂЙАЙ}цоwvvnС рˆ“јƒ>рЋK /ёЬ)!Ъ’iš22‰§22EhЉ§д№ЈBЯ‘˜ Л‚0&›Р|%fbT#ѓBяЗ4XймЯЅЫЅ,@‰kwRО†фŠЈВGh„ц\< ‹YЦ­b5lФj˜qГГN'OвЬ%’јЉr~ЋИ V>ИOћNёЎ‹%ы№?ЩћK“џбЯв йЛ:U>слNсOяфГ{беьA4YЬo„ЎQЪDVІ*Dи4Њљ,Ф<Ў9жЫ<Ђ9щЗыМv§ЖЧЎ?’;Д*šU
4160 7?яљ*›f,КюБѓЊJZ{‚їd6Ьž”цSйƒДцѓnц„ц‚ЯЎПїиѕKРМижƒп*ћ­@Њ9Эqj^(‰jeЃ§\ќx[wžВєVs)РгМьЖ??tкyЭСМађ.ЉгЗ]Х1—ъБды“_Е<6жю p7eGЂЁTyo?›‡BыюRї$ašyжDd|шш№BВ
4161 №{
4162 S №Ak?П џ№|€2№@Sї[‡Бі Jо}>џjƒ`!№Sї[‡Бі Jо}>\Р`HЕ0ЎтўxœMOЫAЌnЯ]'qp#!>Р]8р8ь†У"!З§G_рр3|†3‰егГєLMЅЊІ›рЉ+ф@ І2в”–f"eˆу8VІGueњL‰КР?_‘—|ЇВ NЖ„&bc‚'яЛ ‹t$ІЌш ‰ІˆЩъИ^œї>А7ГрХжaЊ­?vЩІW9Я#EAYюA?юA™о}Ќџfї`x‹MшZSџдšэТе$™—{рF4„йg 7™ЬещIs<MѕћK%ціќ|8њ!Ж6‹5ѓ)™)е}gД/СбDdTTшш№BВ
4163 №|
4164 S №Al?П џ№}€2№;гƒЋWi*“ѓ—зф‡е…&^џ@…`!№гƒЋWi*“ѓ—зф‡е…&^d  XJXJнўxœuOЭ
4165 AQўfќ_ЪM)Yн,ь(ђ 6"q_РтхЂ(йyOсЌ-Ќ<‡GАWŽ9у\;ч4Эœя|пз7„К`TaOFЊРvJ[”HbcŒ"mЊ)вarь"'Кr+25ГeдaЌОМo2Ѕ"КKЇ„сl7›k‚FƒрDš‚с‡‹8кЃhLжёl…Ѕ&iЩ^zз{а’,ЙчŽяФў8,œiўœŽд‡е рЙ„žnЁQt“ћШщыЊ{sczиюЂЋ$ез“RоN6ЬжDd|шш№BВ
4166 №}
4167 S №Ak?П џ№~€2№@Sї[‡Бі Jо}>џ‡`!№Sї[‡Бі Jо}>\Р`HЕ0ЎтўxœMOЫAЌnЯ]'qp#!>Р]8р8ь†У"!З§G_рр3|†3‰егГєLMЅЊІ›рЉ+ф@ І2в”–f"eˆу8VІGueњL‰КР?_‘—|ЇВ NЖ„&bc‚'яЛ ‹t$ІЌш ‰ІˆЩъИ^œї>А7ГрХжaЊ­?vЩІW9Я#EAYюA?юA™о}Ќџfї`x‹MшZSџдšэТе$™—{рF4„йg 7™ЬещIs<MѕћK%ціќ|8њ!Ж6‹5ѓ)™)е}gД/СDd`шш№BВ
4168 №w
4169 S №Ag?П џ№€2№ї†[Ѕ'v{чUЪqXbе~t3џгчˆ`!№Ы†[Ѕ'v{чUЪqXbе~t3Њ  &Xй
4170 ™ўxœ•“ЯKAЧп{ЛЎКIЕнŠŠRоЃ‚єдЭ`У е@)„;Jєxђ№ьС?!‚ ЃЇъиЩ$Ёm~99‚‡v™нїy;я;ѓAHX/ШрПbЌ%‰G6k„(2HQ‰Ь&ЎŠЬ6ЁъЂI]š  K,Zwa "^Ц}uXыЇ:ЋQ}вpTЊ—‹ы …l.№MВ‚_Y1тJѕ*лy-Гшe.Їs9–у•cjўШњŸ"Б;Sh„че+Pz іоqb{iохKqж6ЙK&п;’GŠ{(yЈѕl‹ѓЛж3ЙK&п;’?Дžф7Хы9ˆ3&?šјтY›љ*^†AЭ?n§гjXЊРЈ#’pњЉ6ЛЏЙQœЗїœЫЁ†ЖdofчфщЕ”#‘Rђ3—зj^|šлјdIž ўщЩw…ђ–ц{šжГkВљНцї6NєЬ™ѕhоЬц­СРкщбUћмgAXЙG3ьЈќЉ#QЖаЈеƒ*Гn-бя|N+ЯDdThшш№BВ
4171 №x
4172 S №Ah?П џ№€€2№9Z3ЊЎ8—Лcцё,ЧцKџt‹`!№ Z3ЊЎ8—Лcцё,ЧцKd @XJј|лўxœ…OЛAA=3о—ФD‚ъFЁ#с TЁРИХMH\$$Ђѓ ОТЈ>EЅжKЌйБД6™ьЬйsЮž!ф€ФЃ {RR9Ж]вЂDŠciQE‘6“cчљЋ+p—.IзHQƒБ"ј2_Ѕ;IнDt—Ъ;Nƒp;›ьз0еOŒС‘ьI†?™Чб&FЛ`ДŠУ%šЄ)ЯYЙ;оЪ9‡УыŸCе9оŸгzАš><—аг-H§|uї‘бщЂ{s}МпlЃЫoЊ'!ЁМ7„s6тЮDdThшш№BВ
4173 №y
4174 S №Ai?П џ№€2№8Œ_ оHяг?яЃ™"K„џC`!№ Œ_ оHяг?яЃ™"K„d @XJј|кўxœ…OЛAA=3о—ФD"Њ  _ в>Р-nBq‘Ђѓ ОТЈ>EЅжKЌйБД6™ьЬйsЮž!ф€ФЃ {RR9Ж]вЂDŠciQE‘6“cчљЋ+p—.IзHQ…Б"ј2_Ѕ;IнDt—Ъ;Nƒp3›ьW0еOŒС‘ьI†?™Чб:FЛ`ДŒУ…Ыж”чЌмяF3хnУсѕЯЁюHяЧЯщ@=XMžKшщЄ~ОКћШшtбН‰Й6оЏ7QŒХ7еЧ“PоZё6ЋDdИшш№BВ
4175 №-
4176 S №A?П џ№€2№jgўЗlug}юYтƘџFD`!№>gўЗlug}юYтƘтР`@CР: ўxœ…PKJA}Uэ'‰‚ИjВp#
4177 Що#шТфF˜ рL„dР…G№ФХœУS(.]ДUеmГБ‡šyUМїњMК€ћ€МА=›R]VД!ХD6!!иф”l2bJьўгѕјЪ5мtДЕ‹C!—ОЄѕ$\яD“8=œЯV7гњО^4 О9*є эЦŠю{ма)zdЭћУ>Dю3YfF>Н-‹ЅП(ќхЂœUрфBшШwœeю‹”<N§œ>­йН-G–'ŸдхѕтЩ'њНЏ§<;гЃˆўMxэtеTШв~2лЁ§ZJ—cлКWл:1'ѕrU”Јкщœё~ˆBъ&Ddє0шш№BВ
4178 №4
4179 S №A?П џ№ €2№Љэь]ЙS&œЇЦi5џlD`!№dЉэь]ЙS&œЇЦi5V €и *јk2ўxœ•”ЯkQЧgfгйDГЦЖДы%VажRЁѕтСмD{БBг‹ˆ`…H“Ц6(щ)G/‚€ш^НxдC€žz<˜П@Єз7ѓvЛ—Аvѓ>яЭ|gц§BШX –њР$№3Ђо<q+Ї^B”$пїЅч NKЯa`] аЏH]ЋrЌЌZ'GKр‚ЯNр(~ЋZЏелsЊ*Z!А)ТхіцzЇUhq.№[Љƒ~f%т"jѕ rqпцжQеZ+„}/fТОѓ.繇КЕџ#”:œѕлњNeЕ~ПВЖеиhЊЬД2JЌeлЃm—Џю1_­Xё‡)ЮЙ’ќџ0Ъsєa†–ўя„—ЬјW;>ўХŽŽїБLšu&Н ЕщLШдtvšц ?<Ь<'+”Ј‘дЯЉu7Зю@JeЛxJ*Y0\ЕЃмЧЇЈйЬќ?њƒљоšˆъyдsтќБРМhјхH|ќ@fЎФя‰ŸЌЯЃЧE6§dјЩ(ѓ…=WbŸЩJ4ыљЂе•п—™WЎ†|Pbћšё“ћя п33џ9яуqдœ<i™ЇэfОMВOЫ№Я#q>]Šѓ9Gэн›uЮ<К"‘яJ7†Ю~Z чЌВO79НЂЌ'jЪк;UъUJŸзэqVКdј—]Q.‚цјоЫž3Xћ9sШ.jЖAпЩЖмлrН'ЧБH4$š­uvкѕ4“еXbїghьtЯDdh,шш№BВ
4180 №Т
4181 S №AЌ?П џ№‘€2№9ќnК 6p3J$$‡Ћю8
4182 џ7”`!№ ќnК 6p3J$$‡Ћю8
4183 P@рј|шчлўxœ=НЮQ†п™ѕЛ$6*Qm:’ЯаJTDЁ#‘ј šэ\Тзi•ю@Ѓp).AЁŽ9ГgmВй3ožgЮЛ„<р0ЪАOZо<лSЪІDšc4iRE“?&G8ёŠ|Ї6л=ѕL U+!љ&Ї‹„=ŠXpLНё~6ˆ6S TђХЁб"ј—Л…g§h9Y/тF sђmљOŒ,ЎѓŸФгіŒАГx{БGъ?~ў‰кАшОkуkcенЮYЎњФ\ыGЛ§t‰Uв%оI№”ћ‘0iоDdT,шш№BВ
4184 №У
4185 S №A­?П џ№’€2№HўhHЫАTXхwOoKt§ъџ$–`!№ўhHЫАTXхwOoKt§ъZ рXJшчъўxœcdрd``^ЫРРРФ ЪЌ@ЬЩbБ€DС"ŒLџџџ‹ш1J€E ™ЁЊЙ™`њx˜0*0 Yjlќ R џAš€ќ@жv ~д4ˆЙЁjx|K2B* RР*3)ќ;„aаn Г˜‚+s“ђs .в
4186 ri#Ў/ і  ^`—џfjј‡ЄЈ/$37ЕXС/Е\!(?71Aj#˜ў7icH#д]\`З3‚ЭƒИJ€Ьлі-#“RpeqIj.CЬU3˜СъDB3ЇьDdTшш№BВ
4187 №;
4188 S №A ?П џ№€2№VlO ‡7е84b|@0Мqyџ2 `!№*lO ‡7е84b|@0МqyЄ €XJhпјўxœcdрd``ОФРРРФ ЪЌ@ЬЩbБ€DС"ŒLџџџ‹ш1J€E ™ЁЊЙ™`њx˜˜˜„€,56~)†џ M @ў k;?j2Њч†Њсa№M,ЩЉ,He`(ЋќЭЄ№ь† @ЛЮbbЎЬMЪЯИH(ШЄИО0иƒT0x]ŽІЈ/$37ЕXС/Е\!(?71Јb#˜ў7‰ЩЌЇjRУ?B&ЉТн1‰jвЦG.ЈЙРЁР6т?v0o8м™˜”‚+‹KRsђа]Ч Vk"=ёщDdThшш№BВ
4189 №<
4190 S №A!?П џ№€2№SЂфB }м1r%џЕЋЃџ/ `!№'ЂфB }м1r%џЕЋЃЄ @XJј|ѕўxœcdрd``ОФРРРФ ЪЌ@ЬЩbБ€DС"ŒLџџџ‹ш1J€E ™ЁЊЙ™`њx˜˜˜„€,56~)†џ M @ў k;?jњФмP5< О‰%!•Љ `•П™ўƒТ0h7аYL С•ЙIљ9щ9€Дз{
4191 /АЫбє1Аѕ…dцІ+јЅ–+хч&ц1(BM`гр&10й‚ѕTAMjјGЌI P“Ё&-`Œ`щqdр‚њ 
4192 Œ`ѓ ў``ѓі€У‘‰I)ИВИ$5—!нuЬўџ
4193 џџџџd›OЯ†ъЊЙ)шMicrosoft PowerPoint SlideMSPresentationPowerPoint.Slide.8є9Вq`!№SV”Ю’§Эоц'):#УСZР@HЕј|ъўxœcdрd``^ЫРРРФ ЪЌ@ЬЩbБ€DС"ŒLџџџ‹ш1J€E ™ЁЊЙ™`њx˜˜0
4194 Yjlќ R џAš€ќ@ж2 njzФмP5< О‰%!•Љ `•П™ўƒТ0h7аYL С•ЙIљ9щ9€ДзЦЇ 7x]ў›Љс’> ОЬмдbПдr… ќмФ<MЈ Œ`њмЄF1АIa \PwqнЮ6тObjInfoџџџџџџџџџџџџ# Picturesџџџџ$ Д
4195 Current UserџџџџџџџџџџџџO *SummaryInformation(џџџџŽhE*v0oиЗŒLLJС•Х%ЉЙ y0WAЬdd`Ћœ4`!№)l| Зsv42#0шr"c†TЄ @XJј|їўxœcdрd``ОФРРРФ ЪЌ@ЬЩbБ€DС"ŒLџџџ‹ш1J€E ™ЁЊЙ™`њx˜˜˜„€,56~)†џ M @ў k;?jњФмP5< О‰%!•Љ `•П™ўƒТ0h7аYL С•ЙIљ9щ9€Дз3
4196 /АЫбє1Аѕ…dцІ+јЅ–+хч&ц1hBM`гр&10™€ѕTAMjјGШ$EИ[ &1BMZРСвуШРѕ!8СцAќ'РРцэ‡#“RpeqIj.CКы˜СъЯg>E`!№*К"ољ)}7?X7c‘Є €XJhпјўxœcdрd``ОФРРРФ ЪЌ@ЬЩbБ€DС"ŒLџџџ‹ш1J€E ™ЁЊЙ™`њx˜˜˜„€,56~)†џ M @ў k;?j2Њч†Њсa№M,ЩЉ,He`(ЋќЭЄ№ь† @ЛЮbbЎЬMЪЯИH(ШЄИО0˜T0x]ŽІЈ/$37ЕXС/Е\!(?71Aj#˜ў7‰ЩЌЇjRУ?B&ЉТн1‰jвЦG.ЈЙРЁР6т?v0o8м™˜”‚+‹KRsђа]Ч Vc@=ч`!№*2/0п |єЗ™о&C.Є `XJ0Ўјўxœcdрd``ОФРРРФ ЪЌ@ЬЩbБ€DС"ŒLџџџ‹ш1J€E ™ЁЊЙ™`њx˜˜˜„€,56~)†џ M @ў k;?jЊч†Њсa№M,ЩЉ,He`HЋќЭЄ№ь† @ЛЮbbЎЬMЪЯИH(ШЄИО0˜T0x]ŽІЈ/$37ЕXС/Е\!(?71Сj#˜ў7‰ЩЌЇjRУ?B&iТн1‰jвЦG.ЈЙРЁР6т?v0o8м™˜”‚+‹KRsђа]Ч V
4197 z=Є`!№ј‰SРЪѓp—/Cз4ЛИ[u@@яяЦўxœ5O;
4198 Т@}3~.‚ VСТNAOЈ…ц)VДHD+/ x d/ИЮŽqaи™ЗяНyK€Ъ Ѓ jRћЎъQ"EˆsŠŒЉЇШ„ЉdЗјЏ‹8Ё„:в ыmєсМFцЇtCOбZЊUr"ЬГу&=я-k‚7_?wђЊ “ns{ˆі/wyVРl|’‘<7хž† ™7ЦaщъnRЃЎ š–˜Ћѓсhs?/впНDRQоD>& `!№ї|Њ;ЌHg—+5Ч"х‡…Ÿ”`  !„Хўxœ5N;
4199 ТPœ]П‰‚AЋ hЇ їPDS‹-…$<‚БАђ<і‚Я}k|АьюМ™й!x@щ€б{)нTv(‘"ФжZEЦдUdТTАќз5љFjЫ4ЌЖаƒu"й2 Ѕ"zJ5
4200 NГmЖ ѓc,4С›Я ‚+Й e† їq”ѓш,ё6С@“ŒфЛ.}ъƒжpм~сыыmRЃЎ5нюš–˜ћЋ<ЭЂЩЯ‹дѓ%’’ђОќ’'`!№іь‘fH“|i -.ЁЧ5@`я !Фўxœ5NЫAЌnя%1‘Hp‡Н|Р§{˜„У"Б nNnфр“м%FO[“tІЛКЊК wРhТП‚T…}—ї(‘"ФЮ9EдRdФ”БЋќзеxEjHышРyŒЬOщBOбUЊšqj˜Хщ::я-0дoО|4юф/ф&к$іалcwБKт-кšЄ/ыВќу4ѕЦ8!Ш|НMъcде ЄгCгsoy>Є6СічEъљINy_Uв&`!№їQ:8…ўІ‰фPж5єЏЌ@`я !Хўxœ5N;
4201 ТPœнФOС bэ ъ М€š˜" EЂEвYй ШТ#й Ц}k|АМнй™й!8€uРшТМš”УІГ JЄqY–Š„дSdЪTБ=ўыZМЁ9uЄелшЃ4"ј2?ЅšˆЎR^ХiaЗQqH€‰&xѓхЃAp'sСfјб.Mђ`™œƒе>3 5ЩXжMљg.(4Ц8С­|]НMъуЋЋ†NMKЬƒu‘“йЯ‹дѓ%Ky_P%њ`!№ј gmЂЮ"ЂŠЭюЬоˆDz `ШН !Цўxœ5N;
4202 ТPœ]П‰‚APЋ`aЇЈx -4ат‰B‚bge'x тьуО5>XvwоЬь< pРhСН’”Чn*:”Hт,ЫR[‘1SЮЎё_Wчд”Љ_n ‹Ь‰`dШд—ў”КˆА–sъ˜­гMxк[`Є о|ўhмШ](2LИlЬэ1XьЂuŒŽ&ШwUњФMсИјЙЏЏЗI}ŒКTtЛkZbю-OIj#Ф?/RЯ—H
4203 ЪћШЁ&Д`!№ї…]|.pБ jЛ(ОМаЂЪ€`иR !Хўxœ5N;
4204 ТPœнФ_0‚XЉE:E=A. …z-Z$
4205 „tЉьdс‘ьуО5>XvwоЬь:€uРшУМ†T‡Эd”HтЊЊ™б@‘SЭvљЏѓxO%ѕd
4206 š] Q|йŸ2вC]ЅмšуauШŽЛтsM№цђЃAp'sСfјЛSЅЃu”6чј`ЌIІђн–Оt@! 7‡Sћ:z›дЧWW-нš–˜'л"ЭЂЩЯ‹дѓ%Ky_БN&Šі"_Р‘у‡l
4207 єbChris Hillўџр…ŸђљOhЋ‘+'Гй08E `h€” ЈД
4208 д р ьјфNo Slide Title Chris Hillt Chris Hillt8riMicrosoft PowerPointP@Р"gс@`"И~–.М@ Lў.МG.DџџџџoM  "R&џџџџКЪ &џџџџ&#џџџџTNPPАы0ф‡a
4209 &
4210 TNPPє &џџџџ&TNPP   ЪК ќџџџ- њџџџ"-- !№аР-- њ"-&џџџџGС&џџџџ ћ- &џџџџGyС&џџџџ &џџџџHh &џџџџЄ”ѕ&џџџџ-ќ-&&ќРРР- $А  щАщ&&& њџџџ"- &$ А№АшРш˜ & ЂI —‹&-&& &&5B(џџџЊUЊUЊUЊUџЬ-&&$ А№АшРш˜ &&-№ $А  щАщ&- --&џџџџ&џџџџ--&&ќЭЭЭ- $А  ёАё&&&- & $А№Р№  & ЂI —‹&-&& &&5B(џџџЊUЊUЊUЊUџџ-№&& $А№Р№  &&ќЭЭЭ-№ $А  ёАё&-№ --&џџџџ&џџџџ--&&ќššš- $Р  щРщ&&&- & $Р№ ˜Рш& ЂI —‹&-&& &&5B(џџџЊUЊUЊUЊU3™џf™џ-№&& $Р№ ˜Рш&&ќššš-№ $Р  щРщ&-№ --&џџџџ-ќ-R8ЏяЏяЏ№ЏшЏщАъРъРъСщ™™˜ ŸŸŸŸџŸЏяЁ ЂЂ  ˜˜—ПчРшРчАчАшВшВ№А№БёЁ$
4211 АяАђРђРђСёЁŸПяР№Ря $Т№П№ПшТш--&џџџџ &џџџџ)5ht&џџџџE5Lt-- $J8F8FpJp--&џџџџ&џџџџ)QhX-- $dVdR,R,V--&џџџџ&џџџџ,B]o-- $[GXD.j1m--&џџџџ&џџџџ--E[F-- &џџџџY+{V--- !№+!+Y---.
4212  џџџ--а+Р" [№с @Р џџџ.1 @Р&џџџџРџџџІџџџ€ц & MathType`ћ џSymbol- [№с2
4213 рхJћ€ўTimes New Roman,- №2
4214 €V
4215 &
4216 џџџџћМTimes New Roman-№ --'џџ&џџџџ&џџџџVg”.
4217  џџџ--а+Р( њ р @  џџџ.1 @ &џџџџРџџџЗџџџрї & MathTypePћ џSymbol-  њ р2
4218 є6Jћ џTimes New Roman,-
4219 № 2
4220 4zћ€ўTimes New Roman- №
4221 2
4222  XA
4223 &
4224 џџџџћМTimes New Roman,-
4225 № --'џџ&џџџџ&џџџџяI!.
4226  џџџ--а0Р) +цЮу €  џџџ.1 € &џџџџРџџџЗџџџр7 & MathTypepћ џSymbol-  +цЮу2
4227 є6Jћ џTimes New Roman,- № 2
4228 >yћ€ўTimes New Roman- № 2
4229  XA
4230 &
4231 џџџџћМTimes New Roman,- № --'џџ&џџџџ&џџџџGJy.
4232  џџџ--а5Р0 +ё{ё `  џџџ.1 ` &џџџџРџџџЗџџџр & MathType`ћ џSymbol-  +ё{ё2
4233 є6Jћ џTimes New Roman,- № 2
4234 4xћ€ўTimes New Roman- № 2
4235  XA
4236 &
4237 џџџџћМTimes New Roman,- № --'џџ&џџџџ&џџџџ&џџџџќ’6--L$$0ў2ћ"яу нзбввЬЧЧШУНИЗЙ­ЄЁ ЊЖЗМўТўЧўШўШўЭгдк рцђ
4238 $Ј• ž--&џџџџ&џџџџgЌM--P$&nIrHo;m/k0m0n'o#m"o$q"r"t ss!w vv !Š#–&—"‹€wvrqop ol!k"j&i/i0i0k<
4239 $•-Ј(™--&џџџџ&џџџџgЗzќ-- $rЦoЦoљrљ
4240 $xШpЙiШ--&џџџџ&џџџџn№Г-- $pјpћЃћЃј
4241 $ЁАљЁђ--&џџџџ&џџџџnзЃќ-- $pјqћ—с–о
4242 $˜ш йл--&џџџџ&џџџџ’КГс.
4243  џџџ--а%Р ‹ь ю  ` џџџ.1  `&џџџџРџџџ& Ц & MathTypePћ€ўTimes New Roman,-  ‹ь ю2
4244 ^y
4245 &
4246 џџџџћМTimes New Roman- № --'џџ&џџџџ&џџџџГъб .
4247  џџџ--аР 9ъ‰ь `@ џџџ.1 `@&џџџџРџџџ&† & MathType0ћ€ўTimes New Roman,-  9ъ‰ь2
4248 Lx
4249 &
4250 џџџџћМTimes New Roman-№ --'џџ&џџџџ&џџџџV…mФ-- $j‰fˆ`БdВ
4251 $YЎ`РjА--&џџџџ&џџџџЏ—ъ њ"- -%Аш˜-№ -&џџџџ&џџџџџ—š њ"- -%˜˜-№ -&џџџџ&џџџџџŸš њ"- -% ˜-№ -&џџџџ&џџџџ–Gу[-ќ–––-  $гRгO˜O˜R
4252 $бXрPбI--№ &џџџџ&џџџџ–NГS-- $АRАO˜O˜R--&џџџџ&џџџџб2яS.
4253  џџџ--аР bђ2ы `@ џџџ.1 `@&џџџџРџџџ&† & MathType0ћ€ўTimes New Roman,-  bђ2ы2
4254 .u
4255 &
4256 џџџџћМTimes New Roman-№ --'џџ&џџџџ&џџџџ m4”-ќ–––-  $)y'w’
4257 $,1o!u--№ &џџџџ&џџџџіŽЋ-- $‘їЇљЉ--&џџџџ&џџџџџo.
4258  џџџ--аР ­яіш `  џџџ.1 ` &џџџџРџџџ&р† & MathType0ћ€ўTimes New Roman,-  ­яіш2
4259 4v
4260 &
4261 џџџџћМTimes New Roman-№ --'џџ&џџџџ&џџџџGžZЫ-- $R­O­OШRШ
4262 $XЏP IЏ--&џџџџ&џџџџNЦSы-ќ–––-  $RШOШOшRш--№ &џџџџ&џџџџ'ЏKа.
4263  џџџ--аР" 2јІч `€ џџџ.1 `€&џџџџРџџџ&@† & MathType0ћ€ўTimes New Roman,-  2јІч2
4264 @w
4265 &
4266 џџџџћМTimes New Roman-№ --'џџ&џџџџ--yHw-- ћрџTimes New Roman,- № .2
4267 l€ Plan View  .--™hx--  .2
4268 Œ‚ Side View  .- њ"-))€h--№- њ"-i)Рh--№&џџџџјxW&џџџџcS&џџџџ2K-- $*''H*H
4269 $0(!--&џџџџ&џџџџ&?cS-- $(G(JSJSG
4270 $QP`HQA--&џџџџ&џџџџ&џџџџї8.
4271  џџџ--а%Р ѕяў  ` џџџ.1  `&џџџџРџџџ& Ц & MathTypePћ€ўTimes New Roman- ѕяў2
4272 ^y
4273 &
4274 џџџџћМTimes New RomanХ-№--'џџ&џџџџ&џџџџ[7yX.
4275  џџџ--аР )ђхћ `@ џџџ.1 `@&џџџџРџџџ&† & MathType0ћ€ўTimes New Roman- )ђхћ2
4276 Lx
4277 &
4278 џџџџћМTimes New RomanХ-№--'џџ&џџџџ&џџџџ&џџџџNШƒк-- $PЯPбvбvЯ
4279 $tз€аtЪ--&џџџџ&џџџџИЩ;-- $П8С8СП
4280 $ЧРК--&џџџџ&џџџџ{З™и.
4281  џџџ--аР зїwњ `@ џџџ.1 `@&џџџџРџџџ&† & MathType0ћ€ўTimes New Roman- зїwњ2
4282 .u
4283 &
4284 џџџџћМTimes New RomanХ-№--'џџ&џџџџ&џџџџЏјЪ.
4285  џџџ--аР ѕєј `  џџџ.1 ` &џџџџРџџџ&р† & MathType0ћ€ўTimes New Roman- ѕєј2
4286 4v
4287 &
4288 џџџџћМTimes New RomanХ-№--'џџ&џџџџ&џџџџNc“&џџџџN2‹-- $*]']'ˆ*ˆ
4289 $0_(P!_--&џџџџ&џџџџ&c“-- $(‡(ŠSŠS‡
4290 $Q`ˆQ--&џџџџ&џџџџ&џџџџC%a.
4291  џџџ--аР цЅџ @@ џџџ.1 @@&џџџџРџџџ&f & MathType ћ€ўTimes New Roman- цЅџ2
4292 Lz
4293 &
4294 џџџџћМTimes New RomanХ-№--'џџ&џџџџ&џџџџSˆqЉ.
4295  џџџ--аР 7у@ќ `@ џџџ.1 `@&џџџџРџџџ&† & MathType0ћ€ўTimes New Roman- 7у@ќ2
4296 Lx
4297 &
4298 џџџџћМTimes New RomanХ-№--'џџ&џџџџ&џџџџNƒ"-- $PPvv
4299 $t€t--&џџџџ&џџџџ!.
4300  џџџ--аР ?щIњ `@ џџџ.1 `@&џџџџРџџџ&† & MathType0ћ€ўTimes New Roman- ?щIњ2
4301 .u
4302 &
4303 џџџџћМTimes New RomanХ-№--'џџ&џџџџ&џџџџРІбг-- $ЧаЩаЩВЧВ
4304 $ЯДШЈТД--&џџџџ&џџџџХ˜щЙ.
4305  џџџ--аР" мэDї `€ џџџ.1 `€&џџџџРџџџ&@† & MathType0ћ€ўTimes New Roman- мэDї2
4306 @w
4307 &
4308 џџџџћМTimes New RomanХ-№--'џџ&џџџџ- њ"-бЩЩС--№&џџџџХРщс.
4309  џџџ--аР" qїDї `€ џџџ.1 `€&џџџџРџџџ&@† & MathType0ћ€ўTimes New Roman- qїDї2
4310 @w
4311 &
4312 џџџџћМTimes New RomanХ-№--'џџ&џџџџ--Aрі­-- ћЫџМTimes New Roman-№  . 2
4313 /Зз.&џџџџЮщ1.
4314  џџџ--аР ‰шЏі `  џџџ.1 ` &џџџџРџџџ&р† & MathType0ћ€ўTimes New Roman,-  ‰шЏі2
4315 4v
4316 &
4317 џџџџћМTimes New RomanХ-№ --'џџ&џџџџ--‚P@-- ћрџTimes New Roman,- № . 2
4318 tJT,S.&џџџџFNcc-- $`aa_QTPV
4319 $VQHPN\--&џџџџ&џџџџWЋuЩ.
4320  џџџ--аР хьЅ№ @@ џџџ.1 @@&џџџџРџџџ&f & MathType ћ€ўTimes New Roman- хьЅ№2
4321 Lz
4322 &
4323 џџџџћМTimes New RomanХ-№--'џџ&џџџџ--ћМ"Systemn-№ &TNPP &џџџџPowerPoint Document(џџџџџџџџВЋlDocumentSummaryInformation8џџџџџџџџџџџџP _862639879K`РF€ЗЅ Н€ЗЅ НOle
4324 џџџџџџџџџџџџY ш+щ(€рр€3 Р Œ
4325 yЬ˜Эџ0УбbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Эџ0УбbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Эџ0УбbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Э0УбbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Э0У бbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Э0У
4326 бbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Э0У бbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Э40У  бbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Э0У
4327  бbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Э0У бbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Э‹0У бbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Э0У бbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Э0УбbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Э0УбbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Э0УбbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Э0УбbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Э0УбbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Э0УбbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Эd0УбbКEquation КEquation.30К,Microsoft Equation 3.0Ь˜Э0У=бbКEquation КEquation.30К,Microsoft Equation 3.0ђ№/Ш 0веLЗDTimes New RomanЄгbЄгbЬбbЗё0№бb№бbЩђ0Љ
4328  @Ѓnџ§?" dd@џџяџџџџџџ  @@``€€ 4№,№  DCЏ№И2№$SV”Ю’§Эоц'):#УСџ$‹2№$l| Зsv42#0шr"c†Tџ1$‹2№$К"ољ)}7?X7c‘џ2U‹2№$2/0п |єЗ™о&C.џ2‡‹2№$‰SРЪѓp—/Cз4ЛИ[uџЙ‹2№$|Њ;ЌHg—+5Ч"х‡…Ÿ”џџЙ‹2№$ь‘fH“|i -.ЁЧ5џўИ‹2№$Q:8…ўІ‰фPж5єЏЌџџЖ‹2№$ gmЂЮ"ЂŠЭюЬоˆDzџЕ‹2№$…]|.pБ jЛ(ОМаЂЪџџЕ ‹c №$ƒПРџ@ёї№ѓ€а‹џ њgў§4,d,dќбbЩђ0єбb
4329 €єџџџњџџџpћppћ@ ?й к%№XѓŸЊ
4330 ŸЊ
4331 ъјuя 0`№ џџџ€€€Ь™33ЬЬЬџВВВ`№ џџџџџџџ™џџџ–––`№ џџЬff3€€3™3€3ЬџЬf`№ џџџ333ннн€€€MMMъъъ`№ џџџ€€€џЬfџЬЬРРР`№ џџџ€€€РРРfџџ™`№ џџџ€€€3™џ™џЬЬЬВВВЃ>џ§?" dd@џџяџџџџџџ,Ѓ|џ§?" ddи@џџяџџџџџџ € д €" а@€ №`€Л€ Ѓnџ§?" dd@џџяџџџџџџ   @@``€€PЃR    @ ` €`Ѓ pЃ>€Ѓ> г№Ы№№c№( №
4332 №№в
4333 №
4334 “ №6€(‡‡ƒПРџ №€АаP№У ‡ №TŸЈ Click to edit Master title styleЂ!Њ
4335 !№
4336 №
4337 ƒ №0€t(‡ƒПРџ №рАа№У ‡ №žŸЈRClick to edit Master text styles Second level Third level Fourth level Fifth levelЂ!    Њ
4338 S№Е
4339 №
4340 ƒ №0€д(‡ƒПРџ №`А`€№У ‡ №=ŸЈ*Ёј№З
4341 №
4342 ƒ №0€4)‡ƒПРџ №`Аа€№У  ‡ №?ŸЈ*Ёњ№З
4343 №
4344 ƒ №0€”)‡ƒПРџ №` а€№У ‡ №?ŸЈ*Ёи№H
4345 № ƒ №0ƒ“ŽŸ‹”оНhПџ ?№ џџџ€€€Ь™33ЬЬЬџВВВюЄ#я€0 T#№L# №>Bё№и"№( №Рџ 
4346 №№6№L №Аp`Р 
4347 №# № ˆ№pА`Р №Р
4348 №
4349 г №N€€є)‡…‡GŸРРР‚€ПРЫ8cџ?№
4350 Р`p  №:ŸЁЊ
4351 №В№T №PИ` 
4352 №# № ˆ№№ PX №fB
4353 №
4354 “ №6…‡DПРРРРЫд”џ№` №lB
4355 № 
4356 Ѓ №<Z…‡DПРРРРЫд”џ№hИИИ№lB
4357 №
4358 
4359 Ѓ №<L)0…‡DПРРРРЫд”џ№PЯ а№’Ђ
4360 № 
4361 Ѓ №<€T*‡…‡ПƒПРџ№І zš №ŸЊ
4362 №nВ
4363 № 
4364 s №*A ?РРРПџ?№п№ С №hВ
4365 № 
4366 c №$A ?Пџ?№ pt№ С №hВ
4367 №
4368 c №$A ?Пџ?№Р Ё Г Р № С №hВ
4369 №
4370 c №$A ?Пџ?№АРЮ № С №М
4371 №
4372 S №”„Эѕџ0e‚˜Вƒ0e„˜В…‡ˆ‰П є   B№CpDEСFС€‚ƒ„… †С‡Сˆ‰Š‹ŒŽ‘’“”•–—С˜™š›œ@П РСУ ФХСЦСЧШЩЪЫд”ЬЭЮЯСабдезџЫЫЫ 8c8c 
4373    ?AЈ)BCD|ОE„|О…†|О‡ˆ№џ№pxќˆ ИШ0№@­ ­ Ќ€№ № №Ш
4374 №
4375 s № 0e‚˜Вƒ0e„˜В…‡ˆ‰П є   BˆCDEСFС€‚ƒ„… †С‡Сˆ‰Š‹ŒŽ‘’“”•–—С˜™š›œ@П РСУ ФХСЦСЧШЩЪЫд”ЬЭЮЯСабвгдезџЫЫЫ 8c8c 
4376    ?AЈ)BCD|ОE„|О…†|О‡ˆ№џ8Ј@8 pPHˆP@­ ­ Ќ€№ h№ А№|B
4377 №
4378 у №T…‡ПDПРЫŸoаџ?ˆ№T
4379   д №|B
4380 №
4381 у №T…‡ПDПРЫŸoбџ?ˆ№д  
4382 д №|B
4383 №€
4384 у №T…‡ПDПРЫŸoбџ?ˆ№  Р д №fВ
4385 №
4386 s №*A ?Пџ?ˆ№d
4387 p *
4388 @ № С №fВ
4389 №
4390 s №*A ?Пџ?ˆ№ƒ 9
4391 р
4392 > № С №|B
4393 №@
4394 у №T…‡ПDПРЫд”бџ?ˆ№0@p€№|B
4395 №€
4396 у №T…‡ПDПРЮзџ?ˆ№
4397 p №|B
4398 №
4399 у №T…‡ПDПРЮзџ?ˆ№ ` №|B
4400 №
4401 у №T…‡ПDПРЮзџ?ˆ№Р  №|B
4402 №@
4403 у №T…‡ПDПР–––ЫŸoаџ?ˆ№р @ р№vB
4404 №@
4405 г №N…‡ПDПРЫŸoџ?ˆ№р
4406 р№fВ
4407 №
4408 s №*A ?Пџ?ˆ№2э
4409 • э№ С №‚B
4410 №@
4411 ѓ №Z:\,…‡ПDПР–––ЫŸoаџ?ˆ№ 0 P  №vB
4412 № @
4413 г №N…‡ПDПРЫŸoџ?ˆ№` а ` № №fВ
4414 №!
4415 s №*A  ?Пџ?ˆ№  — [ № С  №|B
4416 №"
4417 у №T…‡ПDПРЫŸoаџ?ˆ№Рр р А№vB
4418 №#
4419 г №N…‡ПDПР–––ЫŸoџ?ˆ№Ар р p№fВ
4420 №$
4421 s №*A
4422 
4423 ?Пџ?ˆ№ № К л№ С 
4424 №СЂ
4425 №%
4426 г №N€+‡…‡ПƒП Рџ?ˆ№АЧ`а №CŸЈ Plan ViewЁ
4427  №СЂ
4428 №&
4429 г №N€д+‡…‡ПƒП Рџ?ˆ№pаi №CŸЈ Side ViewЁ
4430  №p
4431 №'
4432 У №H…‡ПƒП Рџ?ˆ№p№№№p
4433 №(
4434 У №H…‡ПƒП Рџ?ˆ№€
4435 p№p№Є№L №аа 
4436 №)# № ˆ№аа №h№N №№@P
4437 №* №ˆ№№`@А№~B
4438 №+
4439 г №N…‡ПDПРЫŸoаџ?№№№P№„B
4440 №,
4441 у №TІџ…‡ПDПРЫŸoбџ?№№P@P№hВ
4442 №-
4443 c №$A  ?Пџ?№аJЌ№ С  №hВ
4444 №.
4445 c №$A  ?Пџ?№)Pа № С  №|B
4446 №/
4447 у №T…‡ПDПРЫjJбџ?ˆ№ррр№‚B
4448 №0
4449 ѓ №ZІџ…‡ПDПРЫjJбџ?ˆ№`€€P№fВ
4450 №1
4451 s №*A  ?Пџ?ˆ№Pш № С  №fВ
4452 №2
4453 s №*A ?Пџ?ˆ№е З№ С №f№L №№@P
4454 №3# № ˆ№р №@0№~B
4455 №4
4456 г №N…‡ПDПРЫŸoаџ?№№№P№„B
4457 №5
4458 у №TІџ…‡ПDПРЫŸoбџ?№№P@P№fВ
4459 №6
4460 s №*A ?Пџ?ˆ№˜ 0з@№ С №fВ
4461 №7
4462 s №*A ?Пџ?ˆ№5љ №№ С №|B
4463 №8
4464 у №T…‡ПDПРЫjJбџ?ˆ№ р №fВ
4465 №9
4466 s №*A ?Пџ?ˆ№ ЈР № С №‚B
4467 №:
4468 ѓ №ZІџ…‡ПDПРЫjJбџ?ˆ№№ ААр
4469 №fВ
4470 №;
4471 s №*A
4472 ?Пџ?ˆ№• ІpP
4473 № С №p2
4474 №<
4475 У №H€€…‡ППРџ?ˆ№ИˆАр№fВ
4476 №=
4477 s №*A
4478 ?Пџ?ˆ№…Іp@№ С №ЛЂ
4479 №>
4480 г №N€4,‡…‡ПƒП Рџ?ˆ№Ц :€  №=ŸЈзЁ (№fВ
4481 №?
4482 s №*A ?Пџ?ˆ№e йp № С №БЂ
4483 №@
4484 г №N€”,‡…‡ПƒП Рџ?ˆ№р€   №3ŸЈT,SЁ№|B
4485 №AР
4486 у №T…‡ПDПРЫjJбџ?ˆ№рА @@№`В
4487 №B
4488 c №$A =?Пџ?№
4489 ЗА
4490 № С =№H
4491 № ƒ №0ƒ“ŽŸ‹”оНhПџ ?№ џџџ€€€Ь™33ЬЬЬџВВВpxœэVБnA}Гч|ЖЧ‚E)NHX4а $0RPЅ @и‘#Œт;;v@ђќBDu
4492 „š&а!Q„*тŽ™Н=Ы\c@D‰<ЇѕнЮЮюМёЬОннїу{лoІ>!&зaС’эб‘iZ2€2}?‚H хXЩn#&‡ ѓігPўŸ,ТуЇ yИќ^Gk ]<‘ЎЕ№zЇ4tB:ИнЫ ялm?ЗC–ŒЋPOИ‹5”џ˜9l(ъgч6‘3ˆќпфјЋЈ1ŽŒ#Ыў…­пЬŒћћUcЏLќїјŸ/Ѓ§ХЄ‰?1€СКIЁН„y‹іПppў)nЇЙ%‡œpЂ…ТcќйшNр–mj9ЖїЯёЯ|eeнkxЋM'_п(6+žыЬцfцЁ[…Ў)юGм,іЏН­‘ј•zN˜}%§hє++ž1Єћ$c\ЩжkHИgѕЈTzR–ЙВ‹ECJMŽ&ЕцВ"cRбМДКЁ:”хЏ Ѓc˜2^3;НфжцI_ИЅŒMѓХцЃЅVЉюЁЖ<PŽAњ‚t2…VЕф­…ˆ.QИЏи{єYЧvG#?PmПg<oЉR-7œ…ђSgбЋ]\4+~ыЎдІ Нв2lƒЫ6,(ЂЪшНьшhIЉѓ…VЃYЎТP…k’ц‘AЋ%~ƒœжy№qк(k+sи/Эщo‹јЈА)ћ|ж!Ejыƒ…qЗШы№ўљw’G(ђЩ_сsах{Р‚щ=бЇr?юw8{§|Ф+Cjяъ?ЪеQчќ8ћЯlНкќ )2Ъ}xœэVЭjдPўюЭД:™ЦСŸЁ(D‚ ‡jED,:‚Bkщt%LKŠ#MвщЄЪдЭ }>€‚ЛЎtуІ @ДКuSпРEС…˜xЮЭЭP%"–ъœp’мsЯя§љю]џxhухысЏHбЃ<ЗШ„fE u;ŒЂ(G}кWє“x@ЯaNУ=ЮЉOІргРF}бюiХ@W›ё@~
4493 оХppc+&tNЌvТЪš0XhФrл˜‡Гkф0!E–Nл˜#‰ъwБ@yЬрAЯy”(ОˆЫйж2›ѕчДОдѕOвШ;haD=;ЯЂЌыЯѕŸs}/b§0Šч-йџŒŒљˆч‰Э>.ќГ$тcќ7ZящNF†ЉзrjяЃзxcvбoљs]m.еƒ†яйЃ•Љыz­+CкIЃ2ŠЭKoš;ЫˆуђzЮщ}ХэЄїЅѓ˜ј•р>ZЩЦgpЙGT/ЏєМJ˜myГDHvР’Š(+Щ9)ДvA&vEyUкВDЇ‡0ЌЃZ\;§Н%о ЃяФ­SФx=И?н^ Ј›Tš?Є­3}&д,HXЕЖ;уЯЧё<onтЂТ˜[*ѓ”rd7нp–=с<ВЇ|ЗюсŒі дї[зфeГЌ=uТ,O'ЛЙФž„ієBмUу=Іа+45ž2ХѕY
4494 E€55nBЪSЕv+p\xщьŒŒYоў.z\ЭшН/Ж–?ŸН‰21“!шЈ1EщщŒ!‰§-s+ŸT<ЩёўїћkM,ЁN'ƒЮAюКѕPЪYИoгшgХHЯ'я‰ЫhЌїzЮіs|keѕЩ/Qаѕ;yxœэVOkAџЭlZЭ&а5јЇ ‹ 7CЕ R(ЁBЋ4= IйbЄйMš­ВЗ §~o=щХKz­^Ндoр!7qзїfgc](лˆXЊyсegоМyцЭќfЖ?лyўrт R4a”Чш.™аЌШЄю‡Q%тhH‡ŠОшцє7<р˜†єїh§|иЈРЅя‚NёIŒєЕф{ЉpрM 7vcBwrГ–З„СB#– мТ*œпFRdщЄБщ8џз(џ&ZGŽЃDўEœЮž3гОYEыKџmZyLЉпўЃзљч№ЯБОБ~ХuKЮ?ccўтЃФybsˆ џ,‰јџ…Жz„‘aъНœ:ћЇшoОБМцuМпЎДзk~УsэщђŠ4tНк—Ё@§ЄSžFяЪЋіў"bПМŸsњ\q?НCсМ%~!xŒvВё œю 5Ъ;=ЏцЙ|ŠY"$`IYŒ+Щ)ДvA&ѓŠВ+mYЂжЙб1LhЏчN­зФ;4щ2щДNѓ5џўRа"Јk)Эoвж‘>Њ
4495 V5hжНе8Ђѓ">Э.)ŒЙЉ"OЭCŽц-5šNЧ^pй‹^ГцbR[ъћЕo rFЭ ДЅn˜eщl?–и’а–ž‰ЛjНg:p†ІЦSІ8?KЁАЅжMHyІt|Ї 7‘QхНпЂЇUEя}ЖЕМЕ<‡^}NЕ AW)JOfaŒIЈpњћппЏДБŽнќ К]z,шоCu+gсОMЋŸх#]O>WџаZtЭГkcѓёBЙѕз}xœэVOkAџЭlZЭ&а5Ј-ХУтA№`h­‚E#Th•І 'iRRŒtw“fЋЭ­h?€Ÿ@*xѓd/^ŠјDЋW/ѕxШMмѕНййXЪ6"-еМ№В3oоМ?ѓf~3лOьМx=њ КA˜Хр.™аЌШЄюaЦтАOGŠ~шfє78ф˜њtp4 ~>l”рвwэžNёi tЕфЉpр]7wcТЦлЭЕ И% ‘\р6–Pћcф0!EšNл˜N"іђwа 8Њxиsђ/Ђtіœ™єЭњ‹Z_ъќяаЪзаҘњэ?ŠІџы{щaTЗјќ30ц#>Nœ%6ћИ№Я’ˆЎёпhЛЇ7AІоЫ‰Г?Lгѕ…eЏх-њvЉЙRёыžkOЧЇЁхЎ 9ъЧт:W6›ћ‹ˆ§ђ~ЮшsХ§xє.…ѓœјЅр1кЩЦgpКЇд(яєЌ
4496 ˜чђ)f‰l€%E1Ђ$уRhэœŒчххМДeZч‡0ЊНZœ;ЕояаЄaвЯi<І+ўƒЙvƒ n^i~—ЖŽє™PUАЪmЇъ-E]б МhvpYaЬ-yb24oЎюдZіLэБ=ы9ук‚Pпo]K—дœUmi-HГtОKdIhKтžZяI…œЁЉё”)ЪЯR(lЉuRž-З[~Э›ŒЮHЉђоoб3ЊЂїПиZоX˜BЇ:Ѕк† ЋЦ…Ї“0†$rдZх8ж?§ђїПП_KhbКљыtКє˜бНGъVNУ}›V?ЭGВž|&ЎўЅЕ>ьšeџжњЋ'?Чbі8ExœэVПoгPўю9-Ф‰„‰јQE V%:Aдв‰…R‡–Њэ\šVЎ"vвИ otEтO€™ FдЁtgџ€ЁТцюљЙ*– BDE9ыљљнЛїюЮwїНЗџёьч—ЏЋ_ЃА'EŒс‘iš@™qœ$IЦNFtЂш;З1У‚щу!л4ЂGKј сЂŸћ-DUёŒJ ЈJуР^
4497 wŽbТоНЗНИЖKѓz*хют!М?FŠњЩфБMш2§ЗиџкlЧ: lG…ѕ ZПY™з-ђ›F^џљЯ{шbZ?ЧЗbТј_@Пиz“Rљ8Iу–еП``ў)nЇGx№пЅЧјOД?а N,лфrЎі/ђkОЙБtƒЭа­wЖa3№нйк4Ъ<u{љ‡ГAmзпtŽg‘ш•|.˜К’q6ЛУŒїмЊ$sENќgwЯыYЩєЂ6XжJ ‡”l œMhЮŒ"#]RйКВzAkTсЏЉё3Ј­ŽјЮ_SмЛМшЗ’‘)cОо_‰к u‹к‚oЊЇv>зRPpVš-Џы.xнЅ е№qY[r•вZМfƒVЕ—lГЏmPLШбЛ:Кv]m-)5ЙuCЏ?н‹єž_)ХAЃП^вtѕ“c˜э9ЌЯщo‹ъmЊ<~Хб§qИTGлh№Щпфsач{Р‚=вЇr?ќw9њ§tф3‹+WўRЌ‡3'YПГѓъЩёfŽExœэVЭnг@ўfтDТDќ”ˆƒХЁ'ˆ=qAR%ZPл34­\DьЄqЁЙEPqCт8s‚#ъЁOНs7раТffНЎŠ…HQQЦZ{wvvgЦ3ѓэю~<љљѕлъdш,Dq“xdš&PfХqœВу1)њЮmТФА`ОбˆmгПЃќ„pб€ЯпuєsUёLьK ЈJуРNЗbТЮƒїƒЈЖMѓ*сют1М?FІЩdБMшR§7йџ6:lЧ
4498 хЖЃТњ­пЌЬъљ5#ЏŒџїјЯ{шЁЎŸУ[1eќ/фа/Жо D>Š“ИЅѕ/X ˜Œлё1ќїDЩ1ўэцКDБe›\ЮдўY~ЭЕVзƒ^АКюF3lО;SЋЃЬSЗїy(ё8дfАwѕ]їp‰^Щч‚Љ+ЇГЫЬитV%™+rтП„И{ZЯJІЕСВVЊX8ЄdсдhJs.+2в%•Ў+ЋeКNюMOž@еhuФwюM›"С­ddژk†—њ†ККЖр›D‰Џ4‚œЅVлыЙѓоSw!h7}œг–\ЂЄЏи ;кЫMиf_렘ЃwutэлкZRъТbПzmјЩ^ЄїќJ фvіx^џбћŸУьЌЮboeVї-bЈЗЉђ|ZъWšЦїЧбR]l Щ'‹ЯAŸяѓfєDŸЪУ№пхИг‘Э,ЎD\ќKБuЮe§Юж›g?3Ћe&BxœэVПoгPўю9-Ф‰„‰јQE R;шФ‚Є-ЈэŒšVЉ"vв8 lT0!ё/03См‰КГРРа asїќ\Е– 5BDE9ыйянЛїюЮwїНЗћщє—зoЋ_‘ЁыАХELр‘iš@™qЧqЪŽ'tЌшЗ)У‚љFcЖiBџŽ–№ТE>З0ШUХч0Е/-x >*я8Иs†/> #o‡,ц UТ'мХ#4џ9l(%“Х6Ё3HѕпbџлшАыx˜лŽ
4499 ы Д~Г2Ћ[ф7М2ўпу?пD5§нŠу!‡~Бѕ&%ђQœФ-­ССќмNN№рП'JŽёCД›ыNХ–mr9SћчљЕики
4500 zСfшжЛ§Fи
4501 |wоЋЁЬSЗWіy(ё8xѓиЛіЎ{4‹DЏфsСд•Œгй5flsЋ’Ь9ё_Bм=Ћg%г‹к`Y+U,RВp<šбœ+ŠŒtIЅыЪjnP…{sгЇP5Zё{sІШŸs+™2сƒеA‡ЁЎІ-јЎ†Qbч+ gЕеnімЅцw9h7|ЬjK.SR‹WmЇНьУ6ћкХ„НЋЃkибж’RWНАй†ŸьEzЯo”р@оhgo€єНџй1ЬЮЦіжtп"†z›*ЯњПŽтфў8^ЊЃЫйдр“ПХч Яї€%3zЌOхQјяrєGщШfW".§ЅX;gŽГ~gћЭгŸ8d§DxœэVПoгPўю9-Ф‰„‰јQ"‹ЁDВ0РЉC j;#вЪAФN7([LHќ ЬL0w@b‡ю,х?`ш†АЙ{~ЎŠ%HQQЮz~~їюНЛѓн}яэ|:Йћњmѕ 2tЂИˆщ<2M“(3Žт8Nйё„Ž}ч6ebX0}4f›&єяh ?!\4рsПAЎ*>ƒЉ}iСѕQixŸРСƒ˜0|ёaеЖЩbоP%|Т]<†їЧШaCб(™,Ж BЊџћпF‡эXХЃмvTXП` ѕ›•Yн"Пnф•ёџџy=дѕsx+fŒџ…њХж›”ШGqЗДў ѓq;>Сƒџž(9ЦЂ\w‚(Жl“Ы™к?ЫЏ…жкFа жCЗбнl†­Рwчju”yъіђ>%ЇƒкіЎНыЮ"б+љ\0u%уtі:3ЖИUIцŠœј/!юžжГ’щEmАЌ•*)й@85šбœЫŠŒtIЅыЪъЙTсЏйщЈ­ŽјЮ_Гмяr{Ю KFІŒ…fјpeаaЈЋk ОЉa”иљJ#HAСYiЕНžЛш=q—‚vгЧ9mЩ%JjёŠ КЊНьУ6ћкХ„НЋЃkижж’R–НаkУOі"НчWJp oДГ7Рѓњоџьfgm{Ћѓњл"†z›*ЯњПŽтфў8^j ‹M4љфoё9шѓ=`бŒњњT…џ.G”Žlfq%тт_ŠѕИsц(ыwЖо<§ч e•FxœэV1oгPўю9-Ф‰„Ј"УP1@шдU@:Д Ж3"­RDьЄq‰ВEPБ!ё`b`‚Й;tgРа asїќ\K!ЂЂœѕќќюн{wчЛћолћ8ѕљх›ђЄш,„Q“‡xdš&PfFQ”АЃ1+њЮmТФ0gњpФ6щпб
4502 |~ИЈСу~ §LU|в‚ъƒв8№.†ƒ[‡1сХХїƒАВKѓ*цnу!Œ6 “Ic›а4§7иџкlЧ:dЖЃФњ­пЌLыљM#ЏŒџwјЯ7аEU?GЗbЦјŸЫ _lНNБ|ХqKъ_А@0џЗ“c<јя‰тcќ'кЫt'#Ы6ЙœЊ§ГќZjnlљ]3pkэzає=wЎRE‘ЇnЎ№Pрq2ЈЬaўmчh‰^ЩчœЉ+'ГЏ˜БУ­L2—чФqїДž•LЯkƒe­TБpHЩТЉаŒц\QdЄ *YWTїh@%ўš<…Вбъˆяќ5Ы§/zЪ­`dŠXЊїзњm†КЊЖр›„БЯ5‚фœЕfЋбu—=wХoе=œз–\ІИЏк эeЖйз6(&фш]]ЛРЎЖ–”КАкяМx/в{~ЅВF;}<ЇџшнOŽaЖ7БПОЈП-bЈЗЉєЄїы(ŽяЃЅ:иFOў&Ÿƒп–Эш‘>•‡сПЫбІ#Y\‰Иє—b=ъœ9Юњз>eŸExœэVПoгPўю9-Ф‰„‰јQE R;ATшФТЉCKдvЎšVЎ"qвИ otEтO€™ цL аў†n›ЛччЊЕЉ"*ЪYЯЯяоНwwОЛяННgПМ|]§Š н„…(.bђLгфЪŒЃ8ŽSv<ІE?ИM˜LиІ1§;Z‚ЯOutИпB˜ЋŠ/`т@Z№@}Pо&ppї0&Ќ5> Ђк.YЬЈ„OИ‡‡№ў9l(&“Х6ЁsHѕпfџлшВыxлŽ
4503 ы Д~Г2Ћ[ф7М2ў7јЯ{шcV?ЧЗbЪј_ШЁ_lНE‰|'qKы_А@0џЗгc<јя‰’cќэхКDБe›\ЮдўE~-Д6ЖќОПИѕоv3hљwЎ6‹2OнY>рЁФуtP›Уў7НуY$z%Ÿ ІЎdœЮю0у=З*Щ\‘џФнѓzV2НЈ –ЕRХТ!%ЇFSšsM‘‘.Љt]YН 5Њ№зЬфTVG|чЏю]^єŽ[ЩШ”Ба юЏ„]†К†ЖрЛD‰Я5‚œ•VлыЛ‹оcwЩo7;˜ж–\ЅЄЏл UэeльkrєЎŽЎ]`W[KJ]^ћзF'й‹єžп(СМбЮо/щ?Књй1ЬюЦ<ізчѕЗE ѕ6Už†ПŽтјў8ZЊЃ‡m4љфoё9ис{РЂ=вЇђ0ќw9њУtd3‹+WўRЌG3'YПГѓъЩOТf9ExœэVНnAўfЯ јl‰Ут'X'ŠT`9ЄJƒ`ЄH$DIjd'К#|gЧwDtHМ5д)xHAGo@‘qЧЬо^NЧayN{З;;Л3s3ѓэю8ћље›ђdш,Dq“Gxdš&PfХqœВу1(њЮmТФ0gОбˆmгПЃeќ„pQƒЯпMє†Њт ˜8”<Pя•Цw м=Š ѕЅ§ЈВGѓњ*сюу1М?FŠЩdБMшR§ЗйџкlЧ mG‰ѕ ZПY™е-ђF^џ—јЯ{шЂЊŸу[1eќЯ Ё_lНE‰|'qKы_А@0џЗгc<јя‰’cќ'къNХ–mr9SћљЕа\п КСFшж:[АјюlЅŠ"OнY9фЁРуtP™ХСмлЮё,Н’Я9SW2NgыЬихV&™ЫsтП€И{^ЯJІчЕСВVЊX8ЄdсThJsfщ‚JзUnR‰{г“gP6Zё{гІШŸs+™"сУе^›ЁЎЊ-јІњQbчK 9gЕйђКюЂЗэ.­†Kк’k”дтutO{ЙльkrєЎŽЎ]`O[KJ]YщuCЏ?й‹єž_)СaЃН^жєС'Ч0лыѓ8X›з}‹ъm*=л–њ•Іё§qДTC[h№Щпфsач{РЂ=бЇђ ќw9Ўƒtd3‹+WџRЌG3'YПГћњщ5dбBxœэVЭnг@ўfтDТDќT ‰ž
4504 єФ! H=Д ЖgдДrEБ“Цi•[7$^3'8їР@яНР€дТffНЎŠ%HQQЦZ{wvvgЦ3ѓэю}<ћщѕлъgdш,DqгGxdš&PfХqœВу (њЮmЪФА`Об˜mšаПЃ%ќ„pб€ЯпM rUёLJ ЈJуРћюХ„сз§aTл%‹yC•№ №о#‡ EЃdВи&tЉўЛьЖc OrлQa§‚жoVfu‹ќ†‘WЦџ‡ќч=єPзЯё­˜1ўrш[яP"ХIмвњ,Ь?Хэєў{Ђфџ‰іrн ЂиВM.gjџ"ПZы›A/инFЗп [яЮеъ(ѓдНхCJ<NЕ9м|з=žEЂWђЙ`ъJЦщь*3vИUIцŠœј/!юžзГ’щEmАЌ•*)й@85šбœыŠŒtIЅыЪj•nS…{ГгgP5Zё{ГІШ_p+™2šсу•A‡ЁЎЎ-јІ†Qbч+ gЅеіzюЂЗэ.эІ+к’k”дт Tг^іa›}mƒbBŽоебЕ ьjkIЉЫЫƒ^шЕс'{‘оѓ %87кйр%§Gэ;†йYŸЧСкМю[ФPoSхyџзQœмЧK t9›š|ђЗјєљАhF[њT…џ.G”Žlfq%тъ_ŠѕИsц$ыwvо<ћьeDxœэVЭnг@ўfтDТDќ”ˆƒХЁ'ˆхТ@zhAmЯˆДrEБ“Ц Ъ-‚ŠЏР™œ{р  ї^Ъ€дТffНЎŠ%HQQЦZЏwvvgЦ3ѓэю|:Нїц]ѕ32t ЂИˆщC<2M“(3Žт8Nйё„Ž}ч6ebX0}4f›&єяh ?!\4рsПAЎ*>‡ЉiСѕQiјРСНӘ0ќК;Œjлd1oЈ>с>žТћcфАЁh”Lл„Ю е‡§oЃУvЌтIn;*Ќ_0ањЭЪЌn‘_7ђЪјџ€џМ‡ъњ9К3ЦџB§bыmJфЃ8‰[Zџ‚‚љ'ИœрСO”у?бNЎ;A[ЖЩхLэŸчзBkm#шыЁлшn6УVрЛsЕ:Ъ<uwљ€‡гAmћ7оwf‘ш•|.˜К’q:{“[мЊ$sENќWwЯъYЩєЂ6XжJ ‡”l œЭhЮUEFКЄвueѕˆ\Њ№зьє)TVG|чЏYюїИНф…%#SЦB3|М2ш0деЕпд0Jь|­Є рЌДк^Я]єžЙKAЛщу‚Жф
4505 %ЕxЭ]з^іa›}mƒbBŽоебЕ lkkIЉKЫƒ^шЕс'{‘оѓ %87кйрE§Gю:†йY›ЧўъМўЖˆЁоІЪ‹ўЏЃ8Й?Ž—шbM>љ[|њ|X4ЃО>•GсПЫбЅ#›Y\‰Иќ—b=юœ9Юњ­ЗЯУфf@xœэVПoгPўю9-Ф‰„‰јQ"‹ЁD-XPЉ-ЈэŒH+G "vвИ tŠ€‰™ цќаv†n›ЛччЊX‚дхЌgПwяоЛ;пнїоо‡гŸ^НЉ~F†ЎУB1}ˆGІireЦQЧ);žаБЂямІL цйІ §;ZAРO јќнТ WŸУдДрzЏ4МKрріaLЈ_ј2ŒjЛd1oЈ>с.СћcфАЁh”Lл„Ю е“§я ЫvЌуan;*Ќ_0ањЭЪЌn‘oyeќПЧоCsњ9К3ЦџB§bы JфЃ8‰[Zџ‚‚љ'ИœрСO”у?б^Ў;A[ЖЩхLэŸчзR{c+ш­аmєЖ›a;№н…кЪ<ukѕ€‡гAmћзоіŽf‘ш•|.˜К’q:ћ€’V%™+rтП€И{VЯJІЕСВVЊX8ЄdсдhFsцщ’Jз•UъTсоьє)TVG|чоЌ)ђЗ’‘)cЉnЎ К uЎЖр›F‰/5‚œЕvЧыЛЫоw%ш4}8›bЩJjёЊ КЃНмmіЕ Š 9zWGз.АЋ­%Ѕ.­њЁзŸьEкЛЏ”р@оhgo€ѕНџб1ЬюЦ"ізuп"†z›*Яv~ХЩ§qМд@лhђЩпцsачм\6ЃЧњT…џ.G”Žlfq%тђ_ŠѕИsц8ыwžП~њрjdxExœэVПoгPўю9-Ф‰„‰јQ"‹ЁD)К Љ-ЈэŒ’VЎ"vвИДй"Јиј˜™`Dј  ; ь н6wЯЯUБi"*ЪYЯ~яоНwwОЛяННЇ?Н|]ўŒ ]ƒ…(ЮcђLгфЪŒЃ8ŽSv<ІcEпЙM˜цЬ7БMcњwД„€Ÿ.j№љЛоPU|в‚ъНв8№.ƒл‡1ЁўіK?Њь’ХМОJј„Лxя‘У†ЂA2Yl:ƒTџMіП…6лБЇCлQb§‚жoVfu‹ќК‘WЦџ{ќч=tQеЯ᭘2ўч†а/Жо D>Š“ИЅѕ/X ˜‚лЩ1ќїDЩ1ўэ u'ˆbЫ6ЙœЉ§ѓќZhЎmн`=tkЭFи |wЖRE‘Їn-№Pрq:ЈЬbюMчh‰^ЩчœЉ+ЇГufьp+“Ьх9ёŸCм=Ћg%гѓк`Y+U,RВp*4Ѕ93ŠŒtAЅыŠЊNзЉФНщЩS(­ŽјЮНiSфЯИŒL №СJЏЭPWе|S§(Бѓ…Fœ‚Гвly]wблr—‚VУЧmЩJjёЊ КЃНм†mіЕ Š 9zWGз.АЋ­%Ѕ.-їКЁз‚ŸьEzЯЏ”рРАбЮо/ъ?zџЃc˜эЕyьЏЮыОE ѕ6•žnCK§Jгјў8ZЊЁƒM4јфoђ9шѓ=`бŒыSyўЛзA:В™Х•ˆЫ)жЃЮ™уЌпйyѕфсџeSCxœэVПoгPўю9-Ф‰„‰јQE Р
4506 tbAR‡дvFIЋT;iPЖ*6$ўf&QўшЮ;C7„ЭнѓsU,Aj„ˆŠrжГпЛwяняю{oїУЩO/_W?#Cз`!Š‹˜=Р#г49€2у(Žу”OщHбwn3&†ѓ&lг”ў­ р'„‹:|ўna˜ЋŠЯ`f_Z№@НWо%ppћ &4о~EоYЬЉ„OИƒ‡h§1rиP4N&‹mBЇъПЩўwаe;жё Зж/h§feVЗШoyeќПЫО…>jњ9МsЦџB§bы JфЃ8‰[Zџ‚‚љЧИŸтСO”у?бnЎ;A[ЖЩхLэŸхзR{c+ш›Ё[я ša;№нЏ†2OнZнчЁФуtр-`яъ›ос,Н’ЯSW2NgЬицV%™+rт?‡И{ZЯJІЕСВVЊX8Єdсx4Ї9—щ’Jз•UƒЎS…{ѓГ'P5Zё{ѓІШŸq+™2–šс§Еa—ЁЎІ-јІFQbч  g­нiѕнхжcw%ш4}\а–\ЂЄЏи O{9€mіЕ Š 9zWGз.АЃ­%ЅЮЏћaЋ?й‹єž_)СМбЮоЯщ?zяЃc˜нEь­/ъОE ѕ6Už~Хщ§qВTGГЉЩ'›ЯAŸяЫfєHŸЪу№пхшг‘Э,ЎD\ќKБžtЮe§ЮіЋ'?v\e9ExœэV?oгPџнsZˆ ёЇŠ C'ˆXPЉC j;#вЪAФN—([_‰ ц|шЮ|†2!lюžŸЋb R#DT”ГžŸпН{яю|wПїvпŸќјтuѕ2t ЂИˆщ<2M“(3Žт8Nйё„Ž}ч6ebX0}4f›&єяh?!\4рsП‰AЎ*>ƒЉ}iСѕNix›РС­ƒ˜р~ў:Œj;d1oЈ>с6ТћcфАЁh”Lл„N!еƒ§oЃУvЌсAn;*Ќ_0ањЭЪЌn‘п0ђЪј‡џМ‡ъњ9М3ЦџB§bыuJфЃ8‰[Zџ‚‚љЧИŸрСO”у?бnЎ;A[ЖЩхLэŸхзbk}3шЁлшn5УVрЛsЕ:Ъ<useŸ‡гAm{Wпtg‘ш•|.˜К’q:ћ’лмЊ$sENќgwOыYЩєЂ6XжJ ‡”l œЭhЮeEFКЄвueu†TсЏйщЈ­ŽјЮ_ГмЯѓЂЇмJFІŒХfxuаaЈЋk ОЉa”иљ\#HAСYmЕНžЛфѕнх нєq^[r‰’ZМbƒцЕ—}иf_렘Ѓwutэ;кZRъТЪ zmјЩ^ЄїќB фvіxNџбЛУьЌ/`omA[ФPoSхIџзQœмЧK tБ…&Ÿќ->}О,™б#}*Т—Ѓ?JG6ГИqё/Хzм9s”ѕ;лЏџћfExœэV?oгPџнsZˆ ёЇŠ C'ˆXPЉC j;#вЪAФN—([_‰ ц|шЮ|†2!lюžŸЋb R#DT”ГžŸпН{яю|wПїvпŸќјтuѕ2t ЂИˆщ<2M“(3Žт8Nйё„Ž}ч6ebX0}4f›&єяh?!\4рsП‰AЎ*>ƒЉ}iСѕNix›РС­ƒ˜р~ў:Œj;d1oЈ>с6ТћcфАЁh”Lл„N!еƒ§oЃУvЌсAn;*Ќ_0ањЭЪЌn‘п0ђЪј‡џМ‡ъњ9М3ЦџB§bыuJфЃ8‰[Zџ‚‚љЧИŸрСO”у?бnЎ;A[ЖЩхLэŸхзbk}3шЁлшn5УVрЛsЕ:Ъ<useŸ‡гAm{Wпtg‘ш•|.˜К’q:ћ’лмЊ$sENќgwOыYЩєЂ6XжJ ‡”l œЭhЮeEFКЄвueu†TсЏйщЈ­ŽјЮ_ГмЯѓЂЇмJFІŒХfxuаaЈЋk ОЉa”иљ\#HAСYmЕНžЛфѕнх нєq^[r‰’ZМbƒцЕ—}иf_렘Ѓwutэ;кZRъТЪ zmјЩ^ЄїќB фvіxNџбЛУьЌ/`omA[ФPoSхIџзQœмЧK tБ…&Ÿќ->}О,™б#}*Т—Ѓ?JG6ГИqё/Хzм9s”ѕ;лЏџћfDxœэVНnAўfэ|ЖФaё,ŠE*А ICB€‘R$ $5Т‰.Т(ОГу‹#w‰шxj*ЈS№ž&МE:”;fііЂp8‡VчДЗЗГГ;373пюочѓћoпWО"Ew‘C0yŒGІiВeЦaE ;гЉЂCn&†yг‡#ЖiLџŽсѓРAїшgЊтK˜8’<PŸ”Ц1<:Ž їЖau—rЬЈ˜OxŒuИŒ “Ic›а$њАџ-ДйŽМШlG™ѕ ц~Г2­[фзŒМ2ў?с?яЂ‹š~NnХ”ё?ŸAПиzŸbљ0Šу–дП``ўngЧx№пХЧјOД—щNF9ЫфrЊі/ѓkОЙКсw§ЕРЉw6Aгїœ™j %žzИtФC‘ЧЩ :ƒƒл:'ГHєJ>чM]Щ8™НУŒn’Й'ўkˆЛѕЌdzA,kЅŠ…CJ6N•І4чІ"#]TЩК’zF•љkzђ*FЋ-Оѓз4їћм^ёТЂ‘)aО<_юЗъjк‚яjЦvОб’WА—›-Зы,И[ЮЂпjxИЂ-ЙAq-оВ@ГкЫ,ГЏePLШжЛкКv]m-)umЉп мМx/в{~ЃВF;}МЊџшг/ЖaЖWчpА2ЇПsФPoQyЛїы(ŽяЃЅ::иDƒOў&ŸƒпЬЈЇOхaјяpє‡щHgW"ЎџЅX:gNГ~{чнЫ†гe‹@xœэVЭnг@ўfтDТDќT‹COЕєФU@*б‚кžiхЈAФNЗUz*?W$^sOpю'€оЙРpш a3Г^WХЄFˆЈ(c­Н;;Л3у™љv>žџќцmэ 2t ЂИ„т1™ІЩ”GqЇьxLЇŠОs›01,˜o4b›Цєяh ?!\4рѓwƒ\U| Gв‚ъƒв8№>ƒ{Ч1{ХgQ}Ÿ,цэЊ„Ox€Ї№ў9l(&“Х6Ё Hѕпaџ;шВЋx’лŽ*ы Д~Г2Ћ[ф[F^џђŸїаЧД~NnХЄёПCПиz›љ(Nт–жП``ўngЧx№п%ЧјOtыNХ–mr9Sћ—љЕа^лњA+tНЭfи|wЖ>
4507 Oн]>тЁЬуtPŸХсЭwН“Y$z%Ÿ ІЎdœЮ>ІЄеHцJœјЏ ю^дГ’щ%mАЌ•*)й@8ušдœEFКЌвu5GsTхоTёjFЋ#ОsoЪy‹[йШTАа зW]†:W[№MэF‰Џ5‚œ•vЧыЛ‹оЖЛtš>œuБф:%ЕxУнз^юР6ћкХ„НЋЃkизж’RW—§аыРOі"энWJp oДГ7Р+њ>њфfwm‡ЋѓКoCНMе;ПŽтјў8Zj ‡M4љфoѓ9шsn.šб–>•‡сПЫбІ#›Y\‰Иі—b=ъœ9Эњ—{ЯЄXcьrdp3А\=д?YBкD _GЌIљKCNPнR*UwWСY \U^Ђ`эb:e‡gгiѕМ lўџеЭеœ.“—+,љЎ0№ˆЈДМФЬ д
4508 мф ьєќ  iфOn-screen Showmit_wГ  Times New RomanDefault DesignMicrosoft Equation 3.0No Slide Title  Fonts UsedDesign TemplateEmbedded OLE Servers Slide TitlesLЌ Ишшp ‰ џџџ.1  Рр&џџџџРџЛџ { & MathType€ћu§уPSymbol|-2
4509 њф(ћu§уPSymbol|-№2
4510 њPIC
4511 џџџџZ LMETA џџџџџџџџџџџџ\ (CompObjџџџџq fObjInfoџџџџ џџџџs )ћu§уPSymbol|-№2
4512 њЁ(ћu§уPSymbol|-№2
4513 њТ )ћu§уPSymbol|-№2
4514 њB(ћu§уPSymbol|-№2
4515 њО)ћ€ўPSymbol-№ 2
4516 Р#dМ 2
4517 РщdМ 2
4518 Рš dМћџPSymbol-№ 2
4519 xJЁ 2
4520 5
4521 JЁ 2
4522 жJЁћџTimes New RomanЎ-№ 2
4523 7xp 2
4524 sxp 2
4525 ќyp 2
4526 /
4527 yp 2
4528 Їzc 2
4529 Ъzcћ€ўTimes New Roman-№ 2
4530 Р†Aъ 2
4531 РIuР 2
4532 РC Aъ 2
4533 Р vЈ 2
4534 РфAъ 2
4535 РВwћ€ўPSymbol-№ 2
4536 Ри+г 2
4537 Р‰ +г 2
4538 Рœ=гћ€ўTimes New RomanЎ-№ 2
4539 Рй0Р
4540 &
4541 џџџџћМ"Systemn-№+г 2
4542 Рўџ
4543 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВquгРзBќїAlїA
4544 „d ƒx
4545 ƒA ƒx„J
4546 ƒu–(–)†+„d ƒy
4547 ƒA ƒy„J
4548 ƒv–(–)†+„d ƒz
4549 ƒA ƒz„J
4550 ƒw–(–)†=ˆ0Equation Native џџџџџџџџџџџџt м_943712126џџџџџџџџ#ЮРFР.‰ЗЅ Н ї™ЗЅ НOle
4551 џџџџџџџџџџџџx PIC
4552 "%џџџџy LLћT Ишшћюx   џџџ.1  Р &џџџџРџЛџр{ & MathType€ћu§уPSymbol|-2
4553 њф(ћu§уPSymbol|-№2
4554 њ)ћ€ўPSymbol-№ 2
4555 Р#META џџџџџџџџџџџџ{ (CompObj$&џџџџŒ fObjInfoџџџџ'џџџџŽ Equation Native џџџџџџџџџџџџ и ‚ ƒ „ … † ‡ ˆ ‰ Š ‹ ўџџџ ўџџџўџџџ ‘ ’ ўџџџўџџџ• ўџџџ— ˜ ™ š › œ  ž Ÿ   Ё Ђ Ѓ Є Ѕ І Ї Ј Љ Њ Ћ Ќ ­ Ў Џ А Б В Г ўџџџЕ ўџџџўџџџИ Й К Л ўџџџўџџџО ўџџџР С Т У Ф Х Ц Ч Ш Щ Ъ Ы ўџџџЭ ўџџџўџџџа ўџџџўџџџг ўџџџе ж з и й ўџџџл ўџџџўџџџўџџџўџџџр ўџџџт у ф х ц ч ш щ ўџџџы ўџџџўџџџю ўџџџўџџџё ўџџџѓ є ѕ і ї ј ўџџџњ ўџџџўџџџўџџџўџџџџ ўџџџdМћџPSymbol-№ 2
4556 xJЁ 2
4557 ЗJЁ 2
4558 ШJЁћџTimes New Roman5-№ 2
4559 7xp 2
4560 sxp 2
4561 Вxp 2
4562
4563 Eœ 2
4564 Уxp 2
4565 іWЯћ€ўTimes New Roman<-№ 2
4566 Р†Aъ 2
4567 РIuР 2
4568 РХAъ 2
4569 Рˆ uР 2
4570 Рж Aъ 2
4571 Р™uРћ€ўPSymbol-№ 2
4572 РюКг 2
4573 Р -гћ€ўTimes New Roman5-№ 2
4574 Р"(~ 2
4575 РP
4576 )~ 2
4577 Р3 (~ 2
4578 Рa)~
4579 &
4580 џџџџћМ"Systemn-№-№ўџ
4581 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩгМЌcIАgI
4582 „Д ƒx
4583 ƒA ƒx„б
4584 ƒu–(–)†a"ƒA ƒx„б
4585 ƒu–[–] ƒE
4586 †"ƒA ƒx„б
4587 ƒu–[–] ƒWL|!"ќXшш|!"ns ” џџџ.1  Р`&џџџџРџКџ z &_862737565Ф­*РF ї™ЗЅ Н aВЗЅ НOle
4588 џџџџџџџџџџџџ“ PIC
4589 ),џџџџ” LMETA џџџџџџџџџџџџ– H MathTypeР њ"-нyнЁћu§уPSymbol{-2
4590 zј (ћu§уPSymbol{-№2
4591 z)ћu§уPSymbol{-№2
4592 z
4593 (ћu§уPSymbol{-№2
4594 zш)ћu§уPSymbol{-№2
4595 zh(ћu§уPSymbol{-№2
4596 z6)ћ §оPSymbol|-№2
4597 ЁШ[ћ §оPSymbol|-№2
4598 ЁВ]ћ€ўPSymbol-№ 2
4599 @3б 2
4600 @Ы=г 2
4601 @Џ+гћ€ўTimes New Romanp-№ 2
4602 @<.`ћ€ўМTimes New Roman-№ 2
4603 @Уf‚ћ€ўTimes New Romanp-№ 2
4604 @ ``` 2
4605 K-1Р 2
4606 @„
4607 A 2
4608 @ˆ ` 2
4609 @=+зћџTimes New Roman-№ 2
4610  D x‚ 2
4611  П x‚ 2
4612  Wyxћ€ўTimes New Romanp-№ 2
4613 u‰Vъ 2
4614 @Ц fk 2
4615 @ЌAъ 2
4616 @Зfk 2
4617 @
4618 Aъ 2
4619 @fkћџTimes New Roman-№ 2
4620  J xp 2
4621  ˜yp 2
4622  :yp 2
4623  Эzc 2
4624  №zc 2
4625  ’zcћџPSymbol-№ 2
4626 Щ JЁ 2
4627 ”­ JЁ 2
4628 ”žJЁ 2
4629 ”ќJЁћ€ўPSymbol-№ 2
4630 @;dМ 2
4631 @MdМ 2
4632 @РdМ
4633 &
4634 џџџџћМ"Systemn-№PSymbolўџ
4635 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9Вquг зBФїA їA
4636 †б‚.‡f†=   1CompObj+-џџџџД fObjInfoџџџџ.џџџџЖ Equation Native џџџџџџџџџџџџЗ <_862737564џџџџџџџџ1РF aВЗЅ Н€*УЗЅ НƒV „J
4637 „d x
4638 A x„J
4639 ƒf ƒx
4640 –(–) +„d y
4641 ƒA ƒy„J
4642 ƒf ƒy
4643 –(–)†+„d ƒz
4644 ƒA ƒz„J
4645 ƒf ƒz
4646 –(–)–[–]№LШ ŒИшшШ vB z џџџ.Ole
4647 џџџџџџџџџџџџМ PIC
4648 03џџџџН LMETA џџџџџџџџџџџџП (CompObj24џџџџЬ Z1  Рр&џџџџРџГџ s & MathType€ћ‡§нPSymbol„-2
4649 іs(ћ‡§нPSymbol„-№2
4650 і)ћ€ўМTms Rmn[-№ 2
4651 Р9f~ћ€ўPSymbol-№ 2
4652 РA=гћ€ўTms Rmn[-№ 2
4653 Р<fk 2
4654 Р&fk 2
4655 Р
4656 fkћ џTms Rmnш]-№ 2
4657 Пxb 2
4658 Љyb 2
4659 ‡zWћ€ўTms Rmn[-№ 2
4660 РY,` 2
4661 Р=,`
4662 &
4663 џџџџћМ"System-№PSymbol„-№2
4664 ўџ
4665 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ТЫ`Ч0П?˜П?
4666 ‡f†=ƒf ƒx
4667 ‚§џџџ 
4668    ) !"$#&%('*+E,-./012436587:9?;<=>@BACDFG^HIJKLMNOPQRSTUVWX[YZ\]_dz`abcegfhijmklnoprqtsxuvwy~{’|}‚ObjInfoџџџџ5џџџџЮ Equation Native џџџџџџџџџџџџЯ |_919627117џџџџџџџџ8ЮРF€*УЗЅ Н@RЬЗЅ НOle
4669 џџџџџџџџџџџџб ,ƒf ƒy
4670 ‚,ƒf ƒz
4671 –(–)L{4h@шш{4s Ћ џџџ.1  @&џџџџРџМџМ & MathType0ћ€ўTimes New Romanp- 2
4672  0VъћџPSymbol-№PIC
4673 7:џџџџв LMETA џџџџџџџџџџџџд hCompObj9;џџџџк fObjInfoџџџџ<џџџџм  2
4674 єGJЁ
4675 &
4676 џџџџћМ"Systemn-№"Systemnўџ
4677 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9Вq^лpcIgI
4678 ƒV „бL<фјЄшшEquation Native џџџџџџџџџџџџн 8_862044153џџџџџџџџ?РF@RЬЗЅ Н`]ьЗЅ НOle
4679 џџџџџџџџџџџџо PIC
4680 >Aџџџџп L<ф& ћ џџџ.1   Р&џџџџРџГџ€S & MathType` њ"-›с›Мћ€ўTimes New Romanp-
4681 2
4682 р0uAРъ 2
4683 реTзћџTimes New Roman-№ 2
4684 @нxp 2
4685 ћѓxpћџPSymbol-№ 2
4686 4тJЁ
4687 &
4688 џџMETA џџџџџџџџџџџџс CompObj@Bџџџџъ fObjInfoџџџџCџџџџь Equation Native џџџџџџџџџџџџэ \џџћМ"Systemn-№џџџџўџ
4689 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9Вquг@зBŒїA`їA
4690 ƒuƒA ƒx„J
4691 ƒT ƒx1_869567943џџџџџџџџFРF`]ьЗЅ Н …ѕЗЅ НOle
4692 џџџџџџџџџџџџя PIC
4693 EHџџџџ№ LMETA џџџџџџџџџџџџђ ЈLWWTTшшWW.} Ч џџџ.1    &џџџџРџГџрг & MathType њ"-›@›ћ€ўTimes New Romanp- 2
4694 р4TзћџTimes New Roman5-№ 2
4695 ћRxp
4696 &
4697 џџџџћМ"Systemn-№ўџ
4698 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9Вquг зB8їA|їA
4699 ƒT ƒxL
4700 EДlшшCompObjGIџџџџљ fObjInfoџџџџJџџџџћ Equation Native џџџџџџџџџџџџќ <_862044151Š=MРF …ѕЗЅ НрИЅ НOle
4701 џџџџџџџџџџџџ§ PIC
4702 LOџџџџў LMETA џџџџџџџџџџџџ ЈCompObjNPџџџџ f       
4703 ўџџџ ўџџџўџџџ ўџџџўџџџ ўџџџ          ўџџџ ўџџџўџџџ" ўџџџўџџџ% ўџџџ' ( ) * + , - ўџџџ/ ўџџџўџџџўџџџўџџџ4 ўџџџ6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T ўџџџV ўџџџўџџџY Z [ \ ] ўџџџўџџџ` ўџџџb c d e f ўџџџh ўџџџўџџџўџџџўџџџm ўџџџo p q r s t u v w x y z { ўџџџ} ўџџџўџџџ€ 
4704 EЎ| E џџџ.1  р &џџџџРџЉџр‰ & MathTypeР њ"-@§Џ§Хћ€ўTimes New Romanp- 2
4705 `4Tз 2
4706 \УTз 2
4707 \зTзћџTimes New Roman-№ 2
4708 {Rxp 2
4709 МEœ 2
4710 М•WЯћ€ўPSymbol-№ 2
4711 `i=г 2
4712 \Е+гћ€ўTimes New Romanp-№ 2
4713 ‰к2Р
4714 &
4715 џџџџћМ"Systemn-№№ 2
4716 ‰к2Рўџ
4717 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9Вquг`зBxїAїA
4718 ƒT ƒx
4719 †=ƒT ƒE
4720 †+ƒT ƒW
4721 ˆ2 &џџObjInfoџџџџQџџџџ Equation Native џџџџџџџџџџџџ |_862044148џџџџџџџџTРFИИЅ НИИЅ НOle
4722 џџџџџџџџџџџџ L<WјTшш<W: + џџџ.1   Р&џџџџРџЄџ€Ф & MathTypePћ>ўРPSymbol-2
4723 ŠЖ(ћ>ўРPSymbol-№2
4724 Šњ)ћ€ўPSymbol-№ 2
4725 €3PIC
4726 SVџџџџ LMETA џџџџџџџџџџџџ ˆCompObjUWџџџџ ZObjInfoџџџџXџџџџ бћ€ўTms Rmn-№ 2
4727 €<.`ћ€ўМTms Rmn-№ 2
4728 €@vРћ€ўTms Rmn-№ 2
4729 €Tз
4730 &
4731 џџџџћМ"System-№ ЕЕ
4732 №nяF*Ž `цЊю ўџ
4733 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.24Щ@п>8'8Ш(8
4734 †б‚.‡vƒT–(–)џџџ.1Lф4Є@шшф4Ў2 Ъ џџџ.1   &џџџџРџЅџ`Ѕ &Equation Native џџџџџџџџџџџџ! \_869568084Du[РFИИЅ НРI@ИЅ НOle
4735 џџџџџџџџџџџџ# PIC
4736 Z]џџџџ$ LMETA џџџџџџџџџџџџ& ШCompObj\^џџџџ. ZObjInfoџџџџ_џџџџ0 Equation Native џџџџџџџџџџџџ1 < MathTypePћ€ўTms Rmn­%- 2
4737 `5Gћ џTms Rmn-№ 2
4738 РIT}ћ€ўTms Rmn­%-№ 2
4739 `џ `
4740 &
4741 џџџџћМ"System-№p`pw:"w:дw:Юw:ўџ
4742 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.24Щ п>)8Ј*8
4743 ƒG ƒT
4744  О0џШLх%"|Xшшх%"Ю‡ ф џџџ.1  Р`"&џџџџРџКџ "z & MathTypeРћ>ўРPSymbol|-2
4745 JЖ_862641134‘ІbРFРI@ИЅ Н QИЅ НOle
4746 џџџџџџџџџџџџ2 PIC
4747 adџџџџ3 LMETA џџџџџџџџџџџџ5 ш(ћ>ўРPSymbol|-№2
4748 Jњ) њ"-ннFћ
4749 ћхћѕќГPSymbol{-№2
4750 ™в
4751 (ћѕќГPSymbol{-№2
4752 ™в)ћŽћiћѕќГPSymbol{-№2
4753 ™b(ћѕќГPSymbol{-№2
4754 ™M)ћTћ/ ћѕќГPSymbol{-№2
4755 ™Э(ћѕќГPSymbol{-№2
4756 ™!)ћЃќлPSymbol|-№2
4757 Аx{ћЃќлPSymbol|-№2
4758 Аm!}ћ€ўPSymbol-№ 2
4759 @3б 2
4760 @и=г 2
4761 @™+г 2
4762 @+гћ€ўTimes New Roman<-№ 2
4763 @<.`ћ€ўМTimes New Roman-№ 2
4764 @@vРћ€ўTimes New Roman<-№ 2
4765 @Tз 2
4766 u.Vъ 2
4767 @t Aъ 2
4768 @7 uР 2
4769 @ў Tз 2
4770 @Aъ 2
4771 @ЮvЈ 2
4772 @‚Tз 2
4773 @oAъ 2
4774 @=w 2
4775 @HTзћџTimes New Roman-№ 2
4776  %
4777 xp 2
4778  a xp 2
4779 [xp 2
4780  Нyp 2
4781  №yp 2
4782 [Ÿyp 2
4783  2zc 2
4784  Uzc 2
4785 [_ zcћ€ўTimes New Roman<-№ 2
4786 Kв1РћџPSymbol-№ 2
4787 ЩEJЁ 2
4788 ”f JЁ 2
4789 ”іJЁ 2
4790 ”aJЁћ€ўPSymbol-№ 2
4791 @ dМ 2
4792 @ЊdМ 2
4793 @%dМ
4794 &
4795 џџџџћМ"Systemn-№№ 2
4796 Kв1Рўџ
4797 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqCompObjceџџџџU fObjInfoџџџџfџџџџW Equation Native џџџџџџџџџџџџX \_863378057˜ѓiРF QИЅ Н`:ZИЅ Нuг@зBЌїAќїA
4798 †б‚.‡vƒT–(–)†=ˆ1ƒV „J
4799 „d ƒx
4800 ƒA ƒx„J
4801 ƒuƒT ƒx
4802 –(–)†+„d ƒy
4803 ƒA ƒy„J
4804 ƒvƒT ƒy
4805 –(–)†+„d ƒz
4806 ƒA ƒz„J
4807 ƒwƒT ƒz
4808 –(–)–{–}ћхLЪСшшOle
4809 џџџџџџџџџџџџ^ PIC
4810 hkџџџџ_ LMETA џџџџџџџџџџџџa hCompObjjlџџџџg ZЪС; œ џџџ.1  € &џџџџРџІџ`& & MathTypePњ-›@›Тћ џTms Rmn(- 2
4811 ђјxb
4812 &
4813 џџџџћМ"System-№1p 2
4814 Ч 1p 2
4815  2ўџ
4816 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ХЫ ‡6x—5”$—5
4817  ƒxЯLы hфшшы hN3 Ÿ џџџ.1    &џџџџРџЙџ` Й &ObjInfoџџџџmџџџџi Equation Native џџџџџџџџџџџџj <_9196271616|pЮРF`:ZИЅ Н Ь{ИЅ НOle
4818 џџџџџџџџџџџџk PIC
4819 orџџџџl LMETA џџџџџџџџџџџџn hCompObjqsџџџџ| fObjInfoџџџџtџџџџ~  MathTypeРњ-ў н ћ€ўTms Rmn- 2
4820 €4Tз 2
4821 €лTз 2
4822 ‹
4823 Tзћ€ўPSymbol-№ 2
4824 € б 2
4825 €Ж=г 2
4826 €ябћ€ўTms Rmn-№ 2
4827 €.` 2
4828 €(~ 2
4829 €е)~ 2
4830 €ј.` 2
4831 €t(~ 2
4832 €№ )~ћ€ўМTms RmnЛw-№ 2
4833 €vР 2
4834 €џvРћ џTms Rmn-№ 2
4835 п# 2pћ€ўTms RmnЛw-№ 2
4836 Љ
4837 2Р
4838 &
4839 џџџџћМ"System-№ўџ
4840 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9Вq^л\xIPxI
4841 ƒT†"‚.‚(‡vƒT‚)Equation Native џџџџџџџџџџџџ x_869568245џџџџџџџџwРF Ь{ИЅ Н Ь{ИЅ НOle
4842 џџџџџџџџџџџџ PIC
4843 vyџџџџ‚ Lўџџџўџџџƒ ўџџџ… † ‡ ˆ ‰ Š ўџџџŒ ўџџџўџџџўџџџўџџџ‘ ўџџџ“ ” • – — ўџџџ™ ўџџџўџџџўџџџўџџџž ўџџџ  Ё Ђ Ѓ Є Ѕ І Ї ўџџџЉ ўџџџўџџџЌ ўџџџўџџџЏ ўџџџБ В Г Д Е Ж ўџџџИ ўџџџўџџџўџџџўџџџН ўџџџП Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я а б в г д е ж з и й к л м ўџџџо ўџџџўџџџс т у ф х ц ўџџџўџџџщ ўџџџы ь э ю я № ё ђ ѓ ўџџџѕ ўџџџўџџџј ўџџџўџџџћ ўџџџ§ ў џ †=†"‚.‚(‡vƒT ˆ2
4844 ˆ2‚)L4W@Tшш4Wf9 О џџџ.1   &џџџџРџІџРЦ & MathType њ-›@›ћ€ўTms Rmn- 2
4845 р4Tзћ џMETA џџџџџџџџџџџџ„ ЈCompObjxzџџџџ‹ ZObjInfoџџџџ{џџџџ Equation Native џџџџџџџџџџџџŽ <Tms Rmn-№ 2
4846 ђQxb
4847 &
4848 џџџџћМ"System-№ўџ
4849 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.24Щ п>`'8 +8
4850 ƒT ƒx_919627191џџџџџџџџ~ЮРF Ь{ИЅ Нр]ИЅ НOle
4851 џџџџџџџџџџџџ PIC
4852 }€џџџџ LMETA џџџџџџџџџџџџ’ hL{4h@шш{4V‡ Ћ џџџ.1  @&џџџџРџМџМ & MathType0ћ€ўTimes New Romanp- 2
4853  0VъћџPSymbol-№ 2
4854 єGJЁ
4855 &
4856 џџџџћМ"Systemn-№"SystemnCompObjџџџџ˜ fObjInfoџџџџ‚џџџџš Equation Native џџџџџџџџџџџџ› 8_862738378џџџџџџџџ…РFџЄИЅ НџЄИЅ Нўџ
4857 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9Вq^лI cI
4858 ƒV „бLЗW`TшшЗW~†  џџџ.Ole
4859 џџџџџџџџџџџџœ PIC
4860 „‡џџџџ LMETA џџџџџџџџџџџџŸ (CompObj†ˆџџџџЈ f1   &џџџџРџКџРк & MathType@ћ€ўTimes New Roman- 2
4861  0Vъ 2
4862  †Vъ 2
4863  дVъћџTimes New Romanp-№ 2
4864 єSu€ 2
4865 є­vp 2
4866 єўwЋћ€ўTimes New Roman-№ 2
4867  ,` 2
4868  O,`
4869 &
4870 џџџџћМ"Systemn-№џџџџћМўџ
4871 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9Вquг@зBtїAPїA
4872 ƒV ƒu
4873 ‚,ƒV ƒv
4874 ‚,ƒV ƒwL{WhTшшObjInfoџџџџ‰џџџџЊ Equation Native џџџџџџџџџџџџЋ \_862044144чRŒРFџЄИЅ НРЦИЅ НOle
4875 џџџџџџџџџџџџ­ PIC
4876 ‹ŽџџџџЎ LMETA џџџџџџџџџџџџА ˆCompObjџџџџЗ ZObjInfoџџџџџџџџЙ {WF) Ј џџџ.1   @&џџџџРџЈџШ & MathType`ћ€ўМTms Rmn- 2
4877 `1G+ћ џМTms Rmn-№ 2
4878 Р|vp
4879 &
4880 џџџџћМ"System-№џ€џ€џ€€Zўџ
4881 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2•Ы Ÿ2”"з5ќ*з5
4882 ‡G ‡vLф)ЏРЈшшф)Џў‚ а џџџ.1  @&&џџџџРџЊџР%ъ &Equation Native џџџџџџџџџџџџК <_862641048џџџџџџџџ“РFРЦИЅ НРЦИЅ НOle
4883 џџџџџџџџџџџџЛ PIC
4884 ’•џџџџМ LMETA џџџџџџџџџџџџО ЈCompObj”–џџџџн fObjInfoџџџџ—џџџџп Equation Native џџџџџџџџџџџџр œ MathTypeр њ"-pkфт фk;c;фˆф;§;Ђф фс!;й";~#ћ€ўPSymbol
4885 - 2
4886 €3б 2
4887 €*=г 2
4888 й ц‘ 2
4889 T ш‘ 2
4890 y ч‘ 2
4891 йьі‘ 2
4892 Tьј‘ 2
4893 yьї‘ 2
4894 €ѕ+г 2
4895 йУц‘ 2
4896 TУш‘ 2
4897 yУч‘ 2
4898 й}і‘ 2
4899 T}ј‘ 2
4900 y}ї‘ 2
4901 €†+г 2
4902 йDц‘ 2
4903 TDш‘ 2
4904 yDч‘ 2
4905 йI$і‘ 2
4906 TI$ј‘ 2
4907 yI$ї‘ 2
4908 ЙЎьМ 2
4909 СЎэМ 2
4910 ЪЎюМ 2
4911 Й %ќМ 2
4912 С %§М 2
4913 Ъ %ўМћ€ўTimes New Roman P-№ 2
4914 €<.` 2
4915 €И(~ 2
4916 €Ы)~ћ€ўМTimes New Roman„-№ 2
4917 €CvРћ€ўTimes New Roman P-№ 2
4918 €uР 2
4919 Г€Vъ 2
4920 €ѓ Aъ 2
4921 €Ж uР 2
4922 €SuР 2
4923 €™Aъ 2
4924 €cvЈ 2
4925 €эuР 2
4926 €Aъ 2
4927 €ш w 2
4928 €Щ"uРћџTimes New Roman„-№ 2
4929 Ѓu€ 2
4930 рk
4931 xp 2
4932 рр xp 2
4933 DЂxp 2
4934 ›?xp 2
4935 рyp 2
4936 р…yp 2
4937 D<xp 2
4938 ›иyp 2
4939 рЄzc 2
4940 р zc 2
4941 D"xp 2
4942 ›Ў#zcћ€ўTimes New Roman P-№ 2
4943 €V ` 2
4944 ‹ 1Рћ€ўPSymbol-№ 2
4945 €W dМ 2
4946 €dМ 2
4947 €—dМћџPSymbol-№ 2
4948 дх JЁ 2
4949 д‹JЁ 2
4950 д JЁ
4951 &
4952 џџџџћМ"Systemn-№ўџ
4953 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9Вquг€зBДїAаїA
4954 †б‚.‚(‡vƒu‚) †=ˆ1ƒV ƒu
4955 „d ƒx
4956 ƒA ƒx„J
4957 ƒu ƒx
4958 ƒu ƒx
4959 –(–)†+„d ƒy
4960 ƒA ƒy„J
4961 ƒv ƒx
4962 ƒu ƒy
4963 –(–)†+„d ƒz
4964 ƒA ƒz„J
4965 ƒw ƒx
4966 ƒu ƒz
4967 –(–)–{–}*=г 2
4968 й_862738748ƒТšРF€ИЯИЅ Н@JёИЅ НOle
4969 џџџџџџџџџџџџч PIC
4970 ™œџџџџш LMETA џџџџџџџџџџџџъ HLMф$ЄшшMф‚  џџџ.1    &џџџџРџЊџ`J & MathType0 њ"-ЄЕЄћ€ўTimes New Roman P- 2
4971 @0Vъ 2
4972 @ЅVъћџTimes New Roman„-№ 2
4973 ”Su€ 2
4974 дxpћ€ўPSymbol-№ 2
4975 @o=гћџPSymbol-№ 2
4976 ”МJЁ
4977 &
4978 џџџџћМ"Systemn-№џџџџўџ
4979 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9Вquг@зB`їAЄїA
4980 ƒV ƒu
4981 †=ƒVCompObj›џџџџє fObjInfoџџџџžџџџџі Equation Native џџџџџџџџџџџџї \_862647698џџџџџџџџЁРF@JёИЅ Н ЙЅ Н „J
4982  ƒxLі4а@шші4ІG § џџџ.1  €&џџџџРџГџ@Г & MathTypePћ€ўPSymbol- 2
4983 `3бћ€ўTms Rmn-№ 2
4984 Ole
4985 џџџџџџџџџџџџљ PIC
4986  Ѓџџџџњ LMETA џџџџџџџџџџџџќ (CompObjЂЄџџџџ Z    ўџџџ ўџџџўџџџўџџџўџџџ ўџџџ        ўџџџ ўџџџўџџџўџџџўџџџ ўџџџ   ! ўџџџ# ўџџџўџџџўџџџўџџџ( ўџџџ* + , - . ўџџџ0 ўџџџўџџџўџџџўџџџ5 ўџџџ7 8 9 : ; ўџџџ= ўџџџўџџџўџџџўџџџB ўџџџD E F G H I J K L M N O P Q R S T U V W X Y ўџџџ[ ўџџџўџџџ^ _ ` a ўџџџўџџџd ўџџџf g h i j k l m n o p q r s t u v w x y z { | } ~  € `<.` 2
4987 `И(~ 2
4988 `И)~ћ€ўМTms Rmn-№ 2
4989 `CvРћ€ўTms Rmn-№ 2
4990 `vЈ
4991 &
4992 џџџџћМ"System-№ @4 ўџ
4993 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ObjInfoџџџџЅџџџџ Equation Native џџџџџџџџџџџџ <_862647725Ÿ/ЈРF ЙЅ Н ЙЅ НOle
4994 џџџџџџџџџџџџ бЫ ї1ˆ(?*?
4995 †б‚.‚(‡vƒv‚)L<4ј@шш<4Ж: § џџџ.1  Р&џџџџРџГџ€Г & MathTypePћ€ўPSymbol- 2
4996 `3бћ€ўTms Rmn-№ 2
4997 PIC
4998 ЇЊџџџџ
4999 LMETA џџџџџџџџџџџџ (CompObjЉЋџџџџ ZObjInfoџџџџЌџџџџ `<.` 2
5000 `И(~ 2
5001 `)~ћ€ўМTms Rmn-№ 2
5002 `CvРћ€ўTms Rmn-№ 2
5003 `w
5004 &
5005 џџџџћМ"System-№€€џр€€€џр€€€џр€€€џр€€€џрўџ
5006 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Equation Native џџџџџџџџџџџџ <_897303768ЏњЏРF@Д ЙЅ Н@Д ЙЅ НOle
5007 џџџџџџџџџџџџ PIC
5008 ЎБџџџџ LбЫ ї1 (?0*?
5009 †б‚.‚(‡vƒw‚)LэСшшэСf Ё џџџ.1  €Р&џџџџРџБџ€1 & MathTypeP њ"-@ТћџTimes New Roman<- 2
5010 §ѕxpMETA џџџџџџџџџџџџ hCompObjАВџџџџ" fObjInfoџџџџГџџџџ$ Equation Native џџџџџџџџџџџџ% <
5011 &
5012 џџџџћМ"Systemn-№"Systemn-№ўџ
5013 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9Вquг зBїALїA
5014  ƒxLэСшш_897303894Л
5015 ЖРF@Д ЙЅ НРзLЙЅ НOle
5016 џџџџџџџџџџџџ& PIC
5017 ЕИџџџџ' LMETA џџџџџџџџџџџџ) hэСО‡ Ё џџџ.1  €Р&џџџџРџГџ€3 & MathTypeP њ"-›@›ТћџTimes New Romanp- 2
5018 ћјyp
5019 &
5020 џџџџћМ"Systemn-№"Systemn-№ўџ
5021 џџџџРFMicrosoft Equation 2.0 DS EqCompObjЗЙџџџџ/ fObjInfoџџџџКџџџџ1 Equation Native џџџџџџџџџџџџ2 <_897303845џџџџџџџџНРFРзLЙЅ Н  ]ЙЅ Нuation Equation.2є9Вquг зB`їA8їA
5022  ƒyLЪСшшЪС Ё џџџ.1  € &џџџџРџГџ`3 &Ole
5023 џџџџџџџџџџџџ3 PIC
5024 МПџџџџ4 LMETA џџџџџџџџџџџџ6 hCompObjОРџџџџ< f MathTypeP њ"-›@›ТћџTimes New Roman- 2
5025 ћцzc
5026 &
5027 џџџџћМ"Systemn-№"Systemn-№ўџ
5028 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9Вquг зBќїA<їA
5029  ƒzObjInfoџџџџСџџџџ> Equation Native џџџџџџџџџџџџ? <_862939603заФРF  ]ЙЅ Н@‘wЙЅ НOle
5030 џџџџџџџџџџџџ@ LchшшchОŽ Б џџџ.1  Р&џџџџРџЊџ€Њ & MathTypeа њ"-ФЎФ7ФЗ
5031 Ф4 ФЄФ|ћ€ўPSymbol<- 2
5032 `#dМ 2
5033 `5dМ 2
5034 `2dPIC
5035 УЦџџџџA LMETA џџџџџџџџџџџџC ˆCompObjХЧџџџџZ fObjInfoџџџџШџџџџ\ МћџPSymbol-№ 2
5036 ДБJЁ 2
5037 ДК JЁ 2
5038 ДЇJЁћџTimes New Roman!-№ 2
5039 Р7xp 2
5040 РЌxp 2
5041 $nxp 2
5042 РH yp 2
5043 РД yp 2
5044 $k xp 2
5045 Р?zc 2
5046 Р›zc 2
5047 $Гxpћ€ўTimes New Roman P-№ 2
5048 `ПAъ 2
5049 `‚uР 2
5050 `Ш
5051 Aъ 2
5052 `’ vЈ 2
5053 `ЕAъ 2
5054 `ƒwћ€ўPSymbol-№ 2
5055 Йщц‘ 2
5056 4щш‘ 2
5057 Yщч‘ 2
5058 Йі‘ 2
5059 4ј‘ 2
5060 Yї‘ 2
5061 `$+г 2
5062 Йђ ц‘ 2
5063 4ђ ш‘ 2
5064 Yђ ч‘ 2
5065 Йі‘ 2
5066 4ј‘ 2
5067 Yї‘ 2
5068 `!+г 2
5069 Йпц‘ 2
5070 4пш‘ 2
5071 Yпч‘ 2
5072 Й`і‘ 2
5073 4`ј‘ 2
5074 Y`ї‘ 2
5075 `€=гћ€ўTimes New Roman P-№ 2
5076 `Н0Р
5077 &
5078 џџџџћМ"Systemn-№2
5079 4пш‘ 2
5080 Yпўџ
5081 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВquгзBФїAШїA
5082 „d ƒx
5083 ƒA ƒx„J
5084 ƒu ƒx
5085 –(–)†+„d ƒy
5086 ƒA ƒy„J
5087 ƒv ƒx
5088 –(–)†+„dEquation Native џџџџџџџџџџџџ] _943712942QЫЮРF@‘wЙЅ Н ZˆЙЅ НOle
5089 џџџџџџџџџџџџb PIC
5090 ЪЭџџџџc L ƒz
5091 ƒA ƒz„J
5092 ƒw ƒx
5093 –(–)†=ˆ0PSymbol<Lй2дфшшй2 œ џџџ.1    .&џџџџРџЁџр-A & MathType№ њ"-]# ]META џџџџџџџџџџџџe HCompObjЬЮџџџџƒ fObjInfoџџџџЯџџџџ… Equation Native џџџџџџџџџџџџ† ь ‚ ўџџџ„ ўџџџўџџџ‡ ˆ ‰ Š ‹ Œ  ўџџџўџџџ ўџџџ’ “ ” • – — ˜ ™ š › œ  ž ўџџџ  ўџџџўџџџЃ ўџџџўџџџІ ўџџџЈ Љ Њ Ћ Ќ ­ Ў Џ А Б В Г Д Е Ж З И Й К Л ўџџџН ўџџџўџџџР С Т У ўџџџўџџџЦ ўџџџШ Щ Ъ Ы Ь Э Ю ўџџџа ўџџџўџџџўџџџўџџџе ўџџџз и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я ўџџџё ўџџџўџџџє ѕ і ї ўџџџўџџџњ ўџџџќ § ў џ {е{n{•{‰ээJ]к]Э{Ю"{s#э эM$]Й%]щ'{ў*{Ѓ+э1(эd,ћ€ўМTimes New Roman- 2
5094 Р1G' 2
5095 Рќ vРћџTimes New Roman-№ 2
5096 xCORIЋИœT 2
5097 GVu€ 2
5098 лЄyp 2
5099 лЙzc 2
5100 Mxp 2
5101 Gvp 2
5102 лЊ#xp 2
5103 Mƒ$yp 2
5104 Gѓ&wЋ 2
5105 лг+zc 2
5106 M”,zcћ€ўTimes New Roman-№ 2
5107 ѓ3 Vъ
5108 2
5109 РTfVkъ 2
5110 РЬvЈ
5111 2
5112 РПbVРъ 2
5113 Рw 2
5114 ѓъVъ
5115 2
5116 РM fVkъ 2
5117 РО"uР 2
5118 ѓЩ%Vъ
5119 2
5120 Р((bVРъ 2
5121 Рю*uРћ€ўPSymbol-№ 2
5122 Рv=г 2
5123 РИ-г 2
5124 РФйц 2
5125 Р' =г 2
5126 Р›-г 2
5127 тWц‘ 2
5128 ЫWш‘ 2
5129 №Wч‘ 2
5130 т.і‘ 2
5131 Ы.ј‘ 2
5132 №.ї‘ 2
5133 РХ-г 2
5134 Т^ ц‘ 2
5135 ы^ ш‘ 2
5136 э^ ч‘ 2
5137 Т/-і‘ 2
5138 ы/-ј‘ 2
5139 э/-ї‘ћ€ўTimes New Roman-№ 2
5140 Р‹2Р 2
5141 ЫР 1Р 2
5142 Ыs1Р 2
5143 Ыq&1Рћ€ўPSymbol-№ 2
5144 РRW'ћџPSymbol-№ 2
5145 жJЁ 2
5146 –JЁ 2
5147 Я!JЁ 2
5148 џ)JЁћ€ўTimes New Roman-№ 2
5149 Рј ` 2
5150 Р^,` 2
5151 Р$%,`
5152 &
5153 џџџџћМ"Systemn-№1Рўџ
5154 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩга cIАgI
5155 ‡G ƒCƒOƒRƒI
5156 †=†"ˆ2…Љ†з‡v†=ˆ1ƒV ƒu
5157 ƒfƒV „б
5158 ƒv ƒy
5159 †"ƒbƒV „б
5160 ƒw ƒz
5161  ƒx
5162 –(–) ‚,†"ˆ1ƒV ƒv
5163 ƒfƒV „б
5164 ƒu ƒx
5165  ƒy
5166 ‚,ˆ1ƒV ƒw
5167 ƒbƒV „б
5168 ƒu ƒz
5169  ƒz
5170 –(–)L4h @шш_862941207џџџџџџџџвРF ZˆЙЅ Н#™ЙЅ НOle
5171 џџџџџџџџџџџџŽ PIC
5172 бдџџџџ LMETA џџџџџџџџџџџџ‘ h4vR Ђ џџџ.1  @&џџџџРџЈџЈ & MathTypePћ€ўTimes New Roman>- 2
5173 `xfk 2
5174 `“
5175 bРћ€ўPSymbol-№ 2
5176 `“=гћ€ўTimes New Roman>-№ 2
5177 `ж2Р 2
5178 ` 2Рћ€ўPSymbol-№ 2
5179 `W' 2
5180 `Ч W'ћ€ўTimes New Roman>-№ 2
5181 `Фsin•kР2
5182 `K and ``ЈРР` 2
5183 `О =зћ€ўPSymbol-№ 2
5184 `„fЧ 2
5185 `*fЧћ€ўTimes New Roman>-№ 2
5186 `cosЈР•
5187 &
5188 џџџџћМ"Systemn-№2
5189 `cosЈР•
5190 &ўџ
5191 џџџџРFMicrosoft Equation 2.0 DS EqCompObjгеџџџџŸ fObjInfoџџџџжџџџџЁ Equation Native џџџџџџџџџџџџЂ |_862739333џџџџџџџџйРF#™ЙЅ Н Ф ЙЅ Нuation Equation.2є9ВqDг`—E”ЗDЗD
5192 ƒf†=ˆ2…Wsin„f  and ƒb=ˆ2…W‚c‚o‚s„f @&џџL&Щ Hшш&ЩІ˜ { џџџ.Ole
5193 џџџџџџџџџџџџЄ PIC
5194 илџџџџЅ LMETA џџџџџџџџџџџџЇ CompObjкмџџџџМ f1  @&џџџџРџАџР№ & MathType  њ"-e‰д ј :jћ€ўPSymbol<- 2
5195 3б 2
5196 i=г 2
5197 Г ц‘ 2
5198 z ш‘ 2
5199 о ч‘ 2
5200 Ÿ ч‘ 2
5201 Г і‘ 2
5202 z ј‘ 2
5203 о ї‘ 2
5204 Ÿ ї‘ћ€ўTimes New Roman@-№ 2
5205 CpР 2
5206 џ–Aъ 2
5207 3ŠVъ 2
5208 ‡pР 2
5209 Ь
5210 Aъ 2
5211 3§ Vъ 2
5212 э pР 2
5213 qAъ 2
5214 3JVъ 2
5215 OpРћџTimes New Roman-№ 2
5216 _ƒxp 2
5217 ‡­u€ 2
5218 `Шxp 2
5219 ,ё
5220 yp 2
5221 ‡$ vp 2
5222 `6 yp 2
5223 aWzc 2
5224 ‡twЋ 2
5225 `ЂzcћџPSymbol-№ 2
5226 SˆJЁ 2
5227
5228 JЁ 2
5229 UcJЁћ€ўPSymbol-№ 2
5230 ДdМ 2
5231 # dМ 2
5232 •dМћ€ўTimes New Roman@-№ 2
5233 ? ,` 2
5234 Ѕ,`
5235 &
5236 џџџџћМ"Systemn-№Pўџ
5237 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВquгзBœїAшїA
5238 †бƒp†=ƒA ObjInfoџџџџнџџџџО Equation Native џџџџџџџџџџџџП _863378325џџџџљрРF Ф ЙЅ НРДКЙЅ НOle
5239 џџџџџџџџџџџџФ ƒx„J
5240 ƒV ƒu
5241 „d ƒx
5242 ƒp‚,ƒA ƒy„J
5243 ƒV ƒv
5244 „d ƒy
5245 ƒp‚,ƒA ƒz„J
5246 ƒV ƒw
5247 „d ƒz
5248 ƒp–(–)PSymbol<L"4X@шш"4ц< в џџџ.PIC
5249 птџџџџХ LMETA џџџџџџџџџџџџЧ ШCompObjсуџџџџЯ ZObjInfoџџџџфџџџџб 1  Р&џџџџРџГџ€Г & MathTypePћ€ўPSymbol~- 2
5250 `3б 2
5251 `Нбћ€ўTms Rmn-№ 2
5252 `<.`ћ€ўTms Rmnџџ-№ 2
5253 `ЭpР
5254 &
5255 џџџџћМ"System-№ўџ
5256 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ХЫ ‡6є$—5p*—5
5257 †б‚.†бƒp Lј" Xшшј"оž  џџџ.1  Р&џџџџРџКџРz &Equation Native џџџџџџџџџџџџв <_943713166џџџџџџџџчЮРFРДКЙЅ Н }ЫЙЅ НOle
5258 џџџџџџџџџџџџг PIC
5259 цщџџџџд LMETA џџџџџџџџџџџџж HCompObjшъџџџџ№ fObjInfoџџџџыџџџџђ Equation Native џџџџџџџџџџџџѓ 4 MathTypeРћўцPSymbol|-2
5260 QЖ(ћўцPSymbol|-№2
5261 QW) њ"-н{нЃ ћu§уPSymbol|-№2
5262 z (ћu§уPSymbol|-№2
5263 zб)ћ-§йPSymbol|-№2
5264 ‹a (ћ-§йPSymbol|-№2
5265 ‹N)ћ€ўPSymbol-№ 2
5266 @3б 2
5267 @Mб 2
5268 @5=г 2
5269 @о бћ€ўTimes New Roman-№ 2
5270 @<.` 2
5271 @ч
5272 .` 2
5273 @ў,` 2
5274 @щ,`ћ€ўTimes New Roman-№ 2
5275 @LK 2
5276 @]Tз 2
5277 u‹Vъ 2
5278 @ї K 2
5279 @А Aъ 2
5280 @Tз 2
5281 @ЄAъ 2
5282 @ќTз 2
5283 @Aъ 2
5284 @зTзћџTimes New Roman-№ 2
5285  xp 2
5286  zxp 2
5287  yp 2
5288  myp 2
5289  uzc 2
5290  Rzcћ€ўTimes New Roman-№ 2
5291 K/1РћџPSymbol-№ 2
5292 ЩЂJЁ 2
5293 ”ЂJЁ 2
5294 ”–JЁ 2
5295 ”JЁћ€ўPSymbol-№ 2
5296 @fdМ 2
5297 @ZdМ 2
5298 @EdМ
5299 &
5300 џџџџћМ"Systemn-№№ 2
5301 ЩЂўџ
5302 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩгœcIАgI
5303 †"‚.‡K†"ƒT–(–)†=ˆ1ƒV „б
5304 †"‚.‡KƒA ƒx„б
5305 „Д ƒx
5306 ƒT‚,ƒA ƒy„б
5307 „Д ƒy
5308 ƒT‚,ƒA ƒz„б
5309 „Д ƒz
5310 ƒT–(–)–(–)_944035454џџџџџџџџюЮРF }ЫЙЅ Н€FмЙЅ НOle
5311 џџџџџџџџџџџџј PIC
5312 э№џџџџљ LMETA џџџџџџџџџџџџћ ШLЈ Џ„ЈшшЈ ЏІ` T џџџ.1  @ &џџџџРџВџ`ђ & MathTypeрћўцPSymbol|-2
5313 ‘Ў(ћўцPSymbol|-№2
5314 ‘ѕ) њ"-) м5  
5315    ўџџџўџџџўџџџўџџџўџџџ"ўџџџ$%&'()ўџџџўџџџўџџџўџџџ.ўџџџ01234ўџџџ6ўџџџўџџџўџџџўџџџ;ўџџџ=>?@ABCDEFGHIJKLMNўџџџPўџџџўџџџSTUўџџџўџџџXўџџџZ[\]^_ўџџџaўџџџўџџџўџџџўџџџfўџџџhijklmnopqrstuvwxyz{|}~€мљмeм)мƒмGћ€ўPSymbol
5316 -№ 2
5317 €3б 2
5318 €б 2
5319 €л=г 2
5320 €7 б 2
5321 бp ц‘ 2
5322 \p ш‘ 2
5323 p ч‘ 2
5324 бјі‘ 2
5325 \јј‘ 2
5326 јї‘ 2
5327 БЗ
5328 ц‘ 2
5329 |З
5330 ш‘ 2
5331 ЁЗ
5332 ч‘ 2
5333 БЎі‘ 2
5334 |Ўј‘ 2
5335 ЁЎї‘ћ€ўTimes New Roman P-№ 2
5336 €<.` 2
5337 €@
5338 .` 2
5339 €и,` 2
5340 €і,`ћ@ўPSymbol-№ 2
5341 €u 2
5342 €W uћџPSymbol-№ 2
5343 д(JЁ 2
5344 дXJЁ 2
5345 дvJЁћ€ўPSymbol-№ 2
5346 €–dМ 2
5347 €НdМ 2
5348 €ЫdМћ€ўTimes New Roman P-№ 2
5349 €-uР 2
5350 ­9Vъ 2
5351 €F Aъ 2
5352 €uР 2
5353 €vAъ 2
5354 €;uР 2
5355 €”Aъ 2
5356 €9uРћџTimes New Roman˜-№ 2
5357 Lu€ 2
5358 р#xp 2
5359 < xp 2
5360 рšxp 2
5361 рRyp 2
5362 <Oyp 2
5363 рРyp 2
5364 рjzc 2
5365 <gzc 2
5366 рШzcћ€ўTimes New Roman P-№ 2
5367 ‡Ж1Р
5368 &
5369 џџџџћМ"Systemn-№u€ 2
5370 р#xўџ
5371 џџџџЮРFMicrosoft Equation 3.0 DS EqCompObjяёџџџџfObjInfoџџџџђџџџџEquation Native џџџџџџџџџџџџp_866381503оЈѕРF€FмЙЅ Н чуЙЅ Нuation Equation.3є9ВqдT4aIь\I
5372 †"‚. eР„Х
5373 †"ƒu–(–)†=ˆ1ƒV ƒu
5374 †"‚. eР„Х
5375 ƒA ƒx„б
5376  ƒx
5377 „Д ƒx
5378 ƒu‚,ƒA ƒy„б
5379  ƒy
5380 „Д ƒy
5381 ƒu‚,ƒA ƒz„б
5382  ƒz
5383 „Д ƒz
5384 ƒu–(–)–(–)§џџџ„ƒ†…ˆ‡‰‹ŠŒŽ“‘—Ќ”•–˜™šŸ›œž ЁЃЂЅЄЇІЉЈЊЋ­ГЫЎЏАБВДЖЕЗИЙЛКНМРОПСТУФХЦЧШЩЪЬЭъЮЯабвгдежзикйлнмпосрутхфцчщшьы
5385 юэ№яђёєѓѕіїјљћњќ§ўџOle
5386 џџџџџџџџџџџџ PIC
5387 єїџџџџ!LMETA џџџџџџџџџџџџ#ЈObjInfoіјџџџџ*L44@@шш44–F У џџџ.1  &џџџџ6Ž6 Ž & MathType0ћ€ўTms RmnФ%- 2
5388  0Vъћ џTms Rmn-№ 2
5389 єTup&,MathTypeUU 
5390 ƒV ƒu€
5391 &
5392 џџџџћМ"System-№
5393 3Ъ pŽR—$
5394 ƒV ƒuLW4T@шшW4~< Ї џџџ.Equation Native џџџџџџџџџџџџ+<_863379009џџџџџџџџћРF чуЙЅ Н`yКЅ НOle
5395 џџџџџџџџџџџџ,PIC
5396 њ§џџџџ-LMETA џџџџџџџџџџџџ/hCompObjќўџџџџ5ZObjInfoџџџџџџџџџ7Equation Native џџџџџџџџџџџџ8<1   &џџџџРџЄџрЄ & MathType0ћ€ўPSymbol~- 2
5397  3бћ џTms Rmn-№ 2
5398 єb2p
5399 &
5400 џџџџћМ"System-№ўџ
5401 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ХЫ ‡6˜&—5и*—5
5402 †б ˆ2L< јшш<.\ 7 џџџ.1  Рр&џџџџРџЊџ j & MathType њ"-]ѓ]оzпz„z™ z2
5403 zє zшћ€ў_898191594џџџџџџџџРF`yКЅ Н`yКЅ НOle
5404 џџџџџџџџџџџџ9PIC
5405 џџџџ:LMETA џџџџџџџџџџџџ<ˆTimes New Roman-
5406 2
5407 РEKEъ 2
5408 РЯuР 2
5409 Р vЈ 2
5410 Ря wћџTimes New Roman-№ 2
5411 кНxp 2
5412 кj
5413 yp 2
5414 кzc
5415 2
5416 .ifGG
5417 2
5418 <NHЋИћ€ўPSymbol-№ 2
5419 РЈ=г 2
5420 Рg+г 2
5421 Р +г 2
5422 )/ ц‘ 2
5423 „/ ш‘ 2
5424 Љ/ ч‘ 2
5425 )[і‘ 2
5426 „[ј‘ 2
5427 Љ[ї‘ 2
5428 Йц‘ 2
5429 єш‘ 2
5430 фч‘ 2
5431 Йрі‘ 2
5432 єрј‘ 2
5433 фрї‘ћ€ўTimes New Roman-№ 2
5434 Ы1Р 2
5435 ъ2РћџTimes New Roman-№ 2
5436 ”[2€ 2
5437 ” 2€ 2
5438 ”І2€
5439 2
5440 М @@
5441 &
5442 џџџџћМ"Systemn-№ 2
5443 ъ2Рўџ
5444 џџџџРFMicrosoft Equation 2.0 DS EqCompObjџџџџOfObjInfoџџџџџџџџQEquation Native џџџџџџџџџџџџRќ_897308252џџџџ5 РF`yКЅ Н 'КЅ Нuation Equation.2є9ВqЭрпD|яC яC
5445 ƒKƒE†=ˆ1ˆ2ƒu ƒx
5446  ˆ2
5447 †+ƒv ƒy
5448  ˆ2
5449 †+ƒw ƒz
5450  ˆ2
5451 –(–) ƒiƒf  ƒNƒH
5452 –(–)LW,TшшOle
5453 џџџџџџџџџџџџVPIC
5454  џџџџWLMETA џџџџџџџџџџџџYˆCompObj
5455  џџџџ`ZW6B Ј џџџ.1   р&џџџџРџЅџ Х & MathType`ћ€ўTms Rmn- 2
5456 `\pРћ џTms Rmn-№ 2
5457 Р&Sp
5458 &
5459 џџџџћМ"System-№ocBTˆ5ЋocBTˆ5ўџ
5460 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2бЫ o>М1ќ 1
5461 ƒp ƒSL.иќшш..\ ^ џџџ.ObjInfoџџџџ џџџџbEquation Native џџџџџџџџџџџџc<_943714007хFЮРF 'КЅ Нд7КЅ НOle
5462 џџџџџџџџџџџџdPIC
5463 џџџџeLMETA џџџџџџџџџџџџgШCompObjџџџџƒfObjInfoџџџџџџџџ…‚ўџџџ„ўџџџўџџџ‡ˆ‰Š‹ўџџџўџџџŽўџџџ‘’“”•–—˜™š›œžŸ ЁЂЃЄЅІЇЈЉЊўџџџЌўџџџўџџџЏАБВГўџџџўџџџЖўџџџИЙКўџџџМўџџџўџџџўџџџўџџџСўџџџУФХЦЧўџџџЩўџџџўџџџўџџџўџџџЮўџџџабвгдежзийклмўџџџоўџџџўџџџсўџџџўџџџфўџџџцчшщъыьэюя№ёђѓєѕіїјљњћќ§ўџ1  `Р&џџџџРџЃџ€ & MathType  њ"-xox§ њ"-0ц0tћѕќГPSymbol{-2
5464 Ю(ћѕќГPSymbol{-№2
5465 ЮЊ)ћ…ќуPSymbol|-№2
5466 љЌ[ћ…ќуPSymbol|-№2
5467 љ&]Н­Нwћ€ўPSymbol›-№ 2
5468 3б 2
5469 Žб 2
5470 ЩЌц‘ 2
5471 ЄЌш‘ 2
5472 єЌч‘ 2
5473 ЩЌч‘ 2
5474 Щ7 і‘ 2
5475 Є7 ј‘ 2
5476 є7 ї‘ 2
5477 Щ7 ї‘ 2
5478 W
5479 =г 2
5480 ˜ -г 2
5481 u/бћ џPSymbol-№ 2
5482 лп+{ћџМTimes New Roman-№ 2
5483 €ah 2
5484 еПhћ€ўМTimes New RomanL-№ 2
5485 $.` 2
5486 uпvРћ€ўTimes New Roman-№ 2
5487 zH 2
5488 ƒpР 2
5489 uЌH 2
5490 IOtkћџTimes New RomanL-№ 2
5491 Оh€ 2
5492 MS€ 2
5493 ж_h€ 2
5494 ЊHИ 2
5495 Џn€ћ џTimes New Roman-№ 2
5496 л`np
5497 2
5498 €' HYЁ 2
5499 t npћ џTimes New RomanL-№ 2
5500 4~1p 2
5501 Ѕ~2pћ€ў0CourierX-№ 2
5502 ( Sцћ€ўPSymbol-№ 2
5503 IeDъ
5504 &
5505 џџџџћМ"Systemn-№ўџ
5506 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩг<ИcIЬgI
5507 †" ƒh
5508 ‡.ƒH†" ƒh
5509 ƒp ƒS eрƒn†+  eрˆ1 Equation Native џџџџџџџџџџџџ†X_897308250#РF u?КЅ Н u?КЅ НOle
5510 џџџџџџџџџџџџŒPIC
5511 џџџџL eрˆ2
5512 –(–)†=Times New RomanS eр  eрƒHƒY  eрƒn
5513 †"†" ƒh
5514 ƒH‡v ‡h
5515  ƒH
5516 –(–)–[–] ƒn
5517 …”ƒtLЉ*@шшЉ*Іƒ j џџџ.META џџџџџџџџџџџџшCompObjџџџџЋfObjInfoџџџџџџџџ­Equation Native џџџџџџџџџџџџЎ\1  €&џџџџРџЋџР+ & MathTypep њ"-іЛ
5518 іI њ"-УmУ{ -і#іБ-УGУућ€ў0CourierX- 2
5519  %SцћџTimes New Romanфt-№
5520 2
5521 'HYИ‘ 2
5522 єn€ 2
5523 4h€ 2
5524 #Г HИ 2
5525 h€ 2
5526 lh€ 2
5527 #HИћ€ўTimes New Roman-№ 2
5528  3H 2
5529   H 2
5530  3pРћ џTimes New Romanфt-№ 2
5531 YЊ np 2
5532 Ynpћ€ўPSymbol-№ 2
5533  Ф=г 2
5534  б 2
5535 Иeц‘ 2
5536 Еeш‘ 2
5537 уeч‘ 2
5538 Veч‘ 2
5539 ИЌ і‘ 2
5540 ЕЌ ј‘ 2
5541 уЌ ї‘ 2
5542 VЌ ї‘ 2
5543  И -г 2
5544  мб 2
5545  :б 2
5546 И?ц‘ 2
5547 Е?ш‘ 2
5548 у?ч‘ 2
5549 V?ч‘ 2
5550 Иі‘ 2
5551 Еј‘ 2
5552 уї‘ 2
5553 Vї‘ћ џPSymbol-№ 2
5554 Y*
5555 +{ 2
5556 Y’+{ћ€ўTimes New Roman-№ 2
5557  у.` 2
5558  Н.`ћ€ўМTimes New Romanфt-№ 2
5559  ^G'ћџМTimes New Roman-№ 2
5560 Њ v€ 2
5561 D6
5562 h 2
5563 ќv€ 2
5564 Dˆhћ џTimes New Romanфt-№ 2
5565 ВЪ
5566 1p 2
5567 $Ъ
5568 2p 2
5569 В21p 2
5570 $22p
5571 &
5572 џџџџћМ"Systemn-№МTiўџ
5573 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqЭ@пDРяCяC
5574 CourierS ƒHƒYƒn
5575 †=†б ƒh
5576 ‚.ƒH‡G ‡v ‡h  eрƒn†+  eрˆ1  eрˆ2
5577  ƒH
5578 –(–)†-†б ƒh
5579 ‚.ƒH†б ƒh
5580 ƒp ‡v ‡h  eрƒn†+  eрˆ1  eрˆ2
5581  ƒH
5582 –(–)0CourierXL=4Д@шш=4ю3 P џџџ._897308249џџџџџџџџРF u?КЅ Н .jКЅ НOle
5583 џџџџџџџџџџџџДPIC
5584  џџџџЕLMETA џџџџџџџџџџџџЗШ1   &џџџџРџЅџрЅ & MathTypeP
5585 &
5586 џџџџ‚.†б ƒh
5587 ƒpўџ
5588 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2бЫ o>ќ1<1
5589 ScriptS TmsCompObj!џџџџЛZObjInfoџџџџ"џџџџНEquation Native џџџџџџџџџџџџО<_897308248*%РF .jКЅ Н€їzКЅ НOle
5590 џџџџџџџџџџџџПPIC
5591 $'џџџџРLMETA џџџџџџџџџџџџТhCompObj&(џџџџШZLС,шшСЦB œ џџџ.1  €р&џџџџРџІџ & & MathTypePњ-›@›Тћ џTms Rmn- 2
5592 ђїHЁ
5593 &
5594 џџџџћМ"System-№ўџ
5595 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2бЫ o>р$1<)1
5596  ƒHLучфшшу.2 Ž џџџ.ObjInfoџџџџ)џџџџЪEquation Native џџџџџџџџџџџџЫ<_897308247џџџџџџџџ,РF ˜‚КЅ Н€a“КЅ НOle
5597 џџџџџџџџџџџџЬPIC
5598 +.џџџџЭLMETA џџџџџџџџџџџџЯHCompObj-/џџџџнZObjInfoџџџџ0џџџџп1   @&џџџџРџЙџY & MathTypeњ-=@=ЅћўхPSymbol„-2
5599 Е(ћўхPSymbol„-№2
5600 Е9)ћ€ўTms Rmn-№ 2
5601 Ћ’1Рћ џTms Rmn-№ 2
5602 пU0pћ€ўTms Rmn-№ 2
5603 ЩiH
5604 2
5605  ždzР•ћ џTms Rmn-№ 2
5606 C…HЁћ џPSymbol-№ 2
5607 Cы-{ћР§PSymbol-№ 2
5608 &8ђ›
5609 &
5610 џџџџћМ"System-№џџџџўџ
5611 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Equation Native џџџџџџџџџџџџр|_897308246S3РF@‰œКЅ Н R­КЅ НOle
5612 џџџџџџџџџџџџтPIC
5613 25џџџџуL?Ь`'61˜1
5614 ˆ1ƒH–(–) †-ƒHˆ0 †ђ
5615 ƒdƒzL“.Іg4шш“.І.2 @ џџџ.1   @*&џџџџРџНџ*н & MathTypeРњ-Y$YЃMETA џџџџџџџџџџџџхЈCompObj46џџџџZObjInfoџџџџ7џџџџ
5616 Equation Native џџџџџџџџџџџџ Мўџџџ ўџџџўџџџ  ўџџџўџџџўџџџ !"#$%&ўџџџ(ўџџџўџџџ+,ўџџџўџџџ/ўџџџ1234567ўџџџ9ўџџџўџџџ<ўџџџўџџџ?ўџџџABCDEFGHIJKLMNўџџџPўџџџўџџџSTUўџџџўџџџXўџџџZ[\]^_ўџџџўџџџўџџџўџџџdўџџџfghijkўџџџmўџџџўџџџўџџџўџџџrўџџџtuvwxyzўџџџўџџџ}ўџџџўџџџ€=@=NмЃм"ћђќГPSymbol„-2
5617 ‰
5618 [ћђќГPSymbol„-№2
5619 ‰П]мамOћђќГPSymbol„-№2
5620 ‰/[ћђќГPSymbol„-№2
5621 ‰ь]=
5622 =.м™%м'ћђќГPSymbol„-№2
5623 ‰ј [ћђќГPSymbol„-№2
5624 ‰Е(]=љ =ї)ћ€ўPSymbol0-№ 2
5625 žJЖМ 2
5626 ЩЇЖМћ€ўPSymbol-№ 2
5627 žб 2
5628  СЛг 2
5629 !…
5630 б 2
5631 !#-г 2
5632 !Вб 2
5633  Ђ=г 2
5634  ф-г 2
5635 !{!бћ џPSymbol-№ 2
5636 лЧ+{ћ џTms Rmn-№ 2
5637 џ6hp 2
5638 АиHЁ 2
5639 ‚Е hp 2
5640 3WHЁ 2
5641 лHnp 2
5642 ‚тhp 2
5643 3„HЁ 2
5644 лunp 2
5645 ‚Ћ"hp 2
5646 3M'HЁ 2
5647 л>)npћ€ўTms Rmn-№ 2
5648 žъH 2
5649 Щctk 2
5650 !i H 2
5651 !–H 2
5652 ЩUtk 2
5653 !_$H 2
5654 ЩЕ%tkћ€ўTms Rmn-№ 2
5655 žг.` 2
5656 žO(~ 2
5657 žС)~ 2
5658 !R .` 2
5659 !Ю (~ 2
5660 !@)~ 2
5661 !.` 2
5662 !ћ(~ 2
5663 !m)~ 2
5664 !H#.` 2
5665 !Ф#(~ 2
5666 !6()~ћ€ўМTms Rmn-№ 2
5667 žvР 2
5668 !œvР 2
5669 !ЩvР 2
5670 !’%vРћ џМTms Rmn-№ 2
5671 ўўh} 2
5672 }h} 2
5673 Њh} 2
5674 s&h}ћ џTms Rmn-№ 2
5675 л?1pћ€ўPSymbol-№ 2
5676 ЩkDъ 2
5677 ЩЫ$Dъ
5678 &
5679 џџџџћМ"System-№џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџўџ
5680 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2?Ь '601А1
5681 „Ж†б ƒh
5682 ‚.‚(ƒH‡v ‡h
5683  ƒH
5684 ‚)„Жƒt†Л†б ƒh
5685 ‚.‚(ƒH‡v ‡h
5686  ƒH
5687 ‚)–[–] ƒn†+ˆ1
5688 †-†б ƒh
5689 ‚.‚(ƒH‡v ‡h
5690  ƒH
5691 ‚)–[–] ƒn
5692 …Dƒt†=†-†б ƒh
5693 ‚.‚(ƒH‡v ‡h
5694  ƒH
5695 ‚)–[–] ƒn
5696 …DƒtL•„шш•ЎE   џџџ.1  @  &џџџџРџОџ` ў & MathTypeњ-лРл?ћ_897308245џџџџџџџџ:РF@ѓДКЅ НруЮКЅ НOle
5697 џџџџџџџџџџџџPIC
5698 9<џџџџLMETA џџџџџџџџџџџџhђќГPSymbol-2
5699 ˆ[ћђќГPSymbol-№2
5700 ˆм]ћ€ўPSymbol-№ 2
5701 Ђб 2
5702 J
5703 Ў|ћ џPSymbol-№ 2
5704 кф+{ћ џTms Rmn-№ 2
5705 вhp 2
5706 2tHЁ 2
5707 кenpћ€ўTms Rmn-№ 2
5708 †Hћ€ўTms Rmn-№ 2
5709 o.` 2
5710 ы(~ 2
5711 ])~ћ€ўМTms Rmn-№ 2
5712 ЙvРћ џМTms Rmn-№ 2
5713 €šh}ћ џTms Rmn-№ 2
5714 к\ 1pћ€ўTms Rmn-№ 2
5715 Ї 0Р 2
5716 2  `
5717 &
5718 џџџџћМ"System-№ўџ
5719 џџџџРFMicrosoft Equation 2.0 DS EqCompObj;=џџџџ'ZObjInfoџџџџ>џџџџ)Equation Native џџџџџџџџџџџџ*œ_897308244M8AРFруЮКЅ Н…жКЅ Нuation Equation.2?Ь€'6ш%1x'1
5720 †б ƒh
5721 ‚.‚(ƒH‡v ‡h
5722  ƒH
5723 ‚)–[–] ƒn†+ˆ1
5724 †Ў ˆ0Tms RmnL+СЬшшOle
5725 џџџџџџџџџџџџ-PIC
5726 @Cџџџџ.LMETA џџџџџџџџџџџџ0шCompObjBDџџџџ8Z+С†3 р џџџ.1  €р&џџџџРџІџ & & MathTypePњ-›@›Пћ€ўМTms Rmn- 2
5727 р9vРћ џМTms Rmn-№ 2
5728 @h}ћ џTms Rmn-№ 2
5729 ђєHЁ
5730 &
5731 џџџџћМ"System-№ўџ
5732 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2бЫ@o>Є'14)1
5733 ‡v ‡h
5734  ƒHџџL›ЗH`шшObjInfoџџџџEџџџџ:Equation Native џџџџџџџџџџџџ;\_943714341џџџџuHЮРF…жКЅ Н€>ЛЅ НOle
5735 џџџџџџџџџџџџ=PIC
5736 GJџџџџ>LMETA џџџџџџџџџџџџ@ˆCompObjIKџџџџOfObjInfoџџџџLџџџџQ›З~A Ј џџџ.1  @ &џџџџРџЎџ Ў & MathTypeћ€ўМTms RmnМ- 2
5737 8A 2
5738 ypз 2
5739 Иf~ 2
5740 #8A 2
5741 #6D 2
5742 #хG+ћ џМTms RmndQ-№
5743 2
5744 эo2dp} 2
5745 яdS}
5746 2
5747 эH2dp}
5748 2
5749 ƒo2dp} 2
5750 …fdivh}>p} 2
5751 ƒ.
5752 radhbp}}ћ€ўPSymbol-№ 2
5753 y=г 2
5754 #ј=г 2
5755 Е: ќМ 2
5756 !: §М 2
5757 §: яМ 2
5758 Ž: ўМ 2
5759 —: яМћ€ўTms RmndQ-№ 2
5760 #:.`ћ€ўTms RmnМ-№ 2
5761 #бH
5762 &
5763 џџџџћМ"System-№ўџ
5764 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩгИЬcIАgI
5765 ‡A ‡2‡d
5766 ‡p ‡S
5767 †=‡f ‡2‡d
5768 ‡A ‡2‡d
5769 †=‡D ‡i‡v‡h
5770 ‚.ƒH‡G ‡r‡a‡d‡h
5771 –}LфWЄTшшEquation Native џџџџџџџџџџџџRд_897308242џџџџџџџџOРF€>ЛЅ Н€>ЛЅ НOle
5772 џџџџџџџџџџџџVPIC
5773 NQџџџџWLфWж< Ф џџџ.1    &џџџџРџнџ`§ & MathType`ћ€ўМTms Rmn- 2
5774 `8Aћ џМTms Rmn~ -№
5775 2
5776 Рo2dp}&,MathTypeUU 
5777 ‡A ‡2‡d
5778 &
5779 џџџџћМ"System-№ п.€META џџџџџџџџџџџџYЈObjInfoPRџџџџ`Equation Native џџџџџџџџџџџџa<_897308241`?UРF€>ЛЅ Н пЛЅ Н)Щ pŽR—$
5780 ‡A ‡2‡dL+WЬTшш+WN6 Ћ џџџ.1   р&џџџџРџЅџ Х & MathType`ћ€ўМTms Rmnp- 2
5781 `Ole
5782 џџџџџџџџџџџџbPIC
5783 TWџџџџcLMETA џџџџџџџџџџџџeˆCompObjVXџџџџlZ8Dћ џМTms Rmn-№ 2
5784 Тhivh>p}
5785 &
5786 џџџџћМ"System-№8A 2
5787 ypз 2
5788 Иўџ
5789 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.24Щ G?ФЏ<TЏ<
5790 ‡D ‡i‡v‡hObjInfoџџџџYџџџџnEquation Native џџџџџџџџџџџџo<_897308238џџџџџџџџ\РF пЛЅ Н@:;ЛЅ НOle
5791 џџџџџџџџџџџџpLлW0TшшлW†9 з+ џџџ.1   €&џџџџIpЩ  & MathType`ћ€ўМTms Rmn- 2
5792 `1G+ћ џМTms Rmn€-№ 2
5793 Рzradhbp}}+&LMathTypeUU@
5794 ‡G ‡rPIC
5795 [^џџџџqLMETA џџџџџџџџџџџџsШObjInfo]_џџџџ{Equation Native џџџџџџџџџџџџ|\‡a‡d‡h"Dˆ"Dџџ
5796 &
5797 џџџџћМ"System-№ќМ 2
5798 ! ТЫ@pŽR—$
5799 ‡G ‡r‡a‡d‡h ўМ 2
5800 — яМLW,Tшш_897308237gZbРF@:;ЛЅ Н@:;ЛЅ НOle
5801 џџџџџџџџџџџџ~PIC
5802 adџџџџLMETA џџџџџџџџџџџџˆўџџџ‚ƒ„…†‡ўџџџ‰ўџџџўџџџўџџџўџџџŽўџџџ‘’“”•ўџџџ—ўџџџўџџџўџџџўџџџœўџџџžŸ ЁЂЃўџџџЅўџџџўџџџўџџџўџџџЊўџџџЌ­ЎЏАБВГДўџџџЖўџџџўџџџЙўџџџўџџџМўџџџОПРСТУФХЦЧШЩўџџџЫўџџџўџџџЮЯўџџџўџџџвўџџџдежзийўџџџлўџџџўџџџўџџџўџџџрўџџџтуфхцчўџџџўџџџўџџџўџџџьўџџџюя№ёђўџџџєўџџџўџџџўџџџўџџџљўџџџћќ§ўџWі7 Ј џџџ.1   р&џџџџРџЅџ Х & MathType`ћ€ўМTms Rmn- 2
5803 `5pзћ џМTms Rmn-№ 2
5804 Т S}
5805 &
5806 џџџџћМ"System-№CompObjceџџџџˆZObjInfoџџџџfџџџџŠEquation Native џџџџџџџџџџџџ‹<_897308236џџџџџџџџiРFbDЛЅ НРѓeЛЅ Нўџ
5807 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2)Щ Ч3ј'з2(+з2
5808 ‡p ‡SL4W@Tшш4WжF Љ џџџ.Ole
5809 џџџџџџџџџџџџŒPIC
5810 hkџџџџLMETA џџџџџџџџџџџџˆCompObjjlџџџџ–Z1   &џџџџРџЈџРШ & MathType`ћ€ўМTms Rmn- 2
5811 `9f~ћ џМTms Rmn-№
5812 2
5813 РЩ2dp}
5814 &
5815 џџџџћМ"System-№ўџ
5816 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ObjInfoџџџџmџџџџ˜Equation Native џџџџџџџџџџџџ™<_897308234Ќ1pРFРѓeЛЅ Нр”mЛЅ НOle
5817 џџџџџџџџџџџџšУШ G=Р&w<P(w<
5818 ‡f ‡2‡dLWИTшшWЦD Љ џџџ.1   Р&џџџџРџЅџ€Х & MathType`ћ€ўTms Rmn+- 2
5819 `PIC
5820 orџџџџ›LMETA џџџџџџџџџџџџˆCompObjqsџџџџЄZObjInfoџџџџtџџџџІ\pРћ џTms RmnвU-№
5821 2
5822 Р0NH•Ё
5823 &
5824 џџџџћМ"System-№Ї у
5825 уууТТТТ€€€€сџсџссўџ
5826 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ТЫ 0№101
5827 ƒp ƒNƒHEquation Native џџџџџџџџџџџџЇ<_943714523џџџџџџџџwЮРFр”mЛЅ Н &ЛЅ НOle
5828 џџџџџџџџџџџџЈPIC
5829 vyџџџџЉLLzEЌlшшzEцQ ' џџџ.1  рр&џџџџРџЗџ — & MathTypeР њ"-§@§Зћ€ўPSymbol•- 2
5830 g…ЖМ 2
5831 JЖМћ€ўTimes New Roman”-№META џџџџџџџџџџџџЋhCompObjxzџџџџЕfObjInfoџџџџ{џџџџЗEquation Native џџџџџџџџџџџџИX 2
5832 z•ћ€ўTimes New RomanK-№ 2
5833 `х(~ 2
5834 `,.` 2
5835 `.` 2
5836 `#)~ 2
5837 `s4Р 2
5838 `f1Р 2
5839 `Z2Р
5840 &
5841 џџџџћМ"Systemn-№џџџџћўџ
5842 џџџџЮРFMicrosoft Equation 3.0 DS Equation Equation.3є9ВqЩг<МcIАgI
5843 „"„"ƒz‚(ˆ2‚.ˆ1‚.ˆ2‚)Lg З`шшg З‚ r џџџ.1  @ &џџџџРџЎџ Ў & MathTypeћ€ўМTimes New Roman`™-_897308232џџџџџџџџ~РF &ЛЅ Н`N˜ЛЅ НOle
5844 џџџџџџџџџџџџКPIC
5845 }€џџџџЛLMETA џџџџџџџџџџџџН 2
5846 8A 2
5847 ™pз 2
5848 тf‚ 2
5849 #8A 2
5850 #VD 2
5851 #NG'ћџМTimes New Roman-№
5852 2
5853 яo3d€
5854 2
5855 яˆNHИЧ
5856 2
5857 яr3d€
5858 2
5859 ƒo3d€
5860 2
5861 …†ivG€ 2
5862 ƒ–radp€ћ€ўPSymbol-№ 2
5863 Ѓ=г 2
5864 #=г 2
5865 #Нз` 2
5866 ЕS
5867 ќМ 2
5868 !S
5869 §М 2
5870 §S
5871 яМ 2
5872 ŽS
5873 ўМ 2
5874 —S
5875 яМ
5876 &
5877 џџџџћМ"Systemn-№2
5878 ЕS
5879 ќМ 2
5880 !S
5881 ўџ
5882 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqЭ пDДяCяC
5883 ‡A ‡3‡d
5884 ‡p ‡N‡H
5885 †=‡f ‡3‡d
5886 ‡A ‡3‡d
5887 †=‡D ‡i‡v
5888 †з‡G ‡r‡a‡d
5889 –}es-RomaCompObjџџџџЪfObjInfoџџџџ‚џџџџЬEquation Native џџџџџџџџџџџџЭМ_897308231Š|…РF`N˜ЛЅ Н рЙЛЅ НOle
5890 џџџџџџџџџџџџаPIC
5891 „‡џџџџбLMETA џџџџџџџџџџџџгˆCompObj†ˆџџџџкZLфWЄTшшфW–< Љ џџџ.1    &џџџџРџЅџ`Х & MathType`ћ€ўМTms Rmn- 2
5892 `8Aћ џМTms Rmnџ?-№
5893 2
5894 Рp3dp}
5895 &
5896 џџџџћМ"System-№ўџ
5897 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2)Щ Ч3X!з2Ш*з2
5898 ‡A ‡3‡dLфWЄTшшObjInfoџџџџ‰џџџџмEquation Native џџџџџџџџџџџџн<_897308230џџџџџџџџŒРF рЙЛЅ Н рЙЛЅ НOle
5899 џџџџџџџџџџџџоPIC
5900 ‹ŽџџџџпLMETA џџџџџџџџџџџџсЈObjInfoџџџџшEquation Native џџџџџџџџџџџџщ<фWж< Ф џџџ.1    &џџџџРџнџ`§ & MathType`ћ€ўМTms Rmn- 2
5901 `8Aћ џМTms Rmn~ -№
5902 2
5903 Рo2dp}&,MathTypeUU 
5904 ‡A ‡2‡d
5905 &
5906 џџџџћМ"System-№ п.€)Щ pŽR—$
5907 ‡A ‡2‡dLW4T@шшW4Ю< Ї џџџ.1   &џџџџРџЄџрЄ & MathType0ћ€ўPSymbol|- 2
5908  3_897308229žƒ’РF@СЛЅ Н@СЛЅ НOle
5909 џџџџџџџџџџџџъPIC
5910 ‘”џџџџыLMETA џџџџџџџџџџџџэhбћ џTms Rmn[F-№ 2
5911 єb2p
5912 &
5913 џџџџћМ"System-№ўџ
5914 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2)Щ Ч3а&з2№*з2
5915 †б ˆ2CompObj“•џџџџѓZObjInfoџџџџ–џџџџѕEquation Native џџџџџџџџџџџџі<_897308227џџџџџџџџ™РF@СЛЅ Н §ЛЅ НOle
5916 џџџџџџџџџџџџїPIC
5917 ˜›џџџџјLMETA џџџџџџџџџџџџњˆCompObjšœџџџџZL4W@Tшш4WоF Љ џџџ.1   &џџџџРџЈџРШ & MathType`ћ€ўМTms Rmn- 2
5918 `9f~ћ џМTms Rmn -№
5919 2
5920 РЪ3dp}
5921 &
5922 џџџџћМ"System-№ўџџџўџџџўџџџўџџџўџџџўџџџ 
5923    ўџџџўџџџўџџџўџџџўџџџўџџџўџџџ ўџџџўџџџ#ўџџџўџџџ&ўџџџ()*+,-ўџџџ/ўџџџўџџџўџџџўџџџ4ўџџџ6789:;<=>?@ABўџџџDўџџџўџџџGHўџџџўџџџKўџџџMNOPQRSTUVўџџџXўџџџўџџџ[ўџџџўџџџ^ўџџџ`abcdeўџџџgўџџџўџџџўџџџўџџџlўџџџnopqrsўџџџuўџџџўџџџўџџџўџџџzўџџџ|}~€ўџ
5924 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2УШ G=и&w<h(w<
5925 ‡f ‡3‡d
5926 LWИTшшObjInfoџџџџџџџџEquation Native џџџџџџџџџџџџ<_897308226Ѕ— РF §ЛЅ Н€Ь МЅ НOle
5927 џџџџџџџџџџџџPIC
5928 ŸЂџџџџLMETA џџџџџџџџџџџџˆCompObjЁЃџџџџZObjInfoџџџџЄџџџџWn Љ џџџ.1   Р&џџџџРџЅџ€Х & MathType`ћ€ўМTms Rmn- 2
5929 `5pзћ џМTms RmnМ-№
5930 2
5931 Р%NHЁЎ
5932 &
5933 џџџџћМ"System-№ўџ
5934 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2)Щ Ч3('з2h+з2
5935 ‡p ‡N‡HL; {<hшш; {v3 і џџџ.1  @`&џџџџРџЅџ х &Equation Native џџџџџџџџџџџџ<_897308225џџџџџџџџЇРF€Ь МЅ Н mМЅ НOle
5936 џџџџџџџџџџџџPIC
5937 ІЉџџџџLMETA џџџџџџџџџџџџCompObjЈЊџџџџZObjInfoџџџџЋџџџџ!Equation Native џџџџџџџџџџџџ"\ MathTypepћ€ўTms Rmn- 2
5938 `MN 2
5939 ` N 2
5940 `тN 2
5941 `žNћ џTms Rmn-№ 2
5942 РAxb 2
5943 Рyb 2
5944 РЙzWћ€ўPSymbol-№ 2
5945 `Э=г
5946 &
5947 џџџџћМ"System-№ўџ
5948 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2?Ь@'64&1Ф'1
5949 ƒN†=ƒN ƒx
5950 ƒN ƒy
5951 ƒN ƒzLЪWTшшЪW.J Ј џџџ._897308224ШЎРF mМЅ Н '@МЅ НOle
5952 џџџџџџџџџџџџ$PIC
5953 ­Аџџџџ%LMETA џџџџџџџџџџџџ'ˆ1    &џџџџРџЅџ`Х & MathType`ћ€ўTms Rmn- 2
5954 `\pРћ џTms Rmn-№ 2
5955 Сl>
5956 &
5957 џџџџћМ"System-№=8џwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwўџ
5958 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2CompObjЏБџџџџ.ZObjInfoџџџџВџџџџ0Equation Native џџџџџџџџџџџџ1<_897308223џџџџџџџџЕРF '@МЅ Н '@МЅ НУШ G=T*w<H1w<
5959 ƒp ƒlл LГWp TшшГWE   џџџ.1   €&џџџџРџЇџ@Ч & MathType`ћ€ўTms Rmn1- 2
5960 `Ole
5961 џџџџџџџџџџџџ2PIC
5962 ДЗџџџџ3LMETA џџџџџџџџџџџџ5hCompObjЖИџџџџCZ1lk 2
5963 `NkЈ 2
5964 `юN 2
5965 `ik 2
5966 ` N 2
5967 `AN 2
5968 `Bjkћ џTms Rmn-№ 2
5969 Р zW 2
5970 Р) zW 2
5971 Рbxbћ€ўPSymbol-№ 2
5972 `=г 2
5973 `Г+г 2
5974 `м-г 2
5975 `S
5976 +г 2
5977 `Дг 2
5978 ` -гћ€ўTms Rmn-№ 2
5979 `і ` 2
5980 `š(~ 2
5981 `‰ )~ 2
5982 `o (~
5983 2
5984 ` )(~~ 2
5985 `Й)~ 2
5986 `п1Р 2
5987 `1Р
5988 &
5989 џџџџћМ"System-№ўџ
5990 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2yЪ€ч<дЯ;d Я;
5991 ƒl†=ƒk †+ƒN ƒz
5992 ‚(ƒi†-ˆ1‚)†+‚(ƒN ƒz
5993 †ДƒN ƒx
5994 ‚)‚(ObjInfoџџџџЙџџџџEEquation Native џџџџџџџџџџџџFœ_897308222СГМРF '@МЅ НZiМЅ НOle
5995 џџџџџџџџџџџџIƒj†-ˆ1‚)§ЬІІНІLўNˆршшўNю: . џџџ.1  @&џџџџРџЌџЌ & MathType€ћ‡§нPSymbol-2
5996 6,(ћ‡§нPSymbol-№2
5997 6ћPIC
5998 ЛОџџџџJLMETA џџџџџџџџџџџџLˆCompObjНПџџџџWZObjInfoџџџџРџџџџY)ћ€ўTms Rmn-№ 2
5999 ЪN 2
6000 ŒN 2
6001 HNћ џTms Rmn-№ 2
6002 `ыxb 2
6003 `­yb 2
6004 `czWћ џTms Rmn-№ 2
6005 ь2p
6006 &
6007 џџџџћМ"System-№n`` џўџ
6008 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2?Ь`'6h(1ј)1
6009 ƒN ƒx
6010 ƒN ƒy
6011 ƒN ƒz
6012 –(–) ˆ2­yb LWИTшшWNƒ Б џџџ.§џџџ  '  ! "#%$(&*F),+.-0/213456798;:=<?>A@BCDEGHdJILKNMPOQSRUTWVXYZ[\]^`_acbefŒghijuvlmnopqrstўџџџwzxy{}|~‚Equation Native џџџџџџџџџџџџZ|_897308221џџџџџџџџУРFZiМЅ НZiМЅ НOle
6013 џџџџџџџџџџџџ\PIC
6014 ТХџџџџ]LMETA џџџџџџџџџџџџ_ˆCompObjФЦџџџџffObjInfoџџџџЧџџџџhEquation Native џџџџџџџџџџџџi<1   Р&џџџџРџЅџ€Х & MathType`ћ€ўМTimes New Romanфt- 2
6015 `8AћџМTimes New Roman-№
6016 2
6017 Рo3d€
6018 &
6019 џџџџћМ"Systemn-№"Systemn-№ўџ
6020 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqЭ пDяCјяC
6021 ‡A ‡3‡dLWИTшшWю‚ Б џџџ.1   Р&џџџџРџЅџ€Х & MathType`ћ€ўМTimes New Romanфt-_897308220жКЪРFZiМЅ Н ћpМЅ НOle
6022 џџџџџџџџџџџџjPIC
6023 ЩЬџџџџkLMETA џџџџџџџџџџџџmˆ 2
6024 `8AћџМTimes New Roman-№
6025 2
6026 Рo3d€
6027 &
6028 џџџџћМ"Systemn-№"Systemn-№ўџ
6029 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqЭ пD„яC`яC
6030 ‡A ‡3‡dCompObjЫЭџџџџtfObjInfoџџџџЮџџџџvEquation Native џџџџџџџџџџџџw<_897308219џџџџџџџџбРF ћpМЅ Н€}ЌМЅ НOle
6031 џџџџџџџџџџџџxPIC
6032 агџџџџyLMETA џџџџџџџџџџџџ{ШCompObjвдџџџџ›fLн"eФ шшн"eц‚ г џџџ.1  € &џџџџРџБџ`1 & MathTypepћ€ўМTimes New Romanфt- 2
6033   8A 2
6034 u D 2
6035 uK eЈ 2
6036 uЈeЈ 2
6037 ЕeЈ 2
6038 ЕMD 2
6039 Е eЈ ‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™šўџџџœўџџџўџџџŸ ЁЂЃЄўџџџўџџџЇўџџџЉЊЋЌ­ЎўџџџАўџџџўџџџўџџџўџџџЕўџџџЗИЙКЛМНОўџџџРўџџџўџџџУўџџџўџџџЦўџџџШЩЪЫЬЭЮўџџџаўџџџўџџџгўџџџўџџџжўџџџийклмноўџџџрўџџџўџџџуўџџџўџџџцўџџџшщъыьэўџџџўџџџўџџџўџџџђўџџџєѕіїјљњўџџџќўџџџўџџџџўџџџ2
6040 Е eЈ 2
6041 ѕK eЈ 2
6042 ѕ  D 2
6043 ѕБeЈ 2
6044 5ЇeЈ 2
6045 u
6046 eЈ 2
6047 u
6048 БeЈ 2
6049 u
6050 ШD 2
6051 u
6052  eЈ 2
6053 5БeЈ 2
6054 5xeЈ 2
6055 5DћџМTimes New Roman-№
6056 2
6057
6058 o3d€ 2
6059 з31€ 2
6060  2€ 2
6061 Uв 3€ 2
6062 з
6063 јiG 2
6064 •РNИ 2
6065 еˆx€ 2
6066 •NИ 2
6067 енy€ћ€ўPSymbol-№ 2
6068   =г 2
6069 uc з` 2
6070 Еwз` 2
6071 ѕnз` 2
6072 ѕ>з` 2
6073 5wз` 2
6074 u
6075 c з` 2
6076 u
6077 >з` 2
6078 Е fз` 2
6079 ѕc з` 2
6080 ѕ>з` 2
6081 5c з` 2
6082 5nз` 2
6083 5fз` 2
6084 ВOц‘ 2
6085 ЛOш‘ 2
6086 нOч‘ 2
6087 POч‘ 2
6088 УOч‘ 2
6089 6Oч‘ 2
6090 ЉOч‘ 2
6091 
6092 Oч‘ 2
6093  Oч‘ 2
6094  Oч‘ 2
6095 uOч‘ 2
6096 шOч‘ 2
6097 рOч‘ 2
6098 ВЈі‘ 2
6099 ЛЈј‘ 2
6100 нЈї‘ 2
6101 PЈї‘ 2
6102 УЈї‘ 2
6103 6Јї‘ 2
6104 ЉЈї‘ 2
6105 
6106 Јї‘ 2
6107  Јї‘ 2
6108  Јї‘ 2
6109 uЈї‘ 2
6110 шЈї‘ 2
6111 рЈї‘ћ€ўTimes New Roman-№ 2
6112 u‹qР 2
6113 uшqР 2
6114 ЕAqР 2
6115 Ен qР 2
6116 ЕрqР 2
6117 ѕ‹qР 2
6118 ѕёqР 2
6119 5чqР 2
6120 u
6121 AqР 2
6122 u
6123 ёqР 2
6124 u
6125 рqР 2
6126 5ёqР 2
6127 5ИqРћ€ўTimes New Romanфt-№ 2
6128 Е  .`
6129 &
6130 џџџџћМ"Systemn-№mes New Roman-ўџ
6131 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqЭ пDьяCШяC
6132 ‡A ‡3‡d
6133 †=‡D ‡1
6134 ƒq‡e†зƒq‡eƒq‡eObjInfoџџџџеџџџџEquation Native џџџџџџџџџџџџžМ_897308218нЯиРF€}ЌМЅ Н ДМЅ НOle
6135 џџџџџџџџџџџџЅ‡D ‡2
6136 ƒq‡e†зƒq‡eƒq‡e‡D ‡3
6137 ƒq‡e†з†з†зƒq‡eƒq‡e†зƒq‡e‡D ‡i
6138 ƒq‡e†з‚.†з†з†з†зƒq‡e†з†зƒq‡e‡D ‡N ‡x ‡N ‡y 
6139 –(–)2
6140 LW,TшшPIC
6141 зкџџџџІLMETA џџџџџџџџџџџџЈˆCompObjйлџџџџЏZObjInfoџџџџмџџџџБWЦ9 Ј џџџ.1   р&џџџџРџЅџ Х & MathType`ћ€ўМTms RmnН- 2
6142 `8Dћ џМTms Rmn-№ 2
6143 Тhi>
6144 &
6145 џџџџћМ"System-№ўџ
6146 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2)Щ Ч3ф(з2Ь/з2
6147 ‡D ‡iLWфTшшWf9 § џџџ.1    &џџџџРџЄџ`Ф &Equation Native џџџџџџџџџџџџВ<_897308217џџџџџџџџпРF ДМЅ Н`АеМЅ НOle
6148 џџџџџџџџџџџџГPIC
6149 осџџџџДLMETA џџџџџџџџџџџџЖ(CompObjртџџџџПZObjInfoџџџџуџџџџСEquation Native џџџџџџџџџџџџТ\ MathType@ћ€ўPSymbol™- 2
6150  *ЖМ 2
6151  aЖМћ џTms Rmn:˜-№ 2
6152 є*2p 2
6153 єи2pћ€ўTms Rmn-№ 2
6154  ц/kћ€ўTms Rmn:˜-№ 2
6155  z•
6156 &
6157 џџџџћМ"System-№џљўџљќ?џјќ?џјќ?џњќ?џјќ?џјќ?џјќ?џњќ?џ§ўџ
6158 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2)Щ@Ч3l)з2\0з2
6159 „Ж ˆ2
6160 ‚/„Жƒz ˆ2-№ Lф{Єhшшф{FH Щ џџџ._897308216оnцРF иоМЅ Н иоМЅ НOle
6161 џџџџџџџџџџџџФPIC
6162 хшџџџџХLMETA џџџџџџџџџџџџЧШ1  @ &џџџџРџОџ`ў & MathType`ћ€ўPSymbol™- 2
6163 €3бћ џTms Rmn-№ 2
6164 сchpћ џTms Rmn@œ-№ 2
6165 кі2p
6166 &
6167 џџџџћМ"System-№ўџ
6168 џџџџРFMicrosoft Equation 2.0 DS EqCompObjчщџџџџЯZObjInfoџџџџъџџџџбEquation Native џџџџџџџџџџџџв\_897308215џџџџџџџџэРF иоМЅ Н@yцМЅ Нuation Equation.2)Щ@Ч3˜)з2„0з2
6169 †б ƒh
6170  ˆ2џџџ.1L34„@шш34о< л џџџ.Ole
6171 џџџџџџџџџџџџдPIC
6172 ьяџџџџеLMETA џџџџџџџџџџџџзшCompObjю№џџџџпZ1   &џџџџРџЅџ`Ѕ & MathTypePћ€ўTms Rmn- 2
6173 `MN 2
6174 `БNћ џTms Rmn-№ 2
6175 РlZ} 2
6176 РаZ}ћ€ўPSymbol-№ 2
6177 `xДг
6178 &
6179 џџџџћМ"System-№џџџџџџџџ џџџџ ўџ
6180 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2)Щ@Ч3\)з2ь*з2
6181 ƒN ƒZ
6182 †ДƒN ƒZџїџџџџїџџџџяџџџўhяџL{4h@шш{4.9 У џџџ.ObjInfoџџџџёџџџџсEquation Native џџџџџџџџџџџџт\_897308214јыєРF@yцМЅ Н ћ!НЅ НOle
6183 џџџџџџџџџџџџфPIC
6184 ѓіџџџџхLMETA џџџџџџџџџџџџчЈObjInfoѕїџџџџюEquation Native џџџџџџџџџџџџя<1  @&џџџџ$ЅџdЅ & MathTypePћ€ўTms Rmn- 2
6185 `MNћ џTms RmnP”-№ 2
6186 РlZ}&,MathTypeUU 
6187 ƒN ƒZ
6188 &
6189 џџџџћМ"System-№TўUUTџ?џўџџўџ€ў)Щ pŽR—$
6190 ƒN ƒZ_897308212џџџџџџџџњРF ћ!НЅ Н e:НЅ НOle
6191 џџџџџџџџџџџџ№PIC
6192 љќџџџџёLMETA џџџџџџџџџџџџѓшL34„@шш34оE л џџџ.1   &џџџџРџЅџ`Ѕ & MathTypePћ€ўTms Rmn- 2
6193 `MN 2
6194 `ТNћ џTms Rmny-№ 2
6195 РrXˆ 2
6196 РдY}ћ€ўPSymbol-№ 2
6197 `‰Дг
6198 &
6199 џџџџћМ"System-№ўџ
6200 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2УШ@G= +w< +w<
6201 ƒN ƒX
6202 †ДƒN ƒYџџ.1CompObjћ§џџџџћZObjInfoџџџџўџџџџ§Equation Native џџџџџџџџџџџџў\_897308210 ђРF e:НЅ Н@VTНЅ НOle
6203 џџџџџџџџџџџџPIC
6204 џџџџLMETA џџџџџџџџџџџџˆCompObjџџџџ
6205 fўџџџўџџџ ўџџџ ўџџџўџџџўџџџўџџџўџџџўџџџўџџџўџџџўџџџўџџџўџџџ!"#$%&'(ўџџџ*ўџџџўџџџ-ўџџџўџџџ0ўџџџ234567ўџџџ9ўџџџўџџџўџџџўџџџ>ўџџџ@ABCDEFGHIўџџџKўџџџўџџџNўџџџўџџџQўџџџSTUVWXўџџџZўџџџўџџџўџџџўџџџ_ўџџџabcdefўџџџhўџџџўџџџўџџџўџџџmўџџџopqrstўџџџvўџџџўџџџўџџџўџџџ{ўџџџ}~€LWИTшшWОJ Б џџџ.1   Р&џџџџРџЅџ€Х & MathType`ћ€ўМTimes New RomanЈ- 2
6206 `8AћџМTimes New Romanфt-№
6207 2
6208 Рo3d€
6209 &
6210 џџџџћМ"Systemn-№"Systemn-№ўџ
6211 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqЭ пDTяC0яC
6212 ‡A ‡3‡dLф{ЄhшшObjInfoџџџџџџџџ Equation Native џџџџџџџџџџџџ <_897308209џџџџџџџџРF@VTНЅ Н`ї[НЅ НOle
6213 џџџџџџџџџџџџPIC
6214 
6215 џџџџLMETA џџџџџџџџџџџџˆCompObj  џџџџZObjInfoџџџџ џџџџф{о< А џџџ.1  @ &џџџџРџОџ`ў & MathType`ћ€ўPSymbol™- 2
6216 €3бћ џTms Rmn-№ 2
6217 р_3p 2
6218 кщ2p
6219 &
6220 џџџџћМ"System-№XHg§RX]]§ћqXC§#Xўџ
6221 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2)Щ@Ч3ј)з2ˆ+з2
6222 †б ˆ3
6223  ˆ2ўPjšqЇhфjjšъ RPhџhLWфTшшEquation Native џџџџџџџџџџџџ\_897308207РF`ї[НЅ НшuНЅ НOle
6224 џџџџџџџџџџџџPIC
6225 џџџџLMETA џџџџџџџџџџџџ (CompObjџџџџ)ZObjInfoџџџџџџџџ+Equation Native џџџџџџџџџџџџ,\Wf9 § џџџ.1    &џџџџРџЄџ`Ф & MathType@ћ€ўPSymbol™- 2
6226  *ЖМ 2
6227  aЖМћ џTms Rmn:˜-№ 2
6228 є*2p 2
6229 єи2pћ€ўTms Rmn-№ 2
6230  ц/kћ€ўTms Rmn:˜-№ 2
6231  z•
6232 &
6233 џџџџћМ"System-№џљўџљќ?џјќ?џјќ?џњќ?џјќ?џјќ?џјќ?џњќ?џ§ўџ
6234 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2)Щ@Ч3l)з2\0з2
6235 „Ж ˆ2
6236 ‚/„Жƒz ˆ2-№ LWИTшш_897471881.‚РF ‰}НЅ Н ‰}НЅ НOle
6237 џџџџџџџџџџџџ.PIC
6238 џџџџ/LMETA џџџџџџџџџџџџ1ˆWОJ Б џџџ.1   Р&џџџџРџЅџ€Х & MathType`ћ€ўМTimes New RomanЈ- 2
6239 `8AћџМTimes New Romanфt-№
6240 2
6241 Рo3d€
6242 &
6243 џџџџћМ"Systemn-№"Systemn-№CompObjџџџџ8fObjInfoџџџџџџџџ:Equation Native џџџџџџџџџџџџ;<_897308205џџџџџџџџРF ‰}НЅ НрŸНЅ Нўџ
6244 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqЭ пDTяC0яC
6245 ‡A ‡3‡dLвЏМЈшшвЏC ? џџџ.Ole
6246 џџџџџџџџџџџџ<PIC
6247 џџџџ=LMETA џџџџџџџџџџџџ?ЈCompObj џџџџJZ1  @`&џџџџРџЖџ і & MathTypeањ-=і=Ъћ€ўPSymbolZ- 2
6248 Ћ"Dъ 2
6249 ЩDъћ€ўTms Rmn-№ 2
6250 Ћ z• 2
6251 ЩўxЈћ€ўPSymbol-№ 2
6252 ц1ц‘ 2
6253 ‡1ш‘ 2
6254 Ќ1ч‘ 2
6255 цді‘ 2
6256 ‡дј‘ 2
6257 Ќдї‘ћ џTms Rmn-№ 2
6258 тЊ2p
6259 &
6260 џџџџћМ"System-№ћ€ўTms Rmnўџ
6261 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2УШ@G=,+w<2w<
6262 …Dƒz…Dƒx–(–) ˆ2ms RmnObjInfoџџџџ!џџџџLEquation Native џџџџџџџџџџџџM\_897471894џџџџџџџџ$РFрŸНЅ Н BЈНЅ НOle
6263 џџџџџџџџџџџџOPIC
6264 #&џџџџPLMETA џџџџџџџџџџџџRˆCompObj%'џџџџYfObjInfoџџџџ(џџџџ[LWИTшшWОJ Б џџџ.1   Р&џџџџРџЅџ€Х & MathType`ћ€ўМTimes New RomanЈ- 2
6265 `8AћџМTimes New Romanфt-№
6266 2
6267 Рo3d€
6268 &
6269 џџџџћМ"Systemn-№"Systemn-№ўџ
6270 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqЭ пDTяC0яC
6271 ‡A ‡3‡dLWИTшшEquation Native џџџџџџџџџџџџ\<_897471904"0+РF BЈНЅ Н`дЩНЅ НOle
6272 џџџџџџџџџџџџ]PIC
6273 *-џџџџ^LMETA џџџџџџџџџџџџ`ˆCompObj,.џџџџgfObjInfoџџџџ/џџџџiEquation Native џџџџџџџџџџџџj<WОJ Б џџџ.1   Р&џџџџРџЅџ€Х & MathType`ћ€ўМTimes New RomanЈ- 2
6274 `8AћџМTimes New Romanфt-№
6275 2
6276 Рo3d€
6277 &
6278 џџџџћМ"Systemn-№"Systemn-№ўџ
6279 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqЭ пDTяC0яC
6280 ‡A ‡3‡dLWИTшшWОJ Б џџџ.1   Р&џџџџРџЅџ€Х &_897471911џџџџџџџџ2РF€uбНЅ Н€uбНЅ НOle
6281 џџџџџџџџџџџџkPIC
6282 14џџџџlLMETA џџџџџџџџџџџџnˆ MathType`ћ€ўМTimes New RomanЈ- 2
6283 `8AћџМTimes New Romanфt-№
6284 2
6285 Рo3d€
6286 &
6287 џџџџћМ"Systemn-№"Systemn-№ўџ
6288 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqCompObj35џџџџufObjInfoџџџџ6џџџџwEquation Native џџџџџџџџџџџџx<_897308201Sџ9РF€uбНЅ Н@ѓНЅ НЭ пDTяC0яC
6289 ‡A ‡3‡dL4ф@шш4>C Б џџџ.1   &џџџџРџЈџ`Ј & MathTypePћ€ўМTms Rmn+-
6290 2
6291 `8Apз 2
6292 `Уf~ћ€ўPSymbolOle
6293 џџџџџџџџџџџџyPIC
6294 8;џџџџzLMETA џџџџџџџџџџџџ|ˆCompObj:<џџџџƒZ‚ўџџџ„ўџџџўџџџўџџџўџџџ‰ўџџџ‹ŒŽўџџџ’ўџџџўџџџўџџџўџџџ—ўџџџ™š›œžŸ ЁўџџџЃўџџџўџџџІўџџџўџџџЉўџџџЋЌ­ЎЏАўџџџВўџџџўџџџўџџџўџџџЗўџџџЙКЛМНОПРСТУўџџџХўџџџўџџџШЩўџџџўџџџЬўџџџЮЯабвгдўџџџжўџџџўџџџйўџџџўџџџмўџџџопрстуфхўџџџчўџџџўџџџъўџџџўџџџэўџџџя№ёђѓєѕіїјљњћўџџџ§ўџџџўџџџ-№ 2
6295 `„=г
6296 &
6297 џџџџћМ"System-№єqA ЩџL лџP лџT юџV юџW юџY ўџ
6298 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ЁЬ 3М4ќ 4
6299 ‡A‡p†=‡fM…вcyObjInfoџџџџ=џџџџ…Equation Native џџџџџџџџџџџџ†<_897308200џџџџџџџџ@РF@ѓНЅ Н@ѓНЅ НOle
6300 џџџџџџџџџџџџ‡PIC
6301 ?BџџџџˆLMETA џџџџџџџџџџџџŠˆCompObjACџџџџ‘ZObjInfoџџџџDџџџџ“LƒЪ шшƒЪюD Б џџџ.1   &џџџџРџЅџРE & MathType ћ€ўМTms Rmn+-
6302 2
6303 `5KA+ 2
6304 `I•ћ€ўPSymbol-№ 2
6305 `оЛг
6306 &
6307 џџџџћМ"System-№єqA ЩџL лџP лџT юџV юџW юџY ўџ
6308 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ЁЬ 3ь4Ј4
6309 ‡K‡A†Л‡IM…вcyLЅ {xhшшEquation Native џџџџџџџџџџџџ”<_897308199L>GРF/ќНЅ Нрa%ОЅ НOle
6310 џџџџџџџџџџџџ•PIC
6311 FIџџџџ–LMETA џџџџџџџџџџџџ˜HCompObjHJџџџџЂZObjInfoџџџџKџџџџЄEquation Native џџџџџџџџџџџџЅ\Ѕ {NF   џџџ.1  @Р&џџџџРџЇџ€ч & MathType`ћ7ўнPSymbol„-2
6312 Œ,(ћ7ўнPSymbol„-№2
6313 ŒЯ)ћ€ўМTms Rmn+-№ 2
6314 €ЗI• 2
6315 €МC 2
6316 €Lpз
6317 2
6318 €ПKf+~ћ€ўPSymbol-№ 2
6319 €Ÿ-г 2
6320 €„=г
6321 &
6322 џџџџћМ"System-№џџџџџџџџўџ
6323 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ЁЬ@3ќ4<4
6324 ‡I†-‡C–(–)‡p†=‡K‡fџџџјFџџџџџџјџџџџџџј_897308198џџџџџџџџNРFрa%ОЅ Нрa%ОЅ НOle
6325 џџџџџџџџџџџџЇPIC
6326 MPџџџџЈLMETA џџџџџџџџџџџџЊЈLDэАшшDэ6C У џџџ.1  Р€&џџџџРџЈџ@h & MathType0ћ€ўМTms Rmn+- 2
6327 `0C 2
6328 `фI•
6329 2
6330 `юKA+ћ€ўPSymbol-№ 2
6331 `Є=г 2
6332 `Ь-г
6333 &
6334 џџџџћМ"System-№ўџ
6335 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ЁЬ 3@4p$4
6336 ‡C†=‡I†-‡K‡A)‡pL) <TјшшCompObjOQџџџџБZObjInfoџџџџRџџџџГEquation Native џџџџџџџџџџџџД<_897308197aEUРF ‰.ОЅ Н€МWОЅ НOle
6337 џџџџџџџџџџџџЕPIC
6338 TWџџџџЖLMETA џџџџџџџџџџџџИшCompObjVXџџџџФZ) <і; b џџџ.1  Р
6339 &џџџџРџЎџр n & MathTypeћ€ўМTms RmnТ
6340 - 2
6341 ˜5pз
6342 2
6343 ˜1Cpз
6344 2
6345 ˜Kf+~2
6346 @ ``````` 2
6347 E=к
6348 2
6349 „ p`з 2
6350 Йbзћ џМTms Rmn--№ 2
6351 ь#i> 2
6352 ьѓ1p 2
6353 ь3i> 2
6354 mвi> 2
6355 mЇi>ћ џPSymbol-№ 2
6356 ьp+{ћ€ўPSymbol-№ 2
6357 ˜ћ=г 2
6358 ˜ї+г 2
6359 –+г
6360 &
6361 џџџџћМ"System-№ЦЦЧ4ўџ
6362 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ЁЬ 3Р'4,4
6363 ‡p ‡i†+‡1
6364 †=ObjInfoџџџџYџџџџЦEquation Native џџџџџџџџџџџџЧМ_897308196џџџџџџџџ\РF€МWОЅ Н€МWОЅ НOle
6365 џџџџџџџџџџџџЪ‡C‡p ‡i
6366 †+‡K‡f‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡=‡ ‡p ‡i
6367 †+‡b ‡iPSymbol-№LV4˜@шшV4G м џџџ.1  Р&џџџџРџІџ€І & MathType0ћ€ўМTms Rmn- 2
6368  PIC
6369 [^џџџџЫLMETA џџџџџџџџџџџџЭшCompObj]_џџџџеZObjInfoџџџџ`џџџџз5bз
6370 2
6371  9Kr+Јћ џМTms Rmn-№ 2
6372 є#i> 2
6373 є.i>ћ€ўPSymbol-№ 2
6374  ў=г
6375 &
6376 џџџџћМ"System-№ўџ
6377 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Equation Native џџџџџџџџџџџџи\_897308195hZcРF@ф`ОЅ Н@NyОЅ НOle
6378 џџџџџџџџџџџџкPIC
6379 beџџџџлLЁЬ@3м$4М'4
6380 ‡b ‡i
6381 †=‡K‡r ‡iџџL‹{иhшш‹{ž9 ю џџџ.1  @Р&џџџџРџІџ€ц & MathTypePћ€ўМTms Rmn- 2
6382  META џџџџџџџџџџџџнCompObjdfџџџџцZObjInfoџџџџgџџџџшEquation Native џџџџџџџџџџџџщ\5rЈ 2
6383  f~
6384 2
6385  .Apзћ џМTms RmnФP-№ 2
6386 єџi> 2
6387 є0i>ћ€ўPSymbol-№ 2
6388  к=г 2
6389   -г
6390 &
6391 џџџџћМ"System-№?џўUUTPUUTbUUT?џўjЊЊjЊЊjЊЊ?џўўџ
6392 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ЁЬ@3t&4l*4
6393 ‡r ‡i
6394 †=‡f†-‡A‡p ‡iџ€џ€џL“ іашш“ і./ Ž џџџ.1  €€
6395 &џџџџРџЉџ@
6396 ) &_897308194џџџџџџџџjРF`я€ОЅ Н`я€ОЅ НOle
6397 џџџџџџџџџџџџыPIC
6398 ilџџџџьLMETA џџџџџџџџџџџџюH MathType№ћ€ўМTms Rmn<- 2
6399 5rЈ 2
6400 rЈ
6401 2
6402 ФAbз 2
6403 5bз
6404 2
6405 6Kr+Ј 2
6406  bзћ џМTms Rmn-№ 2
6407 ёџi> 2
6408 ёЯ1p 2
6409 ёмi> 2
6410 ёЦi> 2
6411 r#i> 2
6412 rѓ1p 2
6413 r+i> 2
6414 rћ1p 2
6415 r§ i>ћ џPSymbol-№ 2
6416 ёL+{ 2
6417 rp+{ 2
6418 rx+{ћ€ўPSymbol-№ 2
6419 з=г 2
6420 Ÿ-г 2
6421 ћ=г 2
6422 ь+г
6423 &
6424 џџџџћМ"System-№€џр€€€џу€€€џр€€€џрџјџјџћўџ
6425 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ЁЬ 3t&4”*4
6426 ‡r ‡i†+‡1
6427 †=CompObjkmџџџџќZObjInfoџџџџnџџџџўEquation Native џџџџџџџџџџџџџМ_897308193Ї7qРF`я€ОЅ НJГОЅ Нўџџџўџџџўџџџ 
6428    ўџџџўџџџўџџџўџџџўџџџўџџџўџџџўџџџ !"#$%&'()*+,-ўџџџўџџџ0ўџџџ23456789:;<=>ўџџџ@ўџџџўџџџCDEўџџџўџџџHўџџџJKLMNOўџџџQўџџџўџџџўџџџўџџџVўџџџXYZ[\]^_ўџџџaўџџџўџџџdўџџџўџџџgўџџџijklmnopўџџџrўџџџўџџџuўџџџўџџџxўџџџz{|}~€‡r ‡i
6429 †-‡A‡b ‡i
6430 ‡b ‡i†+‡1
6431 †=‡K‡r ‡i†+‡1
6432 †+‡b ‡i>ћ џLЏWЈTшшЏW&N њ џџџ.1   @&џџџџРџЄџФ & MathTypePћ*ўоPSymbol|-2
6433 —Ole
6434 џџџџџџџџџџџџPIC
6435 psџџџџLMETA џџџџџџџџџџџџCompObjrtџџџџf[ћ*ўоPSymbol|-№2
6436 —]ћ€ўМTimes New Romanфt-№ 2
6437 €ЄrЈ
6438 2
6439 €зArЈћ€ўTimes New Roman-№ 2
6440 €J,`
6441 &
6442 џџџџћМ"Systemn-№џџџџўџ
6443 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqObjInfoџџџџuџџџџEquation Native џџџџџџџџџџџџ\_897308192џџџџџџџџxРFJГОЅ НрФОЅ НOle
6444 џџџџџџџџџџџџЭ@пDDяChяC
6445 ‡r‚,‡A‡r–[–]џџџ.1L$№xшшўџ
6446 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2PIC
6447 wzџџџџLMETA џџџџџџџџџџџџkCompObjy{џџџџZObjInfoџџџџ|џџџџ$vO ъ џџџ.1  Р €&џџџџРџЅџ@e & MathType№ћ§нPSymbolƒ-2
6448 0- [ћ§нPSymbolƒ-№2
6449 0№ ]ћ§нPSymbolƒ-№2
6450 ­  [ћ§нPSymbolƒ-№2
6451 ­
6452 ]њ-Ь Ьˆћ§нPSymbolƒ-№2
6453  [ћ§нPSymbolƒ-№2
6454 Щ ]ћ§нPSymbolƒ-№2
6455 ˜[ћ§нPSymbolƒ-№2
6456 ˜Т ]З ЗGћ§нPSymbol„-№2
6457 Ќ}[ћ§нPSymbol„-№2
6458 Ќ ]њ-- -% ћ€ўTms Rmn;-№2
6459 Ё@ ````````2
6460 0@
6461 ``````````2
6462 0
6463 ``````````2
6464 0Р `````2
6465 /р
6466 `````````` 2
6467 /  ```2
6468 р ````````2
6469 &р `````````2
6470 f = ````````2
6471 р@
6472 ``````````2
6473 р `````2
6474 рj
6475 ``````````2
6476 l@
6477 ``````````2
6478 l `````2
6479 3@
6480 ``````````2
6481 3
6482 ``````````
6483 2
6484 3Р ``2
6485 s @
6486 ``````````2
6487 s 
6488 ``````````
6489 2
6490 s Р ``ћ€ўМTms Rmn-№ 2
6491 Ё@rЈ 2
6492 ЁWf~
6493 2
6494 ЁlApз 2
6495 Ё ;~ 2
6496 ЁЇ bз
6497 2
6498 ЁоKp+з 2
6499 №В rЈ 2
6500 №ѓ
6501 ,`
6502 2
6503 №‚ Kr+Ј 2
6504 m ˜ bз 2
6505 m §
6506 ,`
6507 2
6508 m  Abз 2
6509 ; еpз 2
6510 ; жpз 2
6511 ; & bз 2
6512 ; rЈ 2
6513 ; шrЈ
6514 2
6515 ; Abз 2
6516 л‘rЈ 2
6517 лЯ ,`
6518 2
6519 л^
6520 Kr+Ј 2
6521 X˜rЈ 2
6522 Xй ,`
6523 2
6524 Xk
6525 ArЈ 2
6526 &@bз
6527 2
6528 &AKr+Ј 2
6529 &ˆbз
6530 2
6531 рЊ noзР 2
6532 lrЈ 2
6533 l@ ,` 2
6534 lЯ rЈ 2
6535 3
6536 yesРЈ•ћ џМTms Rmn;-№ 2
6537 ѕ 0p 2
6538 ѕo
6539 0p 2
6540 ѕ– 0p 2
6541 ѕј0p 2
6542 D|
6543 i> 2
6544 Dw i> 2
6545 С†
6546 i> 2
6547 С‘ i> 2
6548  Уi> 2
6549  “1p 2
6550  Фi> 2
6551  
6552 i> 2
6553  е i> 2
6554  Ѕ 1p 2
6555  Вi> 2
6556  i> 2
6557 /[i> 2
6558 /+ 1p 2
6559 /S i> 2
6560 /# 1p 2
6561 Ќb i> 2
6562 ЌI i> 2
6563 z.i> 2
6564 zў1p 2
6565 z6
6566 i> 2
6567 z 1p 2
6568 zvi> 2
6569 РЬi> 2
6570 Рœ1p 2
6571 Р™
6572 i> 2
6573 Рi 1pћ€ўPSymbol-№ 2
6574 Ё=г 2
6575 ЁG-г 2
6576 ЁЃ =г 2
6577 0я Џц 2
6578 /Ю=г 2
6579 ; ›=г 2
6580 ; ˆ+г 2
6581 ; ­ =г 2
6582 ; u-г 2
6583 Ч=г 2
6584 &=г 2
6585 &ї +г 2
6586 Ю@щ‘ 2
6587 }@ы‘ 2
6588 ?@ъ‘ 2
6589 А @ъ‘ 2
6590 ! @ъ‘ 2
6591 ’ @ъ‘ 2
6592 @ъ‘ 2
6593 t@ъ‘ 2
6594 х@ъ‘ 2
6595 V@ъ‘ 2
6596 Ч@ъ‘ 2
6597 Ю•љ‘ 2
6598 }•ћ‘ 2
6599 ?•њ‘ 2
6600 А •њ‘ 2
6601 ! •њ‘ 2
6602 ’ •њ‘ 2
6603 •њ‘ 2
6604 t•њ‘ 2
6605 х•њ‘ 2
6606 V•њ‘ 2
6607 Ч•њ‘ 2
6608 р/Џц 2
6609 рy ­ц 2
6610 lФ <г 2
6611 ~ўщ‘ 2
6612 йўы‘ 2
6613 яўъ‘ 2
6614 ~Уљ‘ 2
6615 йУћ‘ 2
6616 яУњ‘ 2
6617 3ЯЏцћ џPSymbol-№ 2
6618  +{ 2
6619  " +{ 2
6620 /Ј+{ 2
6621 /  +{ 2
6622 z{+{ 2
6623 zƒ
6624 +{ 2
6625 Р+{ 2
6626 Рц
6627 +{ћ€ўPSymbol-№ 2
6628 /Рaё 2
6629 ; —aё 2
6630 ; ƒaё 2
6631 рbг 2
6632 & bг 2
6633 lѓeЈћ џTms Rmn;-№ 2
6634 ƒ№i> 2
6635  Чi> 2
6636  Гi> 2
6637 nщi> 2
6638 z)i>ћ€ўTms Rmn-№ 2
6639 s €STOPРзъћ€ўTms Rmn;-№ 2
6640 ; 
6641 ;kћ џTms Rmn-№ 2
6642 гЉ 1p 2
6643 Љ 2p
6644 &
6645 џџџџћМ"System-№§ПџћCУџџяјИПўуУџџяђПўуУџџя№РПўуУџџя№ПўХЫ—(ˆ
6646 п>п>
6647         ‡r ‡0
6648 †=‡f†-‡A‡p ‡0
6649 ‡;‡b ‡0
6650 †=‡K‡p ‡0
6651                          †Џ             „a ƒi
6652 †=‡r ‡i
6653 ‡,‡K‡r ‡i
6654 –[–]‡b ‡i
6655 ‡,‡A‡b ‡i
6656 –[–]‡p ‡i†+‡1
6657 †=‡p ‡iEquation Native џџџџџџџџџџџџ_897308191„vРFрФОЅ Н :ЭОЅ НOle
6658 џџџџџџџџџџџџ.PIC
6659 ~џџџџ/L
6660 †+„a ƒi
6661 ‡b ‡i
6662 ‚;‡r ‡i†+‡1
6663 †=‡r ‡i
6664 †-„a ƒi
6665 ‡A‡b ‡i
6666         „b ƒi
6667 †=‡r ‡i†+‡1
6668 ‡,‡K‡r ‡i†+‡1
6669 –[–]‡r ‡i
6670 ‡,‡A‡r ‡i
6671 –[–]         ‡b ‡i†+‡1
6672 †=‡K‡r ‡i†+‡1
6673 †+„b ƒi
6674 ‡b ‡i
6675 –[–]                       †Џ          †­‡n‡o               ‡r ‡i†+‡1
6676 ‡,‡r ‡i†+‡1
6677 –[–] ˆ1ˆ2
6678 †<„e–[–]                      †Џ‡y‡e‡s                      ƒSƒTƒOƒPввввy›ccccMMLФ{рhшшФ{–< Ё џџџ.1  @&џџџџРџЄџРф & MathTypePћ€ўTms RmnŒ‰- 2
6679  ;aР 2
6680  јpР 2
6681  aР 2
6682  
6683 pР 2
6684  _
6685 aР 2
6686   pР 2
6687  ?aР 2
6688  pР 2
6689  QaР 2
6690  эpР 2
6691  [fkћ џTms Rmnр-№ 2
6692 єCMETA џџџџџџџџџџџџ1hCompObj€‚џџџџ?ZObjInfoџџџџƒџџџџAEquation Native џџџџџџџџџџџџBќ• 2
6693 єгC• 2
6694 єњWЙ 2
6695 єхWЙ 2
6696 єH Eˆ 2
6697 є Eˆ 2
6698 є-N• 2
6699 єџN• 2
6700 є5Sp 2
6701 єЭSp 2
6702 є#C•ћ€ўPSymbol-№ 2
6703  ђ+г 2
6704  6 +г 2
6705  +г 2
6706  (+г 2
6707  н=г
6708 &
6709 џџџџћМ"System-№C• 2
6710 'N• 2
6711 ўџ
6712 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Ьрч2Мї1ќ ї1
6713 ƒa ƒC
6714 ƒp ƒC
6715 †+ƒa ƒW
6716 ƒp ƒW
6717 †+ƒa ƒE
6718 ƒp ƒE
6719 †+ƒa ƒN
6720 ƒp ƒN
6721 †+ƒa ƒS
6722 ƒp ƒS
6723 †=ƒf ƒCl-№ 2
6724 L44@@шш_897308190џџџџџџџџ†РF :ЭОЅ Н`ЬюОЅ НOle
6725 џџџџџџџџџџџџFPIC
6726 …ˆџџџџGLMETA џџџџџџџџџџџџIˆ44ў< Ј џџџ.1  &џџџџРџЄџРЄ & MathType0ћ€ўTms RmnŒ‰- 2
6727  ;aРћ џTms Rmnр-№ 2
6728 єC•
6729 &
6730 џџџџћМ"System-№Tms RmnŒ‰- 2
6731  ;aCompObj‡‰џџџџPZObjInfoџџџџŠџџџџREquation Native џџџџџџџџџџџџS<_897308189™}РF`ЬюОЅ Н€mіОЅ Н§џџџƒ…„‡†‰ˆŠ‹ŽЇ‘’“”•–—˜™š›œ žŸЁЃЂЅЄЉІЈРЊЋЌ­ЎВЏАБГДЕЙЖЗИКЛМОНСПУнТФЦХШЧЪЩЬЫЯЭЮабвегджзикйлморіпстучфхцшщъьыэюя№ёѓђєѕїљўџџџјњћ-,§џџџўџўџ
6732 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Ь ч2ьї1Јї1
6733 ƒa ƒCL<4ј@шш<4І< ї џџџ.Ole
6734 џџџџџџџџџџџџTPIC
6735 ŒџџџџULMETA џџџџџџџџџџџџWCompObjސџџџџ`Z1  Р&џџџџРџЄџ€Є & MathType0ћ€ўTms RmnŒ‰- 2
6736  ;aРћ џTms Rmnр-№ 2
6737 є)N• 2
6738 єSp 2
6739 ємEˆ 2
6740 єВWЙћ џTms RmnŒ‰-№ 2
6741 єе,8 2
6742 є”,8 2
6743 єt,8
6744 &
6745 џџџџћМ"System-№ўџ
6746 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Ь@ч2ќї1<ї1
6747 ƒa ƒN‚,ƒS‚,ƒE‚,ƒWFLhРшшObjInfoџџџџ‘џџџџbEquation Native џџџџџџџџџџџџc\_897308188џџџџџџџџ”РF€mіОЅ Н@џПЅ НOle
6748 џџџџџџџџџџџџePIC
6749 “–џџџџfLMETA џџџџџџџџџџџџh(CompObj•—џџџџqZObjInfoџџџџ˜џџџџshV<  џџџ.1  &џџџџРџЙџРЙ & MathTypeРњ-ЎАћ€ўTms Rmnр- 2
6750 €\pР 2
6751 ‹fk 2
6752 ЉмaРћ џTms Rmn0-№ 2
6753 д7C• 2
6754 пЮC• 2
6755 §ЛC•ћ€ўPSymbol-№ 2
6756 €lЛг
6757 &
6758 џџџџћМ"System-№РFўџ
6759 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Ь`ч2@ї1|$ї1
6760 ƒp ƒC
6761 †Лƒf ƒC
6762 ƒa ƒCL+4Ь@шшEquation Native џџџџџџџџџџџџt|_897308187 ’›РF@џПЅ Н'!ПЅ НOle
6763 џџџџџџџџџџџџvPIC
6764 šџџџџwL+4ЮE Ъ џџџ.1  р&џџџџРџЅџ Ѕ & MathTypePћ€ўМTms Rmn0- 2
6765 `5K+ћ џМTms Rmn-№ 2
6766 РDЁћ џTms Rmn0-№ 2
6767 Рƒ2p
6768 &
6769 џџџџћМ"System-№ўџџџџџџџџџџџџџyџџџџџџџџџџџџўџџџџџџMETA џџџџџџџџџџџџyШCompObjœžџџџџZObjInfoџџџџŸџџџџƒEquation Native џџџџџџџџџџџџ„<ўџџџ‚ўџџџўџџџўџџџўџџџ‡ўџџџ‰Š‹ŒŽ‘’“”•ўџџџ—ўџџџўџџџš›œўџџџўџџџŸўџџџЁЂЃЄЅўџџџЇўџџџўџџџЊўџџџўџџџ­ўџџџЏАБВГДўџџџЖўџџџўџџџўџџџўџџџЛўџџџНОПРСТУФХЦЧШЩЪЫЬЭЮЯабвгдўџџџжўџџџўџџџйклмнопўџџџўџџџтўџџџфхцчшщъыўџџџўџџџюўџџџўџџџёўџџџѓєѕіїјљњћќ§ўџўџџџџџџџџџўўџ
6770 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2+Щ w?l=Ь=
6771 ‡K ˆ2‡DџџџџџLS<c
6772 јшш_897308186џџџџџџџџЂРF'!ПЅ НРИBПЅ НOle
6773 џџџџџџџџџџџџ…PIC
6774 ЁЄџџџџ†LMETA џџџџџџџџџџџџˆhS<–<   џџџ.1  Р &џџџџРџЙџ`y & MathType њ-YТ[ТрY= [= [ qћ€ўTms Rmn<‰- 2
6775 €\pР 2
6776 ‹Еfk 2
6777 НћaР 2
6778 €№pР 2
6779 ‹1 fk 2
6780 Нv aР 2
6781 €ЌetcЈkЈћ џTms Rmn-№ 2
6782 д7WЙ 2
6783 п}WЙ 2
6784 кC• 2
6785 nћWЙ 2
6786 дкN• 2
6787 п N• 2
6788 U C• 2
6789 n… N•ћ€ўPSymbol-№ 2
6790 €žЛг 2
6791 €
6792 Лгћ€ўTms Rmn-№ 2
6793 €?;k
6794 &
6795 џџџџћМ"System-№џџџџџџТџџџџџџџџџџџџџџџџџџџџџџ€ўџ
6796 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2CompObjЃЅџџџџ–ZObjInfoџџџџІџџџџ˜Equation Native џџџџџџџџџџџџ™м_897308185Т‹ЉРFРИBПЅ НРИBПЅ НЬРч2€&ї1 %ї1
6797 ƒp ƒW
6798 †Лƒf ƒW
6799 ƒa ƒC
6800 –b ƒW
6801 ‚;ƒp ƒN
6802 †Лƒf ƒN
6803 ƒa ƒC
6804 –b ƒN
6805 ƒeƒtƒcPO>Lž+|ЬшшOle
6806 џџџџџџџџџџџџPIC
6807 ЈЋџџџџžLMETA џџџџџџџџџџџџ hCompObjЊЌџџџџІZž+6A œ џџџ.1  р`&џџџџРџЖџ – & MathTypeњ-Jpћ џTms RmnМ- 2
6808 ƒKWЙ
6809 &
6810 џџџџћМ"System-№Tms RmnМ-№ 2
6811 #бўџ
6812 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ObjInfoџџџџ­џџџџЈEquation Native џџџџџџџџџџџџЉ\_897308184џџџџџџџџАРFрYJПЅ Н`uПЅ НOle
6813 џџџџџџџџџџџџЋБШ@ч:Иї9Рї9
6814  
6815 –b ƒW2
6816 ƒo2dp} LW{ThшшW{Ў= Ј џџџ.1  @ &џџџџРџЄџрф &PIC
6817 ЏВџџџџЌLMETA џџџџџџџџџџџџЎˆCompObjБГџџџџЕZObjInfoџџџџДџџџџЗ MathTypePћ€ўTms Rmnюџ- 2
6818  \pРћ џTms Rmn -№ 2
6819 є7C•
6820 &
6821 џџџџћМ"System-№џџџџkўџ
6822 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Equation Native џџџџџџџџџџџџИ<_897308183МЎЗРF`uПЅ Н`}ПЅ НOle
6823 џџџџџџџџџџџџЙPIC
6824 ЖЙџџџџКLЬ ч2”(ї1$*ї1
6825 ƒp ƒCLŸ!pшшŸ!žD љ џџџ.1  €€&џџџџРџИџ@8 & MathType0њ-НЎНАН9Н љ_ ћ_ Н
6826 НљпMETA џџџџџџџџџџџџМ(CompObjИКџџџџеZObjInfoџџџџЛџџџџзEquation Native џџџџџџџџџџџџимћпН НpљћНћНWљћНтН€ћ€ўTms Rmn- 2
6827 \pР 2
6828 +fk 2
6829 IмaР 2
6830 ITaР 2
6831 +.
6832 aР 2
6833 +9 fk 2
6834 ]˜
6835 aР 2
6836 +ЛaР 2
6837 +­fk 2
6838 ]aР 2
6839 +aР 2
6840 +Юfk 2
6841 ]VaР 2
6842 +§aР 2
6843 +жfk 2
6844 ]NaРћ џTms Rmn[-№ 2
6845 t7C• 2
6846 ЮC• 2
6847 ЛC• 2
6848 3C• 2
6849  WЙ 2
6850  WЙ 2
6851 Бw C• 2
6852 ˜ WЙ 2
6853 ЉN• 2
6854 „N• 2
6855 БїC• 2
6856 'N• 2
6857 њSp 2
6858 ›Sp 2
6859 Б5C• 2
6860 [Sp 2
6861 цEˆ 2
6862 ЈEˆ 2
6863 Б-C• 2
6864 XEˆћ€ўPSymbol-№ 2
6865 lЛг 2
6866  -г 2
6867 r+г 2
6868 Э+г 2
6869 Д+г 2
6870 ЋN ц‘ 2
6871 ТN ш‘ 2
6872 жN ч‘ 2
6873 чN ч‘ 2
6874 ЋŠі‘ 2
6875 ТŠј‘ 2
6876 жŠї‘ 2
6877 чŠї‘ћ€ўTms Rmn[-№ 2
6878 +Ч1Р
6879 &
6880 џџџџћМ"System-№п6џџп6џџп6џџп6џџЗ6џџЗ6џџЗ7џџЗ7џџ†џџ†џџ†џџ†ўџ
6881 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ЬРч2Р&ї1P(ї1
6882 ƒp ƒC
6883 †Лƒf ƒC
6884 ƒa ƒC
6885 †-ˆ1ƒa ƒC
6886 ƒa ƒW
6887 ƒf ƒW
6888 ƒa ƒC
6889 –b ƒW
6890 †+ƒa ƒN
6891 ƒf ƒN
6892 ƒa ƒC
6893 –b ƒN
6894 †+ƒa ƒS
6895 ƒf ƒS
6896 ƒa ƒC
6897 –b ƒS
6898 †+ƒa ƒE
6899 ƒf ƒE
6900 ƒa ƒC
6901 –b ƒE
6902 –(–)2
6903 _897308181џџџџџџџџОРF`}ПЅ Н`}ПЅ НOle
6904 џџџџџџџџџџџџрPIC
6905 НРџџџџсLMETA џџџџџџџџџџџџуL•Ишш•~) ђ+ џџџ.1  Р@&џџџџ
6906 U]  & MathType€њ-\^ћ€ўTms Rmn- 2
6907 Р;aРћ џTms Rmn-№ 2
6908 C• 2
6909 q;WЙ+&LMathTypeUU@
6910 ƒa ƒC
6911 –b ƒWF 
6912 &
6913 џџџџћМ"System-№џџ№џџ№џџ№џџ№џџџџџ§aџџєyБШ@pŽR—$
6914 ƒa ƒC
6915 –b ƒWџ?џџџџџџџџџ№џџObjInfoПСџџџџьEquation Native џџџџџџџџџџџџэ\_897308180аЕФРF`}ПЅ Нр6ИПЅ НOle
6916 џџџџџџџџџџџџяPIC
6917 УЦџџџџ№LMETA џџџџџџџџџџџџђhCompObjХЧџџџџZObjInfoџџџџШџџџџLo"РXшшo"FA  џџџ.1  Р&џџџџРџКџР z & MathTypeРњ-мон}нhм о ћ-§йPSymbol„-2
6918 ‹œ(ћ-§йPSymbol„-№2
6919 ‹V )ћ€ўTms RmnМ-№ 2
6920 @;aР 2
6921 @(aР 2
6922 @O
6923 aРћ џTms RmndQ-№ 2
6924 ”C• 2
6925 ё;WЙ 2
6926 ”C• 2
6927 ”. C• 2
6928 ёO WЙћ€ўPSymbol-№ 2
6929 @•Ў| 2
6930 @& +гћ€ўTms RmndQ-№ 2
6931 K’1Р 2
6932 i’2Р
6933 &
6934 џџџџћМ"System-№ ЏD(Ї ўџџџўџџџўџџџўџџџўџџџ
6935   ўџџџўџџџўџџџўџџџўџџџўџџџ !"#$%&'()*+,-./01ўџџџ3ўџџџўџџџ6789:;<=ўџџџўџџџ@ўџџџBCDEFGHIJKLMNOPQRSTUVWXYZ[\ўџџџ^ўџџџўџџџabcdefўџџџўџџџiўџџџklmnopўџџџrўџџџўџџџўџџџўџџџwўџџџyz{|}~€ўџ
6936 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2БШ ч:`"ї9А&ї9
6937 ƒa ƒC
6938 –b ƒW
6939 †Ўˆ1ˆ2ƒa ƒC
6940 †+ƒa ƒC
6941 –b ƒW
6942 –(–) р`&џџL=4Д@шшEquation Native џџџџџџџџџџџџМ_897308179џџџџџџџџЫРFр6ИПЅ НиППЅ НOle
6943 џџџџџџџџџџџџPIC
6944 ЪЭџџџџL=4†D P џџџ.1   &џџџџРџЅџрЅ & MathTypeP
6945 &
6946 џџџџўџ
6947 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2META џџџџџџџџџџџџ ШCompObjЬЮџџџџ ZObjInfoџџџџЯџџџџEquation Native џџџџџџџџџџџџ<БШ ч:!ї9Є*ї9
6948 @И*р",.MLp.Tpшшp..D Ё џџџ.1  € *&џџџџРџИџр)8 & MathType0њ-Н}НYНтНО
6949 љХћХНМ НљІ_897308178зЩвРFиППЅ НРiсПЅ НOle
6950 џџџџџџџџџџџџPIC
6951 бдџџџџLMETA џџџџџџџџџџџџhћІННкљn ћn НeНh!љќ'ћќ'Нѓ"Н)ћ€ўМTms Rmn- 2
6952 5K+ 2
6953 rЈћ џМTms Rmn-№
6954 2
6955 €…2dp}ћ€ўPSymbol-№ 2
6956 •Ў| 2
6957 Е-г 2
6958 ]е +г 2
6959 o+г 2
6960 ]Ж+г 2
6961 7+г 2
6962 ]~+г 2
6963 Х!+г 2
6964 ] %+г 2
6965 Ћї
6966 ц‘ 2
6967 Тї
6968 ш‘ 2
6969 жї
6970 ч‘ 2
6971 чї
6972 ч‘ 2
6973 Ћ!)і‘ 2
6974 Т!)ј‘ 2
6975 ж!)ї‘ 2
6976 ч!)ї‘ћ€ўTms Rmn-№ 2
6977 +Іr• 2
6978 I˜aР 2
6979 I§aР 2
6980 +& aР 2
6981 +№r• 2
6982 ]з aР 2
6983 ]ўaР 2
6984 +aР 2
6985 +Фr• 2
6986 ]ИaР 2
6987 ]пaР 2
6988 +јaР 2
6989 +or• 2
6990 ]€aР 2
6991 ]ЇaР 2
6992 +v$aР 2
6993 +&r• 2
6994 ]#aР 2
6995 ]5&aРћ џTms Rmn-№ 2
6996 eC• 2
6997 wC• 2
6998 м C• 2
6999 WЙ 2
7000 ЏWЙ 2
7001 БЖ C• 2
7002 БнC• 2
7003 ўWЙ 2
7004 N• 2
7005 ’N• 2
7006 Б—C• 2
7007 БОC• 2
7008 юN• 2
7009 мSp 2
7010 3Sp 2
7011 Б_C• 2
7012 Б†C• 2
7013 Ќ Sp 2
7014 _%Eˆ 2
7015 з&Eˆ 2
7016 Бэ#C• 2
7017 Б'C• 2
7018 ?(Eˆћ€ўTms Rmn-№ 2
7019 +p 2Р
7020 &
7021 џџџџћМ"System-№NDOWS\SYSTEM\SSERIFE.FONўџ
7022 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2БШ ч:!ї9а&ї9
7023 ‡K ‡2‡d
7024 ‡r†Ўƒr ƒC
7025 ƒa ƒC
7026 †-ˆ2ƒa ƒC
7027 ƒa ƒW
7028 ƒr ƒW
7029 ƒa CompObjгеџџџџ2ZObjInfoџџџџжџџџџ4Equation Native џџџџџџџџџџџџ5<_897308177џџџџџџџџйРFРiсПЅ Н`ZћПЅ НƒC
7030 †+ƒa ƒC
7031 –b ƒW
7032 †+ƒa ƒN
7033 ƒr ƒN
7034 ƒa ƒC
7035 †+ƒa ƒC
7036 –b ƒN
7037 †+ƒa ƒS
7038 ƒr ƒS
7039 ƒa ƒC
7040 †+ƒa ƒC
7041 –b ƒS
7042 †+ƒa ƒE
7043 ƒr ƒE
7044 ƒa ƒC
7045 †+ƒa ƒC
7046 –b ƒE
7047 –(–)Tms RmnLю$№h шшOle
7048 џџџџџџџџџџџџ>PIC
7049 илџџџџ?LMETA џџџџџџџџџџџџAшCompObjкмџџџџ]Zю$~E d џџџ.1  @€!&џџџџРџЛџ@!ћ & MathType`ћ€ўМTms Rmn- 2
7050 € 5K+ 2
7051 Љ'D 2
7052 щ] D 2
7053 )Ё D 2
7054 Љ
7055 цD 2
7056 iњDћ џМTms Rmn-№
7057 2
7058 р †3DpЁ 2
7059 P1p 2
7060 I
7061 2p 2
7062 ‰д3p 2
7063 i> 2
7064 |-NЁ 2
7065 |BNЁћ`џМTms Rmn-№ 2
7066 ДрxP 2
7067 ДѓyPћ€ўPSymbol-№ 2
7068 € 3=г 2
7069 Љнз` 2
7070 щз` 2
7071 ) з` 2
7072 )з` 2
7073 iз` 2
7074 Љ
7075 нз` 2
7076 Љ
7077 з` 2
7078 щ з` 2
7079 )нз` 2
7080 )з` 2
7081 iнз` 2
7082 i з` 2
7083 iз` 2
7084 Јjц‘ 2
7085 …jш‘ 2
7086 гjч‘ 2
7087 Fjч‘ 2
7088 Йjч‘ 2
7089 ,jч‘ 2
7090 Ÿjч‘ 2
7091 
7092 jч‘ 2
7093 … jч‘ 2
7094 ј jч‘ 2
7095 kjч‘ 2
7096 оjч‘ 2
7097 Њjч‘ 2
7098 Ј‘ і‘ 2
7099 …‘ ј‘ 2
7100 г‘ ї‘ 2
7101 F‘ ї‘ 2
7102 Й‘ ї‘ 2
7103 ,‘ ї‘ 2
7104 Ÿ‘ ї‘ 2
7105 
7106 ‘ ї‘ 2
7107 … ‘ ї‘ 2
7108 ј ‘ ї‘ 2
7109 k‘ ї‘ 2
7110 о‘ ї‘ 2
7111 Њ‘ ї‘ћ џPSymbol-№ 2
7112 т-{ 2
7113 C& -{ 2
7114 ƒi-{ 2
7115 
7116 {-{ 2
7117 Н.-{ћ џTms Rmn-№ 2
7118 ]1p 2
7119 CЁ 1p 2
7120 ƒф1p 2
7121 
7122 і1p 2
7123 НЉ1pћ€ўTms Rmn-№ 2
7124 щ —
7125 .`
7126 &
7127 џџџџћМ"System-№ўџ
7128 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ObjInfoџџџџнџџџџ_Equation Native џџџџџџџџџџџџ`М_897308176(oрРF`ZћПЅ Н`ZћПЅ НOle
7129 џџџџџџџџџџџџgЁЬ 3'4%4
7130 ‡K ‡3‡D
7131 †=‡D ‡1
7132  †-ˆ1
7133 †з‡D ‡2
7134  †-ˆ1
7135 †з‡D ‡3
7136  †-ˆ1
7137 †з†з†з†з‡D ‡i
7138  †-ˆ1
7139 †з‚.†з†з†з†з†з†з‡D †-ˆ1
7140  ‡N ‡x ‡N ‡y 
7141 –(–)PIC
7142 птџџџџhLMETA џџџџџџџџџџџџjˆCompObjсуџџџџqZObjInfoџџџџфџџџџsL<Ъјшш<Ъ†E Б џџџ.1   Р&џџџџРџЅџ€E & MathType ћ€ўМTms Rmn[- 2
7143 `<xР
7144 2
7145 `ІKr+Јћ€ўPSymbol-№ 2
7146 `k=г
7147 &
7148 џџџџћМ"System-№ GB,Ї ўџ
7149 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ЁЬ 3'4D+4
7150 ‡x†=‡K‡r Lь[,шшEquation Native џџџџџџџџџџџџt<_897308175џџџџџџџџчРF`ZћПЅ НЕ-РЅ НOle
7151 џџџџџџџџџџџџuPIC
7152 цщџџџџvLMETA џџџџџџџџџџџџxCompObjшъџџџџZObjInfoџџџџыџџџџƒEquation Native џџџџџџџџџџџџ„\ўџџџ‚ўџџџўџџџ…ўџџџўџџџˆўџџџŠ‹ŒŽ‘ўџџџ“ўџџџўџџџ–ўџџџўџџџ™ўџџџ›œžŸ ўџџџЂўџџџўџџџўџџџўџџџЇўџџџЉЊЋЌ­ЎЏАБВГДЕЖЗИўџџџКўџџџўџџџНОПўџџџСТУўџџџўџџџЦўџџџШЩЪЫЬЭЮЯабвгдежўџџџиўџџџўџџџлмнўџџџпрўџџџўџџџуўџџџхцчшщъыьэюя№ёђѓўџџџѕўџџџўџџџјљњўџџџќ§ўџџџўџџџь†E ѓ џџџ.1  р`&џџџџРџІџ † & MathType ћ€ўМTms Rmn<- 2
7153  5K+ 2
7154   Dћ џМTms RmnaQ-№ 2
7155 єК1pћ€ўPSymbol-№ 2
7156  Э=гћ џPSymbol-№ 2
7157 є?-{
7158 &
7159 џџџџћМ"System-№2
7160 `ІKr+Јћ€ўўџ
7161 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ЁЬ@3$'4d+4
7162 ‡K†=‡D †-‡1№ 2
7163 є?-{
7164 LzЌ,шш_897308174ѓхюРFЕ-РЅ НFРЅ НOle
7165 џџџџџџџџџџџџ†PIC
7166 э№џџџџ‡LMETA џџџџџџџџџџџџ‰(zVB ќ џџџ.1  рр&џџџџРџІџ † & MathType ћ€ўМTms RmnaQ- 2
7167  <xР 2
7168  ЉD 2
7169  сrЈћ џМTms Rmn-№ 2
7170 єX1pћ€ўPSymbol-№ 2
7171  k=гћ џPSymbol-№ 2
7172 єн-{
7173 &
7174 џџџџћМ"System-№jЊЊ?џўўUUTUUTUUT?џўPjЊЊbjЊЊjЊЊ?џўўџ
7175 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ЁЬ@3`'4 +4
7176 ‡x†=‡D †-‡1
7177 ‡rџџџ.1CompObjяёџџџџ’ZObjInfoџџџџђџџџџ”Equation Native џџџџџџџџџџџџ•\_897308173џџџџџџџџѕРFFРЅ Н `РЅ НOle
7178 џџџџџџџџџџџџ—PIC
7179 єїџџџџ˜LMETA џџџџџџџџџџџџšˆCompObjіјџџџџЁZLЪфшшЪVB Б џџџ.1    &џџџџРџЅџ`E & MathType ћ€ўМTms RmnI-
7180 2
7181 `8DxР 2
7182 `ЖrЈћ€ўPSymbol-№ 2
7183 `{=г
7184 &
7185 џџџџћМ"System-№€Fџўџўџўџќўџ
7186 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ЁЬ 3l'4Ќ+4
7187 ‡D‡x†=‡rџрџџџќѓџрL(ь ˜ шшObjInfoџџџџљџџџџЃEquation Native џџџџџџџџџџџџЄ<_897308172ДьќРF `РЅ Н€иpРЅ НOle
7188 џџџџџџџџџџџџЅPIC
7189 ћўџџџџІLMETA џџџџџџџџџџџџЈCompObj§џџџџЙZObjInfoџџџџџџџџџџџџЛ(ь nC ї џџџ.1   Р &џџџџРџАџ€ А & MathTypeћ€ўМTms Rmnц)- 2
7190 р8Dћ€ўPSymbol-№ 2
7191 рВ=г 2
7192 Гщц‘ 2
7193 :щш‘ 2
7194 ощч‘ 2
7195 Qщч‘ 2
7196 Фщч‘ 2
7197 7щч‘ 2
7198 ГИ і‘ 2
7199 :И ј‘ 2
7200 оИ ї‘ 2
7201 QИ ї‘ 2
7202 ФИ ї‘ 2
7203 7И ї‘ћ€ўTms Rmnц)-№ 2
7204 wЉdР 2
7205 w‡eЈ 2
7206 Зєfk 2
7207 ЗjdР 2
7208 ЗT eЈ 2
7209 їЕfk 2
7210 їO dРћ џTms Rmn0-№ 2
7211 зg1p 2
7212 з'1p 2
7213 Y1p 2
7214 :2p 2
7215 
7216 2p 2
7217 W,2p 2
7218 W
7219 3pћ€ўTms Rmnц)-№ 2
7220 ї= .` 2
7221 7а .` 2
7222 7= .`
7223 &
7224 џџџџћМ"System-№?џ?џџџџ8ўџ
7225 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2р
7226 ‡R†=ƒd ˆ1
7227 ƒe ˆ1
7228 ƒf ˆ1
7229 ƒd ˆ2
7230 ƒe ˆ2
7231 ƒf ˆ2
7232 ƒd ˆ3
7233 ‚.‚.‚.–a–bP4Ole10NativeџџџџџМфEquation Native џџџџџџџџџџџџРм_897308171џџџџџџџџРF yxРЅ Н yxРЅ НOle
7234 џџџџџџџџџџџџФЁЬР3(4Є)4
7235 ‡D†=ƒd ˆ1
7236 ƒe ˆ1
7237 ƒf ˆ1
7238 ƒd ˆ2
7239 ƒe ˆ2
7240 ƒf ˆ2
7241 ƒd ˆ3
7242 ‚.‚.‚.–(–)Lxь 4 шшxь &E г џџџ.PIC
7243 џџџџХLMETA џџџџџџџџџџџџЧШCompObjџџџџзZObjInfoџџџџџџџџџџџџй1   &џџџџРџАџр А & MathTypeћ€ўМTms RmnDˆ- 2
7244 р8Lћ€ўPSymbol-№ 2
7245 рŸ=г 2
7246 Гжц‘ 2
7247 :жш‘ 2
7248 ожч‘ 2
7249 Qжч‘ 2
7250 Фжч‘ 2
7251 7жч‘ 2
7252 Г0 і‘ 2
7253 :0 ј‘ 2
7254 о0 ї‘ 2
7255 Q0 ї‘ 2
7256 Ф0 ї‘ 2
7257 70 ї‘ћ€ўTms RmnDˆ-№ 2
7258 wНlk 2
7259 З˜gР 2
7260 Зxlk 2
7261 їSgР 2
7262 ї& lkћ џTms Rmn-№ 2
7263 з1p 2
7264 N1p 2
7265 щ2p 2
7266 W2p 2
7267 W” 3pћ€ўTms RmnDˆ-№ 2
7268 їЕ .` 2
7269 7| .` 2
7270 7Е .`
7271 &
7272 џџџџћМ"System-№№nяў4Ž цЊŽўџ
7273 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Р
7274 ‡L†=ƒl ˆ1
7275 ƒg ˆ1
7276 ƒl ˆ2
7277 ƒg ˆ2
7278 ƒl ˆ3
7279 ‚.‚.‚.–a–bџџџџЁЬ 3и'4h)4
7280 ‡L†=ƒl ˆ1
7281 ƒg ˆ1
7282 ƒl ˆ2
7283 ƒgOle10Native џџџџкФEquation Native џџџџџџџџџџџџоМ_897308170 РF yxРЅ Н` šРЅ НOle
7284 џџџџџџџџџџџџс ˆ2
7285 ƒl ˆ3
7286 ‚.‚.‚.–(–)Lть p шшть о< г џџџ.1   € &џџџџРџАџ@ А & MathTypeћ€ўМTms RmnФP- 2
7287 р9Uћ€ўPSymbol-№ 2
7288 PIC
7289  џџџџтLMETA џџџџџџџџџџџџфШCompObj џџџџєZObjInfoџџџџџџџџџџџџірЙ=г 2
7290 Г№ц‘ 2
7291 :№ш‘ 2
7292 о№ч‘ 2
7293 Q№ч‘ 2
7294 Ф№ч‘ 2
7295 7№ч‘ 2
7296 Г’ і‘ 2
7297 :’ ј‘ 2
7298 о’ ї‘ 2
7299 Q’ ї‘ 2
7300 Ф’ ї‘ 2
7301 7’ ї‘ћ€ўTms RmnФP-№ 2
7302 wЅuР 2
7303 wphР 2
7304 ЗTuР 2
7305 З/ hР 2
7306 ї+ uРћ џTms Rmna-№ 2
7307 з\1p 2
7308 з1p 2
7309 2p 2
7310 ь 2p 2
7311 Wё 3pћ€ўTms RmnФP-№ 2
7312 ї .` 2
7313 7Ў .` 2
7314 7 .`
7315 &
7316 џџџџћМ"System-№џџџџўџ
7317 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2Р
7318 ‡R†=ƒu ˆ1
7319 ƒh ˆ1Ole10NativeџџџџїФEquation Native џџџџџџџџџџџџћМ_897308169џџџџџџџџРF` šРЅ Н`uВРЅ НOle
7320 џџџџџџџџџџџџў
7321 ƒu ˆ2
7322 ƒh ˆ2
7323 ƒu ˆ3
7324 ‚.‚.‚.–a–bstemЁЬ 3D(4д)4
7325 ‡U†=ƒu ˆ1
7326 ƒh ˆ1
7327 ƒu ˆ2
7328 ƒh ˆ2
7329 ƒu ˆ3
7330 ‚.‚.‚.–(–)LhWTшшPIC
7331 џџџџџLMETA џџџџџџџџџџџџшCompObjџџџџ ZObjInfoџџџџџџџџ ўџџџўџџџ
7332 ўџџџўџџџ ўџџџўџџџўџџџ !"#$%&'()*+,ўџџџ.ўџџџўџџџ123456ўџџџ89:;<ўџџџўџџџ?ўџџџABCDEFGўџџџIўџџџўџџџLўџџџўџџџOўџџџQRSTUVўџџџўџџџўџџџўџџџ[ўџџџ]^_`abcdefghijўџџџlўџџџўџџџopўџџџўџџџsўџџџuvwxyz{|}~€hWVB л џџџ.1   &џџџџРџЇџРЧ & MathType`ћ€ўTms Rmn_- 2
7333 `1lk 2
7334 `ГuРћ џTms RmnФP-№ 2
7335 РŸi> 2
7336 Рyi>ћ€ўPSymbol-№ 2
7337 `}=г
7338 &
7339 џџџџћМ"System-№> 2
7340 Рyi>ћ€ўўџ
7341 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ЁЬ@3P(4@/4
7342 ƒl ƒi
7343 †=ƒu ƒiF LІ,žP|шшEquation Native џџџџџџџџџџџџ \_897308168!РF`uВРЅ НfЬРЅ НOle
7344 џџџџџџџџџџџџPIC
7345 џџџџLІ,žІQ \ џџџ.1  `€(&џџџџРџЖџ@( & MathType` њ"-‹9oj њ "-wjБ-ЙRRRž‹’ oУ -wУ 
7346 - Rp Rp Rї Jd  Э
7347 ‹*o[-w[ЂMETA џџџџџџџџџџџџШCompObjџџџџ-fObjInfoџџџџџџџџџџџџ/Ole10Native џџџџ0„-ЊRRRJќ ešШ!U!‹чo-w_-gRХRХRW#ћ€ўTimes New Romanœ- 2
7348  0uР 2
7349  0dР 2
7350  ™hР 2
7351   eЈ 2
7352  ‰ dР 2
7353  gР 2
7354  Tfk 2
7355  !dР 2
7356  ДuР 2
7357  оdР 2
7358  вeЈ 2
7359  : fk 2
7360  щ!dР 2
7361  R$hРћџTimes New Romanp-№ 2
7362 у1€ 2
7363 ъ1€ 2
7364 @1€ 2
7365 
7366 1€ 2
7367 C 1€ 2
7368 Ю1€ 2
7369 Е1€ 2
7370 л1€ 2
7371 |2€ 2
7372 ­2€ 2
7373 n1€ 2
7374 › 1€ 2
7375 Ѓ"1€ 2
7376 %2€ћ€ўPSymbol-№ 2
7377  ы=г 2
7378  H=г 2
7379  ж=г 2
7380  ™=г 2
7381  В-г 2
7382  +&=гћ€ўTimes New Romanœ-№ 2
7383  Є;k 2
7384  ';k 2
7385  П;k 2
7386  ]#;k 2
7387  §&.` 2
7388  q'.` 2
7389  х'.` 2
7390  9 ` 2
7391  М ` 2
7392  T ` 2
7393  ђ# `
7394 &
7395 џџџџћМ"Systemn-№-г ўџ
7396 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9Вq€
7397 ƒu ˆ1
7398 †= ƒd ˆ1
7399 ƒh ˆ1
7400 †=)ƒe ˆ1
7401  ƒd ˆ1
7402 ƒg ˆ1
7403 †=)ƒf ˆ1
7404  ƒd ˆ1
7405 ƒu ˆ2
7406 †= ƒd ˆ2
7407 †-)ƒe ˆ1
7408 ƒf ˆ1
7409 ƒd ˆ1
7410 ƒh ˆ2
7411 †=‚.‚.‚.bќhP€1cќhO€а§дЭ`пDФяCшяC
7412 ƒu ˆ1
7413 †= ƒdEquation Native џџџџџџџџџџџџ7|_897308167џџџџџџџџ#РFfЬРЅ НfЬРЅ НOle
7414 џџџџџџџџџџџџ=PIC
7415 "%џџџџ>L ˆ1
7416 ‚; ƒh ˆ1
7417 †=)ƒe ˆ1
7418  ƒd ˆ1
7419 ‚; ƒg ˆ1
7420 †=)ƒf ˆ1
7421  ƒd ˆ1
7422 ‚; ƒu ˆ2
7423 †= ƒd ˆ2
7424 †-)ƒe ˆ1
7425 ƒf ˆ1
7426 ƒd ˆ1
7427 ‚; ƒh ˆ2
7428 †=‚.‚.‚.Rp LhфшшMETA џџџџџџџџџџџџ@ШCompObj$&џџџџHZObjInfoџџџџ'џџџџJEquation Native џџџџџџџџџџџџK\hЖC Э џџџ.1   &џџџџРџЉџ`Љ & MathTypeаћ€ўМTms RmnЛ-
7429 2
7430 \8LzЈ 2
7431 \†rЈ
7432 2
7433 œ9UxР 2
7434 œЙzЈћ€ўPSymbol-№ 2
7435 \K=г 2
7436 œ|=г
7437 &
7438 џџџџћМ"System-№џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџўџ
7439 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2ЁЬ@3t(4\/4
7440 ‡L‡z†=‡r‡U‡x†=‡zџџџ.1LфWЄTшш_897308255џџџџџџџџ*РF дРЅ Н РўРЅ НOle
7441 џџџџџџџџџџџџMPIC
7442 ),џџџџNLMETA џџџџџџџџџџџџPЈфWж< Ф џџџ.1    &џџџџРџнџ`§ & MathType`ћ€ўМTms Rmn- 2
7443 `8Aћ џМTms Rmn~ -№
7444 2
7445 Рo2dp}&,MathTypeUU 
7446 ‡A ‡2‡d
7447 &
7448 џџџџћМ"System-№ п.€ObjInfo+-џџџџWEquation Native џџџџџџџџџџџџX<_897308254(0РF РўРЅ Н РўРЅ НOle
7449 џџџџџџџџџџџџY)Щ pŽR—$
7450 ‡A ‡2‡dLwь x
7451  шшwь VB И џџџ.1   Р&џџџџРџИџ€И & MathTypeћ€ўМTms Rmn- 2
7452 р9W€ћ€ўPSymbol-№ 2
7453 PIC
7454 /2џџџџZLMETA џџџџџџџџџџџџ\ЈCompObj13џџџџkZObjInfoџџџџ4џџџџmр$=г 2
7455 №` з` 2
7456 Ћ[ц‘ 2
7457 B[ш‘ 2
7458 ж[ч‘ 2
7459 I[ч‘ 2
7460 М[ч‘ 2
7461 /[ч‘ 2
7462 ЋРі‘ 2
7463 BРј‘ 2
7464 жРї‘ 2
7465 IРї‘ 2
7466 МРї‘ 2
7467 /Рї‘ 2
7468 pDъ 2
7469 АЂDъ 2
7470 0L Dъћ€ўTms Rmn-№ 2
7471 pz• 2
7472 АŒz• 2
7473 06z•ћ џTms Rmnp-№ 2
7474 ъN•ћ џTms Rmn-№ 2
7475 аœ1p 2
7476 2 2p
7477 &
7478 џџџџћМ"System-№
7479 ‡W†=…Dўџ
7480 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2УШ G=H*w<и+w<
7481 ‡W†=…Dƒz ˆ1
7482 …Dƒz ˆ2
7483 †зEquation Native џџџџџџџџџџџџnМ_897308253џџџџџџџџ7РF РўРЅ Н`R СЅ НOle
7484 џџџџџџџџџџџџqPIC
7485 69џџџџrL…Dƒz ƒN
7486 –(–)ћ€ўМTmLU
7487 мИшшU
7488 T } џџџ.1  Р` &џџџџРџЛџ { & MathType€ћX§лPSymbol|-2
7489 [ћX§лPSymbol|-№2
7490 @META џџџџџџџџџџџџtCompObj8:џџџџfObjInfoџџџџ;џџџџƒEquation Native џџџџџџџџџџџџ„|ўџџџ‚ўџџџўџџџ…ўџџџўџџџˆўџџџўџџџўџџџўџџџўџџџўџџџ‘’“”ўџџџўџџџ—˜™š›œžŸ ЁўџџџЃЄЅІЇЈЉўџџџЋЌ­ЎЏАБўџџџГўџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџ]ћ€ўМTimes New Roman-№
7491 2
7492 РЇAbз 2
7493 РB,` 2
7494 РбbзћџМTimes New RomanЈ-№ 2
7495 ЉiG 2
7496 1€ 2
7497 ПiGћџPSymbol-№ 2
7498 ў+Œћ€ўPSymbol-№ 2
7499 Р=гћ€ўTimes New Roman-№ 2
7500 РO0Р
7501 &
7502 џџџџћМ"Systemn-№№ ўџ
7503 џџџџРFMicrosoft Equation 2.0 DS Equation Equation.2є9ВqЭ`пDЈяC<яC
7504 ‡A‡b ‡i†+‡1
7505 ‡,‡b ‡i
7506 –[–]†=ˆ0 Р` &џџўџ
7507 џџџџЮРFMicrosoft Equation 3.0 DS Eq_943430073џџџџџџџџ>ЮРF`R СЅ Н`R СЅ НOle
7508 џџџџџџџџџџџџ†CompObj=?џџџџ‡fObjInfoџџџџ@џџџџ‰uation Equation.3є9ВqЩгHoI˜mI
7509 ўџ
7510 џџџџd›OЯ†ъЊЙ)ш"Microsoft PowerPoint PresentationMSPresentationPowerPoint.Show.8є9Вq`!№p17žЊAэВЃїSш4pЅŽb  
7511 рd>ўxœ…QЭJEquation Native џџџџџџџџџџџџŠ$_919678608џџџџџџџџEd›OЯ†ъЊЙ)ш@…IСЅ Н­RСЅ НOle
7512 џџџџџџџџџџџџ‹PRINTBDџџџџ§d] 
7513     !"#$%&'()*+ўџџџ.ež0123456789:;<=>?@ABCDEFGHIўџџџKLMNOPQRSTUVWXYZ[\]^_`abcdўџџџfŸ§џџџijklmnopqrstuvwxyz{|}~€%‚1 ­.
7514 N&џџџџj: &џџџџ&#џџџџTNPPАы0D ‡
7515 &
7516 TNPPє &џџџџ&TNPP   : j ќџџџ- њџџџ"-- !№@ p-- њ"-&џџџџЁ?
7517 e &џџџџ ћ- &џџџџс?
7518  &џџџџ ќ--9
7519 ЌЈ шџ-- ћ џTimes New RomanH-№ .2
7520 
7521 
7522 u(i=1,j=1)0 6060 .&џџџџ• њ"--$ч љ ’%’Д
7523 % љ%љ%%љ%’-№-&џџџџ&џџџџчIЄ&џџџџшI  њ"--%љhљ -№ќ-
7524 $ jљKъj--&џџџџ&џџџџїњЄ њ"--%љ „ -№-
7525 $‚Ё ‚ќ--&џџџџ&џџџџїСt њ"--%љ Xб-№-
7526 $^сqУOЦ--&џџџџ&џџџџ&џџџџФˆё&џџџџчё Ж њ"--%љѓљ–-№-
7527 $щ”љГ”--&џџџџ&џџџџїЂЄЦ њ"--%љГ„Г-№-
7528 $‚УЁГ‚Є--&џџџџ&џџџџїitЖ њ"--%љГXy-№-
7529 $^‰qkOn--&џџџџ--/ˆФ--  . 2
7530 ѓсk0.--œЏ Y--  . 2
7531 vvj.-- ђxœ--  . 2
7532 уЙi.&џџџџ--Y*ШФ--  . 2
7533 3сz+.--щзXl--  . 2
7534 У‰y0.--IИœ--  . 2
7535 #Йx0.&џџџџсlF њ"--$!у ћ CQCi+iу
7536 % ћQћiу%QћQC-№-&џџџџ&џџџџЂDUу--N$%0Ћ9Ѕ8Ѓ8Ѓ7Ё1œ*—Љ|юoйbЦVОQЗMАIЎNВJ­FІPЉSЋTВXЙ\Сaдmщz§‡”“! (Ѕ0Ћ3І/Љ/Ќ
7537 $Љ9лNЄ--&џџџџ--dугЁ--  .2
7538 >О (i=1,j=1,k=1) 6060060 .&џџџџ'ё,і њ"--%)ѓ)ѓ-№-&џџџџ--q\mч--  .2
7539 и Computational@0K00+00*. .2
7540 KDomainF0J+0.--КкЖf--  .2
7541 !ƒ Computational@0K00+00*. . 2
7542 ”ƒAxesF0*&.--ЧG--  .2
7543 kdPhysical600%*+. . 2
7544 оdAxesF0*&.--Ш/7v-- ћ џМTimes New Roman-№ .@2
7545 Ђ“&Rule 1: i - east, j - north, k - down.F5*0  *0&   50+ 56 50F5.&џџџџšT ш
7546 - њ"-
7547 b[ œ--№- њ"-
7548 '[ a--№&џџџџ
7549 ш
7550 њ"--%!
7551 х
7552 -№-&џџџџ&џџџџY ш^ њ"--%![ х[ -№-&џџџџ&џџџџоT ф
7553 --$
7554 п
7555 п
7556 р
7557 р
7558 т
7559 т
7560 т
7561 с
7562 р
7563 п
7564 $
7565 п
7566 п
7567 р
7568 р
7569 т
7570 т
7571 т
7572 с
7573 р
7574 п
7575 $
7576 п
7577 п
7578 р
7579 р
7580 т
7581 т
7582 т
7583 с
7584 р
7585 п
7586 $
7587 п
7588 п
7589
7590 р
7591 с
7592 т
7593
7594 т
7595 т
7596 с
7597 р
7598 п
7599 $
7600 п
7601 п
7602 р
7603 с
7604 т
7605 т
7606 т
7607 с
7608 р
7609 п
7610 $
7611 п§ пў рџ сџ тў т§ тќ сћ рћ пќ $
7612 пї пј рљ сљ тј тї ті сѕ рѕ пі $
7613 пё пђ рѓ сѓ тђ тё т№ ся ря п№ $
7614 пы пь рэ сэ ть ты тъ сщ рщ пъ $
7615 пх пц рч сч тц тх тф су ру пф $
7616 пп пр рс сс тр тп то сн рн по $
7617 пй пк рл сл тк тй ти сз рз пи $
7618 пг пд ре се тд тг тв сб рб пв $
7619 пЭ пЮ рЯ сЯ тЮ тЭ тЬ сЫ рЫ пЬ $
7620 пЧ пШ рЩ сЩ тШ тЧ тЦ сХ рХ пЦ $
7621 пС пТ рУ сУ тТ тС тР сП рП пР $
7622 пЛ пМ рН сН тМ тЛ тК сЙ рЙ пК $
7623 пЕ пЖ рЗ сЗ тЖ тЕ тД сГ рГ пД $
7624 пЏ пА рБ сБ тА тЏ тЎ с­ р­ пЎ $
7625 пЉ пЊ рЋ сЋ тЊ тЉ тЈ сЇ рЇ пЈ $
7626 пЃ пЄ рЅ сЅ тЄ тЃ тЂ сЁ рЁ пЂ $
7627 п пž рŸ сŸ тž т тœ с› р› пœ $
7628 п— п˜ р™ с™ т˜ т— т– с• р• п– $
7629 п‘ п’ р“ с“ т’ т‘ т с р п $
7630 п‹ пŒ р с тŒ т‹ тŠ с‰ р‰ пŠ $
7631 п… п† р‡ с‡ т† т… т„ сƒ рƒ п„ $
7632 п п€ р с т€ т т~ с} р} п~ $
7633 пy пz р{ с{ тz тy тx сw рw пx $
7634 пs пt рu сu тt тs тr сq рq пr $
7635 пm пn рo сo тn тm тl сk рk пl $
7636 пg пh рi сi тh тg тf сe рe пf $
7637 пa пb рc сc тb тa т` с_ р_ п` $
7638 п[ п\ р] с] т\ т[ тZ сY рY пZ --&џџџџ&џџџџ- њ"-_ bžœ--№- њ"-_ 'ža--№&џџџџ\ шa њ"--%!^ х^ -№-&џџџџ&џџџџœшЁ њ"--%!žхž-№-&џџџџ&џџџџо—фa --$
7639 п^ п^ р_ р_ т_ т^ т] с\ р\ п] $
7640 пX пX рY рY тY тX тW сV рV пW $
7641 пR пR рS рS тS тR тQ сP рP пQ $
7642 пL пM рN сN тM тL тK сJ рJ пK $
7643 пF пG рH сH тG тF тE сD рD пE $
7644 п@ пA рB сB тA т@ т? с> р> п? $
7645 п: п; р< с< т; т: т9 с8 р8 п9 $
7646 п4 п5 р6 с6 т5 т4 т3 с2 р2 п3 $
7647 п. п/ р0 с0 т/ т. т- с, р, п- $
7648 п( п) р* с* т) т( т' с& р& п' $
7649 п" п# р$ с$ т# т" т! с р п! $
7650 п п р с т т т с р п $
7651 п п р с т т т с р п $
7652 п п р с т т т с р п $
7653 п
7654 п р с т т
7655 т с р п $
7656 п п р с т т т с р п $
7657 пўпџр с тџтўт§сќрќп§$
7658 пјпљрњсњтљтјтїсіріпї$
7659 пђпѓрєсєтѓтђтёс№р№пё$
7660 пьпэрюсютэтьтысъръпы$
7661 пцпчршсштчтцтхсфрфпх$
7662 прпсртсттстртпсоропп$
7663 пкплрмсмтлтктйсирипй$
7664 пдпержсжтетдтгсврвпг$
7665 пЮпЯрасатЯтЮтЭсЬрЬпЭ$
7666 пШпЩрЪсЪтЩтШтЧсЦрЦпЧ$
7667 пТпУрФсФтУтТтСсРрРпС$
7668 пМпНрОсОтНтМтЛсКрКпЛ$
7669 пЖпЗрИсИтЗтЖтЕсДрДпЕ$
7670 пАпБрВсВтБтАтЏсЎрЎпЏ$
7671 пЊпЋрЌсЌтЋтЊтЉсЈрЈпЉ$
7672 пЄпЅрІсІтЅтЄтЃсЂрЂпЃ$
7673 пžпŸр с тŸтžтсœрœп--&џџџџ&џџџџšзшЁ- њ"-Ÿbоœ--№- њ"-Ÿ'оa--№&џџџџœшЁ њ"--%!žхž-№-&џџџџ&џџџџмшс њ"--%!охо-№-&џџџџ&џџџџозфЁ--$
7674 пžпžрŸрŸтŸтžтсœрœп$
7675 п˜п˜р™р™т™т˜т—с–р–п—$
7676 п’п’р“р“т“т’т‘срп‘$
7677 пŒпрŽсŽттŒт‹сŠрŠп‹$
7678 п†п‡рˆсˆт‡т†т…с„р„п…$
7679 п€пр‚с‚тт€тс~р~п$
7680 пzп{р|с|т{тzтyсxрxпy$
7681 пtпuрvсvтuтtтsсrрrпs$
7682 пnпoрpсpтoтnтmсlрlпm$
7683 пhпiрjсjтiтhтgсfрfпg$
7684 пbпcрdсdтcтbтaс`р`пa$
7685 п\п]р^с^т]т\т[сZрZп[$
7686 пVпWрXсXтWтVтUсTрTпU$
7687 пPпQрRсRтQтPтOсNрNпO$
7688 пJпKрLсLтKтJтIсHрHпI$
7689 пDпEрFсFтEтDтCсBрBпC$
7690 п>п?р@с@т?т>т=с<р<п=$
7691 п8п9р:с:т9т8т7с6р6п7$
7692 п2п3р4с4т3т2т1с0р0п1$
7693 п,п-р.с.т-т,т+с*р*п+$
7694 п&п'р(с(т'т&т%с$р$п%$
7695 п п!р"с"т!т тсрп$
7696 ппрстттсрп$
7697 ппрстттсрп$
7698 ппрсттт с р п $
7699 пп р
7700 с
7701 т ттсрп$
7702 ппрстттсрп$
7703 пќп§рўсўт§тќтћсњрњпћ$
7704 піпїрјсјтїтітѕсєрєпѕ$
7705 п№пёрђсђтёт№тясюрюпя$
7706 пъпырьсьтытътщсшршпщ$
7707 пфпхрцсцтхтфтустртпу$
7708 поппррсртптотнсмрмпн--&џџџџ&џџџџ&џџџџмшс њ"--%!охо-№-&џџџџ&џџџџш--$
7709 "!  !!!"""$
7710 '&%%&''((($
7711 -,++,--...$
7712 3211233444$
7713 9877899:::$
7714 ?>==>??@@@$
7715 EDCCDEEFFF$
7716 KJIIJKKLLL$
7717 QPOOPQQRRR$
7718 WVUUVWWXXX$
7719 ]\[[\]]^^^$
7720 cbaabccddd$
7721 ihgghiijjj$
7722 onmmnooppp$
7723 utsstuuvvv$
7724 {zyyz{{|||$
7725 €€‚‚‚$
7726 ‡†……†‡‡ˆˆˆ$
7727 Œ‹‹ŒŽŽŽ$
7728 “’‘‘’““”””$
7729 ™˜——˜™™ššš$
7730 ŸžžŸŸ   $
7731 ЅЄЃЃЄЅЅІІІ$
7732 ЋЊЉЉЊЋЋЌЌЌ$
7733 БАЏЏАББВВВ$
7734 ЗЖЕЕЖЗЗИИИ$
7735 НМЛЛМННООО$
7736 УТССТУУФФФ$
7737 ЩШЧЧШЩЩЪЪЪ$
7738 ЯЮЭЭЮЯЯааа$
7739 едггдеежжж$
7740 лкййкллммм$
7741 срппрссттт--&џџџџ&џџџџ™Ÿц њ"--%›уœ-№-&џџџџ&џџџџ^dц њ"--%`уa-№-&џџџџ&џџџџ#)с њ"--%%о&-№-&џџџџ&џџџџ_(--$
7742 ba``aaabbb$
7743 gfeefgghhh$
7744 mlkklmmnnn$
7745 srqqrssttt$
7746 yxwwxyyzzz$
7747 ~}}~€€€$
7748 …„ƒƒ„……†††$
7749 ‹Š‰‰Š‹‹ŒŒŒ$
7750 ‘‘‘’’’$
7751 —–••–——˜˜˜$
7752 œ››œžžž$
7753 ЃЂЁЁЂЃЃЄЄЄ$
7754 ЉЈЇЇЈЉЉЊЊЊ$
7755 ЏЎ­­ЎЏЏААА$
7756 ЕДГГДЕЕЖЖЖ$
7757 ЛКЙЙКЛЛМММ$
7758 СРППРССТТТ$
7759 ЧЦХХЦЧЧШШШ$
7760 ЭЬЫЫЬЭЭЮЮЮ$
7761 гвббвггддд$
7762 йиззиййккк$
7763 понноппррр$
7764 хфууфххццц$
7765 ыъщщъыыььь$
7766 ё№яя№ёёђђђ$
7767 їіѕѕіїїјјј$
7768 §ќћћќ§§ўўў$
7769 $
7770   
7771 
7772 
7773 $
7774   $
7775 $
7776 $
7777 !  !!"""--&џџџџ&џџџџ™b--$
7778 œ›šš›››œœœ$
7779 Ё ŸŸ ЁЁЂЂЂ$
7780 ЇІЅЅІЇЇЈЈЈ$
7781 ­ЌЋЋЌ­­ЎЎЎ$
7782 ГВББВГГДДД$
7783 ЙИЗЗИЙЙККК$
7784 ПОННОППРРР$
7785 ХФУУФХХЦЦЦ$
7786 ЫЪЩЩЪЫЫЬЬЬ$
7787 баЯЯаббввв$
7788 зжеежззиии$
7789 нмллмннооо$
7790 утсстууффф$
7791 щшччшщщъъъ$
7792 яюээюяя№№№$
7793 ѕєѓѓєѕѕііі$
7794 ћњљљњћћќќќ$
7795 џџ$
7796 $
7797       $
7798 $
7799 $
7800    $
7801 %$##$%%&&&$
7802 +*))*++,,,$
7803 10//011222$
7804 7655677888$
7805 =<;;<==>>>$
7806 CBAABCCDDD$
7807 IHGGHIIJJJ$
7808 ONMMNOOPPP$
7809 UTSSTUUVVV$
7810 [ZYYZ[[\\\--&џџџџ&џџџџжо ]
7811 -- $§
7812 ё
7813 ђU
7814 ўU
7815 
7816 $
7817 їх н
7818 --&џџџџ--–
7819 П
7820 ћ-- ћ џTimes New RomanH-№ .2
7821 p
7822 
7823 v(i=1,j=1)0 6060 .&џџџџкЙm-ќРРР- $ѓџя§юћэљюїяѕѓѕѓїїљљћљ§љџїѓ $ џ§ћјїѕ ѕ їјћ§џ  $#џ§ћјіѕ#ѕ#і'ј)ћ)§)џ'# $;џ7§5њ5ј5і7є;є;і?јAњA§Aџ?; $SўO§MњMјMіOєSєSіWјYњY§YўWS
7824 $ѕќРсѕ--&џџџџ--юЇ]у--  ВВВ.2
7825 Ш
7826 v(i=1,j=1)0 6060 .&џџџџcœ ур -- $ЈУ ЈЗ jЗ jУ 
7827 $Іи лН ІЃ --&џџџџ&џџџџІ› [о -- $ Т "С $Р &М $И "З Ж Ж Ж И М Р С Т $Т
7828 С Р М И
7829 Ж Ж Ж Ж И М Р С Т $№Т ђС єР іМ єЗ ђЖ №Ж №Ж юЖ ьЗ ъМ ьР юС №Т $иС кС мР оЛ мЗ кЖ иЕ иЕ жЖ дЗ вЛ дР жС иС $РС ТС ФП ЦЛ ФЗ ТЖ РЕ РЕ ОЖ МЗ КЛ МП ОС РС 
7830 $з SН Ђ --&џџџџ--О ч- #-- ВВВ ВВВ.2
7831 ˜ @
7832 u(i=1,j=1)0 6060 .- њ"-г Е я--№&џџџџjЊ –е њ"--
7833 $Ќ lв “в -№-&џџџџ&џџџџо#фэ--$
7834 пъпърырытытътщсшршпщ$
7835 пфпфрхрхтхтфтустртпу$
7836 попорпрптптотнсмрмпн$
7837 пипйрксктйтитзсжржпз$
7838 пвпгрдсдтгтвтбсарапб$
7839 пЬпЭрЮсЮтЭтЬтЫсЪрЪпЫ$
7840 пЦпЧрШсШтЧтЦтХсФрФпХ$
7841 пРпСрТсТтСтРтПсОрОпП$
7842 пКпЛрМсМтЛтКтЙсИрИпЙ$
7843 пДпЕрЖсЖтЕтДтГсВрВпГ$
7844 пЎпЏрАсАтЏтЎт­сЌрЌп­$
7845 пЈпЉрЊсЊтЉтЈтЇсІрІпЇ$
7846 пЂпЃрЄсЄтЃтЂтЁс р пЁ$
7847 пœпрžсžттœт›сšрšп›$
7848 п–п—р˜с˜т—т–т•с”р”п•$
7849 пп‘р’с’т‘ттсŽрŽп$
7850 пŠп‹рŒсŒт‹тŠт‰сˆрˆп‰$
7851 п„п…р†с†т…т„тƒс‚р‚пƒ$
7852 п~пр€с€тт~т}с|р|п}$
7853 пxпyрzсzтyтxтwсvрvпw$
7854 пrпsрtсtтsтrтqсpрpпq$
7855 пlпmрnсnтmтlтkсjрjпk$
7856 пfпgрhсhтgтfтeсdрdпe$
7857 п`пaрbсbтaт`т_с^р^п_$
7858 пZп[р\с\т[тZтYсXрXпY$
7859 пTпUрVсVтUтTтSсRрRпS$
7860 пNпOрPсPтOтNтMсLрLпM$
7861 пHпIрJсJтIтHтGсFрFпG$
7862 пBпCрDсDтCтBтAс@р@пA$
7863 п<п=р>с>т=т<т;с:р:п;$
7864 п6п7р8с8т7т6т5с4р4п5$
7865 п0п1р2с2т1т0т/с.р.п/$
7866 п*п+р,с,т+т*т)с(р(п)--&џџџџ- њ"-lтN--№&џџџџK?wk њ"--
7867 $`AMhth-№-&џџџџ--&|•u-- ВВВ .02
7868 ’- T(i=1,j=1), p(i=1,j=1)... ; 6060 0 6060 .--Š‚љ{--  .02
7869 d˜- T(i=3,j=1), p(i=3,j=1)... ; 6060 0 6060 .&џџџџ37 •u њ"--$
7870 c9 YO 5O R] Gr ce €r u] ’O nO -№-&џџџџ&џџџџ+ЃŽс њ"--$
7871 \ЅQК-КJШ?о\бyоnШ‹КgК-№-&џџџџ--7q‹--  .
7872 2
7873 мЈ- . . 2
7874 мрdudy0000.ћРџTimes New Roman-№ . 2
7875 Р † .ћ џTimes New RomanH-№ .2
7876 мР (i=2,j=2) 6060 .&џџџџ{ђEт.
7877  џџџ--@ юpШ Лмц    џџџ.1   &џџџџРџџџИџџџри & MathTypeр њ"- ЛмцХћ€ўTimes New Roman-2
7878 Œёy2
7879 nхu2
7880 `Пuћ џTimes New Roman5- №2
7881 РKyћ€ўSymbol-№ 2
7882 Œ7Ж2
7883 n+Ж2
7884 `хЛ2
7885 `:=ћ€ўSymbol- №2
7886 `Nd
7887 &
7888 џџџџћМTimes New Roman5-№ --'џџ&џџџџ--Љžƒ-- ћРџTimes New Roman- № . 2
7889 g † .ћ џTimes New RomanH-№  . 2
7890 ƒРdudy0000.-- =-- ћ џTimes New Roman- № .2
7891 ЈIndexing 00+000. .2
7892 of XY0 FE. .2
7893 Žslice of&*+0 . . 2
7894 3x4 000. .2
7895 tphysical000&+*. .2
7896 чdomain00K*0.--& +•
7897 G-- ћ џМTimes New RomanH-№  .K2
7898 d-Rule 2: westernmost, southernmost, uppermost.F5*0 F*& *+5P0& %06 5+*6P0% 656*+P0% .&џџџџ ў~ њ"- -% {-№ -&џџџџ--ћМ"Systemn- №&TNPP &џџџџCompObjџџџџџџџџџџџџŒ{ObjInfoCGџџџџŽPicturesџџџџџџџџџџџџxCurrent UserFIџџџџ•*У@ўfђS P<…‚^DЁ^С'{А}€T (˜ThErѓ<ј4RPАпСc/ѕЌWуюь6`мevчfцћv‡PœЉ+аЫSVgэЙژH"ФEQHd‡ж$вbВйѓ<ЋkpфFЕEхmњ XGЁ‹*<VоHйФ^Ucs8ъ ЯКљeLД|АЉаЋ)ŒлdК/3xего’ђž}­ї“oОLюi=.#ьžЇЩ j'збq?эeНš.„9uяЗЮЛЇss‹3š
7899 ОВ8ц'6и0DХ V'Ы§V2љ SXбЊПVэА“Ї'§ `ІадsЉtO”н—JЗ~р˜ЇŽЦ%о‡ЦПјшOОЊо˜лђЦSv>ЬЄ‹щЂ&шQІNЬЭN>&)ВъЩћУ’U1і"_Р‘у]4
7900 єbChris HillўџеЭеœ.“—+,љЎDеЭеœ.“—+,љЎ4№ˆЈДМФSummaryInformation(џџџџџџџџџџџџ/4PowerPoint Document(HJџџџџJ4DocumentSummaryInformation8џџџџџџџџџџџџ–Ь1TableџџџџЁ—Џўџр…ŸђљOhЋ‘+'Гй0ш3 `h€” ЈД
7901 д р ьјфNo Slide Title Chris Hillt Chris Hillt26iMicrosoft PowerPointP@`ŽБ@Р=№G/М@@mЉ]/М˜Gр2џџџџM o h
7902 K&џџџџЪК &џџџџ&#џџџџTNPPАы0D ‡
7903 &
7904 TNPPє &џџџџ&TNPP   КЪ ќџџџ- њџџџ"-- !№Ра-- њ"-&џџџџ5jЭЌ&џџџџ ћ- &џџџџѕjлЌ&џџџџ ќ--i8јџ-- ћрџTimes New Roman,-№ .2
7905 \
7906 u(i=1,j=1)  .&џџџџ]­ˆ њ"--$M^Ј†b†Ћ<Ћ^
7907 %ЈbЈЋ^%bЈb†-№-&џџџџ&џџџџMmЕ&џџџџMmZА њ"--%SvSЎ-№ќ-
7908 $YxSnNx--&џџџџ&џџџџRЈЖ њ"--%SЎƒЎ-№-
7909 $Д‹ЎЉ--&џџџџ&џџџџR•}А њ"--%SЎt™-№-
7910 $u {–p–--&џџџџ&џџџџ&џџџџA-І­&џџџџLPZ“ њ"--%SQS‰-№-
7911 $M‡S‘X‡--&џџџџ&џџџџR‹™ њ"--%S‘ƒ‘-№-
7912 $—‹‘Œ--&џџџџ&џџџџRx}“ њ"--%S‘t|-№-
7913 $uƒ{ypy--&џџџџ--^f-A--  . 2
7914 QKk.--АYs--  . 2
7915 }}j .--ЎЇ}‰--  . 2
7916 Ё“i .&џџџџ--tdCA--  . 2
7917 fKz.--Єžsy--  . 2
7918 –ƒy.--ФЎ“‰--  . 2
7919 Ж“x.&џџџџ %У њ"--$ ЁЉСС#Й#Ё
7920 %ЉЉ#Ё%ЉС-№-&џџџџ&џџџџрkЂ--6$ŽŽŒŒ‹‹‡ƒњzєvэrшoфmтpхrъuёyї}† ŠŽŒŒŽ
7921 $ŽžŒ--&џџџџ--wLF‹--  .2
7922 j• (i=1,j=1,k=1)  .&џџџџbЅeЈ њ"--%cІcІ-№-&џџџџ--&ЯM--  .2
7923 ѓW Computational   . .2
7924 WDomain .--?єч"--  .2
7925 , Computational   . . 2
7926 1,Axes .--W˜--  .2
7927 $!Physical . . 2
7928 J!Axes .--юН'-- ћрџМTimes New RomanH-№ .@2
7929 с1&Rule 1: i - east, j - north, k - down.   
7930  
7931    .&џџџџ‰N`- њ"-_Ь‰--№- њ"-_Ы--№&џџџџ
7932 ]N` њ"--% ^L^-№-&џџџџ&џџџџ
7933 N  њ"--% L-№-&џџџџ&џџџџJM` њ"--%K^K-№-&џџџџ&џџџџ- њ"- Ьп‰--№- њ"- пЫ--№&џџџџ
7934 N! њ"--% L-№-&џџџџ&џџџџ
7935 оNс њ"--% пLп-№-&џџџџ&џџџџJнM! њ"--%KKо-№-&џџџџ&џџџџ‰Nс- њ"-рЬŸ‰--№- њ"-рŸЫ--№&џџџџ
7936 оNс њ"--% пLп-№-&џџџџ&џџџџ
7937 žNЁ њ"--% ŸLŸ-№-&џџџџ&џџџџJMс њ"--%KпKž-№-&џџџџ&џџџџ&џџџџ
7938 žNЁ њ"--% ŸLŸ-№-&џџџџ&џџџџ
7939 ]N` њ"--% ^L^-№-&џџџџ&џџџџˆ^‹Ѓ њ"--%‰Ё‰_-№-&џџџџ&џџџџЪ^ЭЃ њ"--%ЫЁЫ_-№-&џџџџ&џџџџ ]Ё њ"--% Ÿ ^-№-&џџџџ&џџџџЪ]` њ"--%Ы^ ^-№-&џџџџ&џџџџˆ]Ь` њ"--%‰^Ъ^-№-&џџџџ&џџџџIДv-- $Њ[І[ІrЊr
7940 $Б]ЈL ]--&џџџџ--ˆ@WЉ-- ћрџTimes New Roman,-№ .2
7941 {Г
7942 v(i=1,j=1)  .&џџџџž=Е{-ќРРР- $ЋPЋOЊNЉMЉMЈNЇOЇOЇOЈPЉQЉQЊPЋP $ЋWЋVЋUЊUЉUЈUЇVЇWЇWЈXЉYЉYЊXЋX $Ћ_Ћ^Ћ]Њ]Љ]Ј]Ї^Ї_Ї_Ј`ЉaЉaЊ`Ћ` $ЋgЋfЋeЊeЉeЈeЇfЇgЇgЈhЉiЉiЊhЋh $ЋoЋnЋmЊmЉmЈmЇnЇoЇoЈpЉqЉqЊpЋp
7943 $ВQЉ@ЁQ--&џџџџ--P8Ё--  ВВВ.2
7944 CЋ
7945 v(i=1,j=1)  .&џџџџv4ЂL-- $A=y=yA
7946 $Hž?7--&џџџџ&џџџџ74uL-- $bAbAc@d?d?c>c=b=a=`=`>`?`@aA $ZA[A\@\?\>\=[=Z=Y=X=X>X?X@YA $RASAT@T?T>T=S=S=R=Q=P>P?Q@RA $J@K@L@L?L>L=K<K<J<I=H>H?I@J@ $B@C@D@D?D>D=C<C<B<A=@>@?A@B@ $:@:@;?<><>;=;<;<:<9=8>8>9?:@
7947 $`Hq?`7--&џџџџ--@јa-- ВВВ ВВВ.2
7948 3k
7949 u(i=1,j=1)  .- њ"-GА<Ѕ--№&џџџџ#83H њ"--
7950 $*9$F1F-№-&џџџџ&џџџџJaMЅ њ"--%KЃKb-№-&џџџџ- њ"-VzKo--№&џџџџnj~z њ"--
7951 $ukox|x-№-&џџџџ--cе2|-- ВВВ .02
7952 U†- T(i=1,j=1), p(i=1,j=1)...   
7953   
7954 .--„зS~--  .02
7955 wˆ- T(i=3,j=1), p(i=3,j=1)...   
7956   
7957 .&џџџџЛн( њ"--$
7958 ЬШМЦТ&Ь"е&влЯ-№-&џџџџ&џџџџc‹†Ё њ"--$
7959 tŒp“d“n˜jŸt›~Ÿz˜„“x“-№-&џџџџ--Ќh{„--  .
7960 2
7961 Ÿ- . . 2
7962 Ÿ dudy.ћыџTimes New RomanH-№ . 2
7963 –р†
7964 .ћрџTimes New Roman,-№ .2
7965 Ÿъ (i=2,j=2)  
7966 .&џџџџ(ЅТї.
7967  џџџ--РPа˜ 
7968 нц    џџџ.1   &џџџџРџџџИџџџри & MathTypeр њ"- 
7969 нцХћ€ўTimes New RomanH-2
7970 Œёy2
7971 nхu2
7972 `Пuћ џTimes New Roman- №2
7973 РKyћ€ўSymbol-№ 2
7974 Œ7Ж2
7975 n+Ж2
7976 `хЛ2
7977 `:=ћ€ўSymbol- №2
7978 `Nd
7979 &
7980 џџџџћМTimes New Roman-№ --'џџ&џџџџ--ф5Гж-- ћыџTimes New RomanH- № . 2
7981 Юр† .ћрџTimes New Roman,-№  . 2
7982 зыdudy.--†-- ћрџTimes New RomanH- № .2
7983 8
7984 Indexing  . .2
7985 ^
7986 of XY . .2
7987 …
7988 slice of  
7989 . . 2
7990 Ћ
7991 3x4 . .2
7992 в
7993 physical  . .2
7994 ј
7995 domain .--ИК‡-- ћрџМTimes New Roman,-№  .K2
7996 Ћ!-Rule 2: westernmost, southernmost, uppermost.  
7997 
7998  
7999   .&џџџџџж њ"- -%д-№ -&џџџџ--ћМ"Systemn- №&TNPP &џџџџшыщ(р€р€
8000  Ќ
8001 Ь˜Э0УбbКEquation КEquation.30К,Microsoft Equation 3.0ђ№/Ш 0веLЗDTimes New RomanЄгbЄгbЬбbЗё0№бb№бbЩђ0Љ
8002  @Ѓnџ§?" dd@џџяџџџџџџ  @@``€€ №№ xMx/№X№$џ‹2№$17žЊAэВЃїSш4pЅŽџx‹у №T‚ƒПРСТџџџФЫ5%ЭЮзџёВВВ@ёї№ѓ€а‹њgў§4MdMdќбbЩђ0єбbђўџџІџџџpћ@ pћpџ ?й к%№ѓъјuя 0`№ џџџ€€€Ь™33ЬЬЬџВВВ`№ џџџџџџџ™џџџ–––`№ џџЬff3€€3™3€3ЬџЬf`№ џџџ333ннн€€€MMMъъъ`№ џџџ€€€џЬfџЬЬРРР`№ џџџ€€€РРРfџџ™`№ џџџ€€€3™џ™џЬЬЬВВВЃ>џ§?" dd@џџяџџџџџџ,Ѓ|џ§?" ddи@џџяџџџџџџ € д €" а@€ №`€Л€ Ѓnџ§?" dd@џџяџџџџџџ   @@``€€PЃR    @ ` €`Ѓ pЃ>€Ѓ> г№Ы№№c№( №
8003 №№в
8004 №
8005 “ №6€T‡‡ƒПРџ №DœР№У ‡ №TŸЈ Click to edit Master title styleЂ!Њ
8006 !№
8007 №
8008 ƒ №0€ ‡ƒПРџ №€Dœ№У ‡ №žŸЈRClick to edit Master text styles Second level Third level Fourth level Fifth levelЂ!    Њ
8009 S№Е
8010 №
8011 ƒ №0€t ‡ƒПРџ №€DШ№У ‡ №=ŸЈ*Ёј№З
8012 №
8013 ƒ №0€д ‡ƒПРџ №€Ф №У  ‡ №?ŸЈ*Ёњ№З
8014 №
8015 ƒ №0€4!‡ƒПРџ №€ œ№У ‡ №?ŸЈ*Ёи№H
8016 № ƒ №0ƒ“оНh”ŽŸ‹Пџ ?№ џџџ€€€Ь™33ЬЬЬџВВВюw$я€0 '$№$ №GwАё,
8017 №ƒ#№( №
8018 №№ŠЂ
8019 №V
8020 Ѓ №<€t‰Ÿ…‡ПƒПРџ№PаџVp №ŸЈ
8021 u(i=1,j=1)№j
8022 №
8023 Г №B€…‡ƒПРџ?ˆ №6$ №ž№L №а 
8024 №# № ˆ №–ђB№fB
8025 №
8026 “ №6…‡DПРаџ№аа№fB
8027 №
8028 “ №6…‡DПРбџ№а №fB
8029 №‚
8030 “ №6…‡DПРбџ№аР№c№L №FzŸz
8031 №o# № ˆ №ˆс
8032 №lB
8033 №
8034 Ѓ №<…‡DПРбџˆ№АPАа№lB
8035 № 
8036 Ѓ №<…‡DПРбџˆ№Ааа№lB
8037 №
8038
8039 Ѓ №<…‡DПРбџˆ№А@ а№‰Ђ
8040 № 
8041 Ѓ №<€tƒŸ…‡ПƒПРџ№Fzš №ŸЈk№‰Ђ
8042 № 
8043 Ѓ №<€дƒŸ…‡ПƒПРџ№p€  №ŸЈj№‰Ђ
8044 № 
8045 Ѓ №<€4„Ÿ…‡ПƒПРџ№іZŸz №ŸЈi№‡Ђ
8046 №
8047 Г №B€”„Ÿ…‡ПƒПРџˆ №ˆQА №ŸЈz№‡Ђ
8048 №
8049 Г №B€є„Ÿ…‡ПƒПРџˆ №АиЌа №ŸЈy№‡Ђ
8050 №
8051 Г №B€T…Ÿ…‡ПƒПРџˆ №p8  №ŸЈx№^
8052 №
8053 “ №6…‡ƒПРџˆ №Ц↹
8054 №
8055 Г №и…‡BPC DEСFС‚ƒПРСФЫд”ЭЮабвгзџˆ №џ  8P№ Р№0 @­ ­ Ќ€№–RЂЖ№“Ђ
8056 №
8057 Г №B€”‡Ÿ…‡ПƒПРџˆ №ІBФЦ №!ŸЈ (i=1,j=1,k=1)№^B
8058 №!
8059 “ №6…‡DПРџˆ №цRRц№šЂ
8060 №n
8061 Г №B€єŠŸ…‡ПƒПРџˆ №кЮЕ р №(ŸЈComputational Domain№˜Ђ
8062 №p
8063 Г №B€є'‡…‡ПƒПРџˆ №kЫВq №&ŸЈComputational Axes№“Ђ
8064 №q
8065 Г №B€Drи…‡ПƒПРџˆ №ŽŒ №!ŸЈ Physical Axes№ШЂ
8066 №s
8067 Г №B€Єrи…‡ПƒПРџˆ №n
8068 ы[ Ž  №VŸЈ&Rule 1: i - east, j - north, k - down.Ё''№n№L №іІŠ0
8069 №-# № ˆ
8070 №Ќ7Ы6№`
8071 №&
8072 ƒ №0…‡ƒПРџ№іА€0№`
8073 №)
8074 ƒ №0…‡ƒПРџ№€А
8075 0№`B
8076 №*
8077 ƒ №0…‡DПРџ№0Š0№`B
8078 №+
8079 ƒ №0…‡DПРџ№АŠА№rB
8080 №,
8081 Г №BІџ…‡DПРЮзџ№€І€0№^
8082 №/
8083 “ №6…‡ƒПРџˆ
8084 №<7СМ№^
8085 №0
8086 “ №6…‡ƒПРџˆ
8087 №<СKМ№^B
8088 №1
8089 “ №6…‡DПРџˆ
8090 №МAЫМ№^B
8091 №2
8092 “ №6…‡DПРџˆ
8093 №<AЫ<№pB
8094 №3
8095 У №HІџ…‡DПРЮзџˆ
8096 №2ССМ№n№L №іІŠ0
8097 №7# № ˆ
8098 №В7Ы<№`
8099 №8
8100 ƒ №0…‡ƒПРџ№іА€0№`
8101 №9
8102 ƒ №0…‡ƒПРџ№€А
8103 0№`B
8104 №:
8105 ƒ №0…‡DПРџ№0Š0№`B
8106 №;
8107 ƒ №0…‡DПРџ№АŠА№rB
8108 №<
8109 Г №BІџ…‡DПРЮзџ№€І€0№^B
8110 №@
8111 “ №6…‡DПРџˆ
8112 №МAЫМ№jB
8113 №A
8114 Г №B…‡DПРЮзџˆ
8115 №2AЫ2№dB
8116 №D
8117 Ѓ №<Іџ…‡DПРџˆ
8118 №<77Ц№dB
8119 №E
8120 Ѓ №<Іџ…‡DПРџˆ
8121 №<ССЦ№dB
8122 №F
8123 Ѓ №<Іџ…‡DПРџˆ
8124 №2KKМ№jB
8125 №G
8126 Г №B…‡DПРЮзџˆ
8127 №2СK2№jB
8128 №H
8129 Г №B…‡DПРЮзџˆ
8130 №25П2№jB
8131 №K
8132 Г №B…‡DПРЫд”аџˆ
8133 №ЩяяЋ№Ђ
8134 №M
8135 Г №B€є‡Ÿ…‡ПƒПРџˆ
8136 №
8137 ѕ{* №ŸЈ
8138 v(i=1,j=1)№vB
8139 №R@
8140 г №N…‡DПРРРРЫд”Юазџˆ
8141 № ѕљЪ№ЖЂ
8142 №T
8143 Г №B€‰Ÿ…‡ПƒПРџˆ
8144 №К ХKк  №DŸЈ
8145 v(i=1,j=1)Ё
8146 ВВВў№pB
8147 №U
8148 У №HZ…‡DПРЫд”аџˆ
8149 №zеЗz№|B
8150 №W@
8151 у №TІџ…‡DПРРРРЫд”Юазџˆ
8152 №vZЅz№ЖЂ
8153 №X
8154 Г №B€єŸ…‡ПƒПРџˆ
8155 №ZEЫ z №DŸЈ
8156 u(i=1,j=1)Ё
8157 ВВВў№^2
8158 №Z
8159 “ №6€€…‡ПРџˆ
8160 №jнЄ№XR
8161 №[
8162 ƒ №0…‡ПРџˆ
8163 №Wи&Ѕ№pB
8164 №B
8165 У №HІџ…‡DПРЮзџˆ
8166 №JССд№^2
8167 №\
8168 “ №6€€…‡ПРџˆ
8169 №У ›е§ №XR
8170 №]
8171 ƒ №0…‡ПРџˆ
8172 №‚šша№ЁЂ
8173 №^
8174 Г №B€Д‹Ÿ…‡ПƒПРџˆ
8175 №* щіJ №/ŸЈ- T(i=1,j=1), p(i=1,j=1)...№ЁЂ
8176 №_
8177 Г №B€TˆŸ…‡ПƒПРџˆ
8178 №ђ ѕ №/ŸЈ- T(i=3,j=1), p(i=3,j=1)...№XТ
8179 №b
8180 ƒ №0…‡ПРџˆ
8181 №ri%х№XТ
8182 №c
8183 ƒ №0…‡ПРџˆ
8184 №IZ М№єЂ
8185 №j
8186 Г №B€ДˆŸ…‡ПƒПРџˆ
8187 №т l №‚Ÿ  - dudy (i=2,j=2)Ё$
8188 Њ №fВ
8189 №i
8190 s №*A ?Пџ?ˆ
8191 №цј ˆТ№ С №жЂ
8192 №k
8193 Г №B€4‡Ÿ…‡ПƒПРџˆ
8194 №0 : P №dŸ 
8195 dudyЁЊ№жЂ
8196 №r
8197 Г №B€sи…‡ПƒПРџˆ
8198 №z  №dŸЈ,Indexing of XY slice of 3x4 physical domainЁ-,№ЯЂ
8199 №t
8200 Г №B€„tи…‡ПƒПРџˆ
8201 №*ŽTJ №]ŸЈ-Rule 2: westernmost, southernmost, uppermost.Ё..№^B
8202 №u
8203 “ №6…‡DПРџˆ
8204 № і №H
8205 № ƒ №0ƒ“оНh”ŽŸ‹Пџ ?№ џџџ€€€Ь™33ЬЬЬџВВВJxœэVпKгQ?ї~7Э9sNK1О 2(œš)EY™љ#•~@С6›ИrћЊлЌѕ>„=іhа?PDљвkљ=йƒ=єE[ŸsПwc.б QžёйНчў:Ÿ{я9ч~WоW­>yVџ‰
8206 ф”Ю”QI^›аPт!’ZOg2™lsfWv”ќœњКLџgNЛђяdˆ,ќdR7ХPNSJХё  pх€;Я7Њі“3ѓœф;Љц/лщр,џ€РгЧ7Њ›—„С{=A4Aa5˜ѕF”‡€sZ?œgЗ u?а Д­ŠŸљћ9†Жvр8аt&6-5Р)•ПNcџQšнR,kЏк Иє§Р0\МАЯ9ааЙя2Ъ+РUрZAnЬЯЃc@ЯKя'І8іеЂі6Dft˜Ђ@ А€I`
8207 Јгћwhћ3кц]]ол`яЬѕ!ЎщЕ›вњоВёЯЙ€s~)mьzlЅ.weg‹АŸёuВВ­o‚tЦpйОWћЕ3‘бi+n%ЬюЉd0Бbf›ПEЙв™с\›rЏЌтoЃoЯЇŠcФvйŸ:ЎнћN<Žф>xВб*ићїЉ^іє25”чrs‹X@ЕјEji•B.—йyni:ЬR/j%•TЏЌЊO"ZFmXХ!}0ьИс1nъ &ЦGR“HuЋ*Њ~H{‹OYlіъ5’d­“kеЈН-aО?х§Д=і‘Ъ7Iž‘H47ћУwЬ!+Œбтg{Ё"їЈkојъфБ)­ЧФšв“ZШ7вжm ff+ 5OЉЪ/9KЫВWк–<\љhёѓ ЇЂ!k‚(Ыаž/sLлГ—9ІGжщЙfАў*ЇwЊлюњУžиа^!п€ьW{МЉrп‹t4щ5=*-Љ[Rњ†SёD8JБТ=[јшf_в ъ€*VNъžФh}ѕЈК!№TК„œы"љр…aT
8208 *ойПМ.яl’фмyŸБ—ЩЭI7dkЉЂuуIт%JрЕБ№К˜xсlmFПЪ›‹ іљљЄˆ)Цt͘EЪvэџmйЉі+Њhс7ьйЫ“r@ѓp я0ѕМ A4Ь д
8209 мф ьєќ  iфOn-screen Showmitљ5Г  Times New RomanDefault DesignMicrosoft Equation 3.0No Slide Title  Fonts UsedDesign TemplateEmbedded OLE Servers Slide Titles˜ 6>
8210 _PID_GUIDфAN{0E71EF40-9ACF-11D0-9BAA-00A024186100}ўџр…ŸђљOhЋ‘+'Гй0œ˜ИФф№ $0
8211 L X d p|„Œ”фDISCRETE FORMULATION8ISCPhysical Oceanography8hys Normal.dotePhysical Oceanography818sMicrosoft Word 8.0h@‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œўџџџўџџџ ўџџџЂЃЄЅІЇЈЉЊЋЌ­ЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯабвгдежзийклмнопрстуфхцчшщъыьэюя№ёђѓєѕіїјўџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџ`uзI>Oм.Dd‰!#юu№BВ
8212 №Х
8213 S №AЏ?П џ№”€2№F.VфІM!Аљ'сANIFЅџ".Й›`!№.VфІM!Аљ'сANIFЅи‹j 
8214 и.SXZ>ш-ўxœд™xUњ‡чо;ч;їо$@ єbЁз`@,(M],HAE!Ъ*ˆ
8215 
8216 ЈЛ  "И
8217 HW—&
8218 Ђ+ŠŠJБ…В‚€JDЄЊК4 EјПgJrMіџ<›<я3'пяћ9sЮ7gf `E,+ДїjЫ*o=i™ŸDЈ"…­Rж ~,ЋˆхџєHАЌBQЫ8œŒА“фЏ’^Є’Б­ВVћV­['YoэБъgь,љ”зOдЫŽ:Y–Д…ђітЏТ^$ЩЩВ­x+@$рѕЁ .шЗтƒ…Ђ=lZv СвЁ9УЗLДvРѕ‘ rмFЉш)<х%Хкg%E{%X1оМ}фLHNAg–ЬhKxГFЗVвзr)›9†=]=`™юЦє”ћуіrЎ+b2œ1'}-xŠГГнГe‡O}Жsщk<B?F‚ezY['щ;щЂ8=TŠГЌу’џ\VЮЌКЋШsUЖsдХqUaэнљЗ:gн–.]šуPЌЛeЅ†Xi<5|!ёђ…фі`yНŠ˜vьХЎГxч‰sfЃŠ˜ +тє-VMн8/CёВQВ#хHtО:ТЙŠ:™С"eLхTžušbMk™<~DЬЙƒ9з~ђеEЌиё6€fNе,wУNmЌќ?~‰ИЕlYГсцг-ыГї2ЌЂ+2ЌLŽэМщ<#:гUЧŽд_5ЬqŸ~UЬlђЌЙЙ/§{%іЎвЬVўj-ЈЂЮЅ†жЌY“SCЇэ\ѕЁ‚jЈрŠЩэЉs(;в9dцЫЬуџbЅфўєJс(œГТБ#+шЊOU)Ї^Зз№VтфКйчyџПыgвЄIЇЈŸьHnЕgG
8219 оƒЮ\?ў,š{Юм{џлѕcх\ѓщы'џUŸЎ~ђЎ@ўњ9ѕJ\˜њЩћЫ{}noB/m96RAЋПЙ5Єх6ш EK6Лa6#Ы–ЭА%ВIŽGЉбL˜ƒ'Ђ˜‡FмG‚еЁšО,hњЉЋ›:їVMн на8ј‹ƒйчЋпЂяЈ/#Ÿ;;vvd-ч1l”DГ›w‘ЎN?юX9c.хЬ^”ЛЏ#yмЫЁЭА%в5t<к4ј[єВр—‘[{<;в1”пяЯўЗш6ЪЗ›;Уц=dгпqдS'П‡TЛzCOЯ{—Ћ“ЦœОУЎтPUЅУйŽљTуZфk•}цѓŽ
8220 gйЃТ‹э,mШВЯїМЋ9я0’"БќY\ясбvЗ№гіZ]XmвЅЯњzO}7иyюŠВіћў№–Pеpо7фр9­pГrˆлO3“ц˜ћ^>йъЃG8oFюŘя†
8221 Ю_uю—A4ч!’г
8222 Эщѓ_—9†иaЬѕЕ“Ђ“­^ §НяŒ^ћЦmuП3š—r{sЏ,Џз:RN$ЭyћЭѕѕЎПLЬ—еRZ3aЉпAœ—oниЕяНэєъfY]œЬЃСdwcЖž7A› m7рўŒ{цюНЙЃ5ЋX?К5АЫйщЏГŠ;= :гƒezhп§ўn}’[u{$Йэƒїw}€<ЗЏHЮŽыі4(PТщЉCЬз›[цЧэНˆ3w–ЕФ›`АhўоKч{JDЌќѕcŽU'NœщnИ‹„Ој~у˜М№+?к›ЫqG–фЌ|r№ќV>9XаЪ/€­ц*
8223 XљжgЙђ‘˜бКыuШjˆ]љ<=œvхЃ9kуіdгЯРГЎЁвљj(ъѕ4%абЉЁІЊ†NчљжаKœj?/ѕHќЇОА54‡х­JЕяzюpkaаyжа ГЈЁK‚ЇЎЁ^чXCfДЖ†тNЊЁ+Я€ѓЎЁИџJ Х§щ2џђ2š3y]е…­ЁЈЁзНUiБџЏћнZшrž5дх,jЈd5tЖO HЬhџl ХАѕ?яŠџЏдPќ9за™jъ"N=ƒ‰мЩБВЮџ^”ћbўН65ддњBЇш-КИ~ŸЇХZєRагєO2L%=ѕrщЂ3хf§†\ЏЇIs=^Ўд/J =QыШ%zˆдз§Ѕ–(C=§€C]}м)iКƒд€zКy­х2н˜>jШMКЄДдIвJ—–лДHw}H=ЂwЈž:[нЉTmє1еB–fКЈ4д•ЅЖn$•ѕѕRIЗ‡)єŸТy*щоR]?(u/rТуœѓiЮ9†ёН,—ъЉвTЯaќ Єз“ЁWЫЃzЛLаПЩ|Ї3u‚іпnЃЮœ„Ќ‘њ š чЈŽzЕ:з7э(sџ37ђaŽSOz/ЭџЮЙ.ЗRдDЛŽkWUле=vYеcwЛ‚jOћ*Јm—WьP^%лЉвv%•D;‘МvŽ)*оNUХьšЊ}Хлщ*ЮNS6ФйWЊЈн
8224 КяЋ
8225 лOу}Z%иУШŸЄJйoЉђі;Њˆ=…мJа„МљЧC­дБа•ІўесяjъD(U›их”ЖKбg њ,JŸETYЛ0c4$0цЦ^„kHтZŠЋžvѕ„žgЋ†і>Uй^Ј~ ы< ѓ[™чoKŽЅNSчўMmеE*:$ък,ЭU†TU5%žуЙŽ%…1ьc,Х §,ЦRUХыЊЊЄўв!ўЄБlTЕuМ$ъъзѓЫЦ‘}–ѓ’Њt UBЯVKe†Z љЧђЎк ыеЫ2NЭ<чБLc щоМ,” ћ|ТѓэAя‰qнофŸнчд”@—ѓњТ2О‚žoU8&“њqяйчў}”;nяљИУrпq.ФRТŸ~3)Уj} ƒ Э~ЛэХЪнэЭ@ЗоыНašœзЪпщVЮLы“Ќ\Нѓ^93nхnАм7‹ Бr….ШЗэЗјцq\<ѓ§џjј‡РФ№waс‡‚cТ}ƒљяџћТ=ƒCТoч„ћЯѕўP=я0auЙќMR№X’sВтdƒDeЃCœ˜џњвЁУА6РzI€xˆп_Dў-Eф3X ы$ŠB1$тIшХШ+*kазˆёјўђЉ—,X)%d•””еR
8226 JгvY Y№)ёOб?уё§ee…”•с#јXЪAyЈрqё‹а+W^–Ѓ/уё§)ђžЄШћ№,•ŠP R=*ЏŒžJ^%Y‚ОDŒЧїW•RE2aЁT•ERMKuЈAлe!dТт аˆёјўZђЖд’w`М+ЕЁдѕЈGМz]ђъШ\єЙb<ОПОЬ‘њђМ џ’‹!x4$оНyщђ:њыb<ОП‘Ь”KфUxMЩ,ЙTfЫep9m—зрU˜I|&њL1ппXІJc™гa†\ WAІФ›Ђ7!я*™‚>EŒЧї7—Щв\^„—рeiWУ5зП§ђЎ–Iш“Фx|K+‘q0^ZЪЙN&Ъѕpm—ё0Ц‹>VŒЧїЗ’чЅ•Œ‚б0Fn‚жаЦЃ-ёЖшmШk-ЯЁ?'ЦућлЫ3в^FРHxVn†p‹GGтбo!Џƒ G.Цућo•ЁвI†С“rЋ<%ЗЩгr;tІэђ$ ƒЁФ‡Ђуё§wЪпхNƒс щ]!Уу.тwЁgзUў†ў71ппMH7ТcђWИюѕшNМ;њНфн#§бћ‹ёјўћЄєОаOю“‡ЅЇ<"їУД]њA_шCМz1пп Ѕ—<цЗЗѓћєёшKД/zђЂ‡о`<ОџaFжіcгѓ#œЁ?  эвКУНФяEПWŒЧї?ЦЬ<Ъ =*wsЕнфqЎ№o№wк.wУ]A<=CŒЧїfeЫЮьvfП‹ ЁУˆCJоV№ 0пџ•ё$ђ$№+ћ4+<žЁэв :Т-ФoAПEŒЧї?KeŽЄBGJ;Њ­Нќƒ
8227 {žЇэвкBтmалˆёјўбмЃхFЇњG;е“Мc=Ц‡>–МИƒЦ€ёјў м™уЙCЧsNрЮšШ6 &гvљ \ зП§1пџ2;УKь/I3юіцђOю№)0•ЖK3h
8228 Mˆ7Ao"ЦућЇГ3M—+œнgКГћ\)ЏРLW‰ПŠ>“МWиСf€ёјўYьŒЏБCОЦ8‹m6;мы0‡ЖЫ%аo€о@ŒЧїџ‹љMvш7%нЖОМХ;оІэ’ѕ .ёКшuХx|џ<ž ѓЄІГћЯsvџк2xdЯD_@о|ž я‚ёјўE<™ђ„ZШhO–Х<a–Р{Д]Њ@eH%žŠž*Цућ—ђdќ€'ф’Ьг.E–ё„[+hЛ$УEPxє
8229 b<Оџ#žЬIчщћ‘ѓє-'ŸРЇYФГа?%яžрƒёјўUМЌф a%oЋxВЏц ПўMлЅ8$A1тХа‹‰ёјўЕМ™Ќ•ТЮлЧZчэ#Q>‡ѕˆo@_OочМСЌуё§_H˜ЗœD!ŽЗž8љ
8230 6ydЯFпDоWЂбЕяп,AљZB`ЫfQђˆloiЛи‚ ё zPŒЧїo“?д69'Р’эАvzь"О }'y;ф˜кЦућП—пдїђ;†#ъи ?zь!О§GђvЫЏшП*уё§?Щ~ЕWРAѕ“R?Ы/ъ?АЖЫA8ћ‰яGпЏŒЧїНъ€ќ?УдA8ПxќJќWє_Ш;${аї(уё§ПЫwъwљ~€нъ0ЃЧˆC?Jой…ОKя?.[еВ ЖЋуВCЪв;U@я№ил`+ё­ш[•ёјўўZ…єfјЖ(ˆ‡&Ўб…<ЅГбГ•ёјўˆоЈ"њ јОRQˆƒxт шёфХщ ш”ёјўТњ3UHЏ…uЊАў\быU"ЅэВжТgФ?CџLяOв+U’^Ћa*% ЄG)тЅаK’WBgЁg)уё§eє‡ЊŒў>†OTY(х=*Џ€^žМrzњ
8231 e<О?YПЏ.вРR•Ќ—ЉН\U„JД]–Т№>ёїбпWЦућ+ы…ЊВ^‹a‰ЊUЁšGuтебЋ‘WUgЂg*уёП™ЮѕћЈšvПŽѓБЕшЄџ•?љћЈ–žЇjB §.у˜яPC/ –™C-ўЎMмP‹<уё§гЎiФгагШMУS.іH'жЭN^zŒџrк—СЅФ/EП”мKё\—{\AЌ1šс
8232 ђЎˆё7Їн šoŠо”мІxšAsФЎF3Д ЏEŒџzкзAKт-б[’лЯupНЧ ФnD3м@о 1ўvДлBтmаллO[hчбžиЭh†іфЕёпFћVшDМz'r;сЙnѓИXg4УэфнуП‹vt%оН+Й]ёdР]wы†fИ›МЛcќїбюн‰wGяNnw<=р>žФюG3є$ЏgŒПэ‡ 7ёошНЩэч!шуб—X?4C_ђњЦјЅ=€>€мxТЃ{Э№yХј‡а~Œ>˜мСxž€!C‰ C3 %ohŒэg`8ёсшУЩŽчс1’иГh†‘фŒёЁ=F…>ŠмQxFУˆE3М@о 1ўЩД'СDтб'’;Я$˜ьё"Б—а /’їbŒ:эi0•јTєЉфNХ3 І{Ь і
8233 šay3bќЏгž ГˆЯBŸEю,<Гсu9Фо@3Ь!oNŒџкoУ\тsбч’;Ял№ŽЧ<bяЂц‘7/ЦϘі"XH|!њBrтY‹=–{ЭА„М%1ўД—У2тЫа—‘Л ЯrXсё!Ба ’їaŒэ•E< =‹м,<+a•Чjbkа ЋЩ[у_OћsXG|њ:rзсљж{l ЖЭАМ 1ўЏigУ&т›а7‘Л O6|эБ™и7h†ЭфmŽёя НЖп†ОмmxЖУФvЁv’З3ЦП‡іА›јnєнфюЦѓ#ьёиKь'4У^ђіЦјв>ћ‰яGпOю~<р Ч!bП ‘w(Ц”і8Lќ0њarу9G=ŽћЭpŒМc1ўPxž
8234 B ќ.Ь‡I,S…<lb
8235 Э`“g‡s§qДЃ!AС…8xb h†xђтcќХh…Dт‰ш‰ф&т)
8236 Х<’ˆG3$‘—у/KЛ ”&^Н4ЙЅё”Вхˆ•G3”#Џ\ŒПэАB<=…м<Ё’G*БЪh†TђRcќ5iз€ъФЋЃW'З:žPгЃБкh†ZфеŠё_LЛ>ЄOCO#7 O}Ии#X4C:yџWнљGE]ц{œќБЅ`­™Ёэq˜Љ5АН
8237 VкQА2АVСКи5АЎ‚v ЌEАЎ‚yАK@]ы˜Ћ`­‚л1АVСJСэИЛ
8238 жEАVС\CыОž_šgБџpїМЮ<Яћ|eц3РюL жb=& OРŸ@v‰dŒ6 OL.Xы‡АО&ЃOЦŸLv2ћ Ф m
8239 ž"”\Јжc=ІЁOУŸFvщfŽ6ON.\ыGА~fЂЯФŸIv&‡!Т mž"’\Єжb=fЃЯЦŸMv69e6OM.ZыЧВ~bаc№cШЦаyb татёqфтД~ыЇ`>њ|ќљdчгy
8240  бр)Щ%j§$ж‹`!њBќ…dвYIЩh‹ёЩф’Е~*ыч =?…l
8241 ч е m)ž"\šжЯ`Н вбгёгЩІгY™hЫё™ф2Е~ы•А}ў
8242 В+шЌ„,ƒlДUxŠlrйZ?‡ѕZXƒО й5tжBŽA.Zž"—\Ўж/`§*фЃчуч“ЭЇѓ*Ђс)
8243 Щj§жo@1z1~1йb:o@‰A)кz<E)ЙR­_Цњmи€Ой tо†2ƒrДxŠrrхZП‚ѕиŒО3йЭtЖ@…A%кV<E%ЙJ­_Хz;lCп†Пь6:лЁЪ mžЂš\ЕжЏa§ьDп‰П“ьN:@A-к.<E-ЙZ­_ЧzьFпП›ьn:{ Ю m/žЂž\Нжo`НіЁяУпGv§а`аˆvOбHЎQы7БўЂФ?Hі ЯЁЩ эžЂ™\Гжoa}ЃЦ?Lі0#аbаŠvOбJЎUыЗГ>mшmјmdлшƒvƒДуxŠrZП“ѕI8~џйtNBЇAк)<EЙ.­пЭњ[8ƒ~џ й3tО…nƒГhч№gЩењЎžЬ0y2џ=™џžЬOц?ИXам№rOmўГžшžјžd=щ €ƒау)‘ЄѕНX…!шC№‡Bg(xxЃ УSx“ѓжњ>Ќo‚сшУё‡“Nч&№1№EЇ№%чЋѕ§Xп
8244 ЃаGс";ŠЮ­рg0m žb4ЙбZпŸЕ ЦЂХKv,јибx
8245 ;9Лж`}'ŒC‡?Žь8:wB€A кx<E Й@­Фz"L@Ÿ€?ь:!Ш mž"˜\Ажa}LFŸŒ?™ьd:їAˆA(к<E(ЙP­Цz:LCŸ†?ь4:г!Ь mž"œ\Иж`§0ЬDŸ‰?“ьL:C„A$к,<E$ЙH­ХzЬFŸ?›ьl:s Ъ m.ž"š\Джe§Ф ЧрЧЁѓФФЁХу)тШХi§жOС|єљјѓЩЮЇѓ$$Ђ-РS$’KдњIЌСBє…ј Щ.ЄГ’ ’бу)’Щ%k§TжЯA
8246 z
8247 ~
8248 й:ЯAЊAкR<EЙ4­ŸСzЄЃЇуЇ“MЇГ 2 2б–у)2Щej§,ж+aњ
8249 ќdWаY YйhЋ№йфВЕ~ыЕА} ўВkшЌ…ƒ\Д<<E.Й\­_РњUШGЯЧЯ'›OчU(0(D+ТS’+дњ%Ќп€bєbќbВХtо€ƒRДѕxŠRrЅZПŒѕлА}ўВшМ eхhёхфЪЕ~ы-А}3ўfВ›щl
8250 ƒJД­xŠJr•ZПŠѕvи†О йmtЖC•A5к<E5Йj­_Уњи‰О'йt>€ƒZД]xŠZrЕZПŽѕиО7йнtі@A=к^<E=Йz­пРz?ьCп‡Пь>:ћЁС эžЂ‘\Ѓжob§9D?ˆьA:ŸC“A3к!<E3Йf­пТњF?Œ˜ьa:G Х э(žЂ•\Ћжog} кал№лШЖб9эhЧёф:Д~'ы“p§ў В'шœ„Nƒ.ДSxŠ.r]ZП›ѕЗp§ ўВgш| нgбЮс)Ю’;Ћѕ]0џС4€љ?€љ?€љ?€љЎ47<……œe€6џYOtO|OВžtР@ƒAhƒёƒШ вњ^Ќ‡Тє!јCШЁ3М Мб†с)МЩyk}ж7СpєсјУЩЇsјјЂРSј’ѓењ~Ќo…QшЃ№G‘EчV№36O1šмh­яЯкcбЧт%;–Ž ќ ьh<…œ]ыАОЦЁУGv;!Р m<ž"\ жb=& OРŸ@v‰dŒ6 OL.Xы‡АО&ЃOЦŸLv2ћ Ф m
8251 ž"”\Јжc=ІЁOУŸFvщfŽ6ON.\ыGА~fЂЯФŸIv&‡!Т mž"’\Єжb=fЃЯЦŸMv69e6OM.ZыЧВ~bаc№cШЦаyb татёqфтД~ыЇ`>њ|ќљdчгy
8252  бр)Щ%j§$ж‹`!њBќ…dвYIЩh‹ёЩф’Е~*ыч =?…l
8253 ч е m)ž"\šжЯ`Н вбгёгЩІгY™hЫё™ф2Е~ы•А}ў
8254 В+шЌ„,ƒlДUxŠlrйZ?‡ѕZXƒО й5tжBŽA.Zž"—\Ўж/`§*фЃчуч“ЭЇѓ*Ђс)
8255 Щj§жo@1z1~1йb:o@‰A)кz<E)ЙR­_Цњmи€Ой tо†2ƒrДxŠrrхZП‚ѕиŒО3йЭtЖ@…A%кV<E%ЙJ­_Хz;lCп†Пь6:лЁЪ mžЂš\ЕжЏa§ьDп‰П“ьN:@A-к.<E-ЙZ­_ЧzьFпП›ьn:{ Ю m/žЂž\Нжo`НіЁяУпGv§а`аˆvOбHЎQы7БўЂФ?Hі ЯЁЩ эžЂ™\Гжoa}ЃЦ?Lі0#аbаŠvOбJЎUыЗГ>mшmјmdлшƒvƒДуxŠrZП“ѕI8~џйtNBЇAšzЕEЙ.ђWђїэ‰цѓџћпОќ}лaНльАN2л­Сfk`c=­ы=‚]ђw›§)ьC!/„LљzЁ0EАYЇЂп/иY;РйŸС>Т№ТШ„‘Ѓ3›ѕє;k8ћГиGB^™ђє"a–`Г>‚ўЈ`gэg.ћhˆТ‹"E>Š^4ЬlжЧаьЌрьЧГƒXМX2БфcщХAМ`ГЮCRАГv€ГП€}"$р%I Ÿ@/6ыгшЯvжpіГO†$М$2Iф“ш%УbСf]‚ўЌ`gэg)ћ4HХK%“J>•^,lжчб_ьЌрь/gŸ xd2ШgаЫ„х‚Эњ"њK‚Еœ§UьГ! /‹Lљ,zйАJАY_F_-иY;РйЯcŸ 9x9drШчаЫ…<Сf]‡ўŠ`gэgПˆ}!р) _@ЏŠ›ѕ5єз;k8ћый—B ^ ™ђ%єJaН`ГО‰ў–`gэg#ћr(У+#SFОŒ^9llжwа7 vжpіЗВЏ„
8256 М
8257 2ф+шUТVСf}§=СЮкЮўіеP…WEІŠ|Нjи!иЌD_АГv€ГП‹}-дреЉ!_CЏv 6ы‡ш vжpіїВЏ‡:М:2uфышеУ^Сf§§СЮкЮўіа€з@І|НF8 иЌFџLАГv€Гˆ}34с5‘i"пDЏ 6ы_аџ*иY;Рй?ЪОZ№ZШДoЁз
8258 G›ѕ є/;k8ћЧйw@;^;™vђэє:рИ`Г~…ўЕ`gэgџћ.шФы$гIО“^œlжoаO vжpіЯБ? нxнdКЩwг; ч›ѕ;єя;k8ћnЎЋ\]эр6‹6OaГКЃ[;k8ћƒй‚xЩ $?о ,иЌП@ПNАГv€Г?ŒН7xсy‘ё"яEЯ† 6ы ш7
8259 vжpіGАї<2>ф}шљТСfН}Є`gэg ћбр‡чGЦМНб0FАYoCџ•`gэgпСоўxўdќЩћгГƒCАYoGПCАГv€Г?ž} р @/Ц 6ы]шПьЌрьOb AxAd‚Шб †Iѓ§љOіn­?…}(„р… !B/ІЬєћц?йЉZћpУ #F>Œ^8Ь˜џш
8260 ЬВh§Yь#!/‚Lљz‘0K`ўЃ?*0џЩ>ЂѕчВ†(М(2QфЃшEУ\љўИРќ'ћ˜жgБxБdbЩЧв‹ƒxљўЄРќ';Oы/`Ÿ x dШ'аK„ѓ§љOіi­П˜}2$с%‘I"ŸD/ Ьєgц?й%Z)ћ4HХK%“J>•^,˜џш/ЬВЯk§хь3!/ƒLљ z™А\`ўЃП$0џЩОЈѕWБЯ†,М,2YфГшeУ*љОZ`ў“}YычБЯ…М29фsшхBžРќGE`ў“]Їѕ‹иB^™ђє
8261 ЁH`ўЃП.0џЩОІѕзГ/…М2%фKш•Тzљў–Рќ'ћІжпШОЪ№ЪШ”‘/ЃWц?њ&љOі­П•}%TрUЉ _AЏЖ
8262 Ьєїц?йwЕўіеP…WEІŠ|Нjи!0џбп˜џdџЈѕwБЏ…М25фkшеТ.љў‘Рќ'ћЁжпЫОъ№ъШд‘ЏЃW{ц?њ'ѓŸьЧZџћFhРk г@О^#˜џшŸ ЬВжњ‡и7C^™&ђMєšсРќGџЋРќ'ћ­”}+ДрЕi!пBЏŽ
8263 Ьє/ц?й/ДўqіаŽзNІ|;Н8.0џбП˜џdПвњЇиwA'^'™NђєКр”РќG?-0џЩ~ЃѕЯБ? нxнdКЩwг; чц?њїѓŸьwZпЭТќW ѓпТќЗ0џ-Ьp˜џшVљOжнЂЭіƒ` о@2ЩЄ7 Ьєыц?й_h§aьНС Я‹Œy/zо0L`ўЃп(0џЩо ѕGАї<2>ф}шљТљ>R`ў“НYыa?ќ№ќШј‘їЃ7ЦЬє_ ЬВЗi}{;јуљ“ё'яOЯљ~‡Рќ'{ЛжЯ>№Ш уц?њoц?йЛДў$іС„D&ˆ|Н`˜$0џбя˜џdяжњSи‡B^™ђ!єBaŠРќGП_`ў“ЊѕgА‡0М02aфУш…У љў Рќ'ћ€жŸХ>"№"ШD  Гц?њЃѓŸь#Z.ћhˆТ‹"E>Š^4Ь˜џш ЬВi§xіq‹K&–|,Н8ˆ˜џшO
8264 ЬВѓДўі‰€—@&|НDX 0џбŸ˜џdŸжњ‹й'C^™$ђIє’aБРќGV`ў“]Ђѕ—ВOƒTМT2ЉфSщЅСRљў‚Рќ'ћМж_Ю>2№2ШdЯ — Ыц?њKѓŸь‹ZћlШТЫ"“E>‹^6Ќ˜џшЋц?й—Е~ћ\ШСЫ!“C>‡^.ф ЬєWц?йuZПˆ}!р) _@ЏŠц?њыѓŸьkZ=ћR(С+!SBО„^)Ќ˜џшo ЬВoj§ьЫЁ ЏŒLљ2zхАQ`ўЃo˜џdпбњ[йWB^™
8265 ђє*aЋРќGO`ў“}Wыя`_ UxUdЊШWбЋ†ѓ§}љOіZћZЈСЋ!SCО†^-ь˜џш ЬВj§НьыЁЏŽLљ:zѕАW`ўЃ"0џЩ~ЌѕАo„М2 фш5Тљў™Рќ'ћg­ˆ}34с5‘i"пDЏ ЬєП
8266 ЬВбњGйЗB ^ ™ђ-єZсЈРќGџR`ў“§BыgпэxэdкЩЗгы€уѓ§kљOі+­Š}tтu’щ$пIЏ N ЬєгѓŸь7ZџћГазMІ›|7НГpN`ўЃ/0џЩ~Їѕн옟ръЦќwcўЛ1џн˜џр&0џб­ѓŸЌЛ›Г?XНђ ФHf љєС`љ~Рќ'ћ ­?ŒН7xсy‘ё"яEЯ† Ьєц?йДўіОрƒчCЦ‡М=_!0џбG
8267 ЬВ7k§1ьGƒž?ђ~єFУљў+љOі6­я`o<2ўф§щйС!0џбя˜џdoзњуйB^™ђєaМРќGџРќ'{—жŸФ>‚№‚Ш‘Ђ “ц?њ=ѓŸьнZ
8268 ћPС !B>„^(L˜џшї ЬВSЕў іс†F&Œ|Нp˜!0џб˜џdањГиGB^™ђє"a–РќGT`ў“}DыЯe QxQdЂШG዆Йѓ§qљOі1­Я>bёbЩФ’Ѕёѓ§IљOvžж_Р>№Ш$O — ц?њ3ѓŸьгZ1ћdHТK"“D>‰^2,˜џшЯ
8269 ЬВKДўRіiŠ—J&•|*Н4X*0џб_˜џdŸзњЫйgB^™ ђє2aЙРќGI`ў“}QыЏbŸ YxYdВШgбЫ†Uѓ}ЕРќ'ћВжЯcŸ 9x9drШчаЫ…<љўŠРќ'ЛNыБ/„М2ф шB‘РќG]`ў“}MыЏg_
8270 %x%dJШ—а+…ѕѓ§-љOіM­П‘}9”с•‘)#_FЏ6
8271 ЬєMѓŸь;Z+ћJЈРЋ SAО‚^%l˜џшя vуџЇzЙ_ќН›‹Kсїн]\>Гє~ї—uыжЙ8_]ВчЏ=Џ|”сОн’сОЩђЎ›bћЏN—юўЉхю•–tї|Kя+SЗ=Џ.yБ+|ЧrўаЊ,5ІA\г ЙІK§ЪМШч #мСэЫе{§ЎNŽhП_ПK]wЯыwн.ЏпЕИ_^ПыК+~§Ў9|Њ›ЙШ#Цыx^к™оЮ„кТ”‹ЖцЛХY‹нzŸщ?15šx6Pl§— ^йВЏgкƒKЩсЪИ=§3еяЙІуQы_yф`эpjэКьяvŸя6>п‹мўw?ПZЎ:гsŒГёЩззЗѕœЭ[.ѓLпђГgњo.WуLЋыю9гrІ—єЫ™ОўŠЯєXѓЏ0Шmc^“ю!Eц)Т^ѓCаћЯѓH6Oї˜dОУxНКK9EЁ>тfr;еѕRППдеLюq}~ъ,їѕ{iŸv Ÿ5р—§ќJєЯpІSŒГqЧ?RПь9›ПЛЬ3§ЛŸ=гї^•Чiuн=gњ^9гЯіЫ™rЩgКїWћќ;Yl2}ъj6m0ѕў(?|…ЕwВ8Ћ~x kуmt~ђЕЁ{^yњЇпЭMнO=їр0љ*-3е™д;^<”ѓє-Ьжх^—[\юt™штыС*РxWЏлѓb6ўХцЮnяс ЯЎџуёNŸў…}ПЮ‘žћф:#цЧХ;ЏsззїыьyЏ6Ыљ/ЈЙчНк\+Пџж™_pх=_еО~œbл,Sнњуєўž~„}
8272 пШя§иrс{Я,`Пџqгљї‚щэ?mј›Й}­Яѓ\,–•Т+–<ш§hYцтnYэђ‰k2З—њhЙ‚§‹ѓZ/v-Ћ]жђЙŠ,~&Хк Ўe”ЉТђ[г+–QІД‹^ЫХЎMНд№uњлsЎWяе…Яt}§нЕ№ъТУ8ЗЮыюЯWa|ќЁНОƒ.§љР4:s oті“ЋјгЩд“ыО~:щ}ЯЉыюЯWюЙчМ.љžЛи=щЃујМŸrыюzёЧ‡‘І/Ь#MЧЭЏ _\№ЬЎШdr­3Е™‹Lћ/љ™]зQЧ5дsл‡ЧЊцЧ,•BЗыFш}-2Ÿs§Нљз|n/ѕZЊШЌх:nUsЅŸ›д 7NJлщєoЏХЎЎЛ?ўю9соWќиЄžЇrwэчЖЃŸяЙgДŸ2;ЛFќуZј)Гї=ЇЎЛ?ЪьЙч†]ё=ЇžWЉŸюдs•ёž?ўМJљъyеpЯО<ЏzСcЅ0д3.|^•юБкeКG2З—ѓМъ„v­^5иsЕЫ/=§LŠС\Ы(гэžП5 ѕe:}бkЙиЕљЊO(лLў§ˆу; ж8IЎ_Мё§љ“|яe>vнл‡ЧЎy?ёpЫeЈыўчщќ\П|мpХпЊуЭiZЋГ=ћъємs‹[~}іZœ:ъКЏЦѓЊЏјžSЯЃцYЯ?z­як2вєМuЄiЙѕuсљ оAІШ”o­3Ѕ[‹LOY/ѕБiз№ksџПГўьќ™ЖkђЙ‹КюЋёмх—W|ŠЖЈч,\dЗ™?ѓ~=Їhљї}‚Џћш}ŠŽšovпkўЛлЛм^ъ)њkјзr/ЧЧжЯя§ѓякЛЋZОqњZјЭfяSЄЎЛ?ГйsІ_ђ)ъ9?џ{А_ZŽ™?6я7o5џиЧ§БпƒЉ NЄ:ЃЏТЯ@=' ѓєЕyдu_pгež€оПљтq‹Ћ‡uСїїOџn{ВёЛэѓзшђ#Плv~ Ю_ЃgŸ~gь)_Ѕ§жџ’ћь3žщŸO\јЛсоgАе|~ЎЊ3јПWa–ѕќ4W§;ОЙ~šы§їuнWуЇ9Ÿюп+;ƒ1ng<*-зїщТ/јћЪOœСЫћћЪ љ*КxЈ3ip™ЪПіž>ŸDѕ7апcў'З'-ŸЭщЗ,їhЗDxьЖ<шёёПIёиfq№ЕЙпуo—ќ[§O žуŸzФіѓlŽгžс5tЌћћЕјžКюЋёžяe>2;П;Ўџ‘Яh2›oHIJŽ_рђtяGзыŒчэљРCYфt9џуiИ?ќ›\Eџj|„№‰DdP
8273 |шш№BВ
8274 №Ч
8275 S №AБ?П џ№–€2№ѓZЬW4аŠЕэА_ЙЅ€(wџЯ•Ъ`!№ЧZЬW4аŠЕэА_ЙЅ€(wt€`€“0Ў•ўxœcdрd``Жbb``beV цdБX€˜‰‘,ТШєџџАˆЃXФ‰Њš› І‡)ЉA@ШRcуgbјвФ фВЖБ#TЯ UУУр›X’RYЪРVљ›iцпЛ`—LYЄѕЙIљ9щE9€Дз|ЦCŒ %Dъcгє`)е„ъo&h/D?#TџЦ…l ЅбDъGЗc/'Hi,йі+ѓPf???Ф~QА~…џ P§ Q ўЬмдbПдr… ќмФ<].eJ›х30Еђ‚јpљŸ`ŸКТх™9х˜є™QљŠŒ>Фe џЙŒЇЛ0Z№є”ТљsСaцчoу@•—fG•ФŒ*яЮ‘Р 3"ть C;8dМр|VTО!3„/€щs"тtЃH
8276 †~твдF~nR]8П”ФпХРЭБ\р\Э6b‡;˜З\021)W—Єц2фЁЛ‘ЌМ šNоDdT@шш№BВ
8277 №Ш
8278 S №AВ?П џ№—€2№H:‡гМџЦ
8279 0эЁ"Kыјџ$Э`!№:‡гМџЦ
8280 0эЁ"KыјZ XJ ъўxœcdрd``^ЫРРРФ ЪЌ@ЬЩbБ€DС"ŒLџџџ‹ш1J€E ™ЁЊЙ™`њx˜˜˜„€,56~)†џ M @ў k;?jкФмP5< О‰%!•Љ `•П™ўƒТ0h7аYL С•ЙIљ9щ9€Дз{
8281 /АЫ35ќCвЧРд’™›ZЌр—ZЎ”Ÿ›˜Ч 5L€›Д€QŒЄ'Œ ъ..АлСцA\%РРцэћ–‘‰I)ИВИ$5—!ц*ˆ™Œ Ь`uw42ЫSDdа”шш№BВ
8282 №Ы
8283 S №AЕ?П џ№Ÿ€2№НXќр›Tі1схф’s*џ™ќЮ`!№‘Xќр›Tі1схф’s*і€ и_рd_ўxœ•RЭJУ@ž™Є?IЦ?O!бƒ{/єє`ћU
8284 ІZ”тЅр#фрEž=єаЋ R=љ^Љ`œйн†Ж
8285 Х “oі›™o’EpЌ+фЌƒЌ›Cтйl„Ј"HišЊH7TdаАK4Щѓ(Аћо
8286 {[љ%и„T’Рg<dя–­ц<Zœc8ь7Л'оyФбcвВBеquѕ5ЊбШo•НЛ’ш§ЂўЗц^ЃвLр7NуЈD—Сa;nЖРKt„"я7ЁAIШ;?YЧЎрJvўV‘Ъл<ДЇљ ёRчZA.RАlц ЕПgJ?LчљYpс,К™JїјъHN#гј`Эт4žэ4 џjNшЙ(•.2ќIћПџёуз{ёQћ рoх ђB}Щ№MNp5УcачЎЙ3ЎКWъc›ž>ІІAЂАоыtЃZѓ3XŠї&цmіоDdT@шш№BВ
8287 №Э
8288 S №AЗ?П џ№Ё€2№HЌЭ ЖЙ;ЪsивЄІPџ$Oб`!№ЌЭ ЖЙ;ЪsивЄІPZ XJ ъўxœcdрd``^ЫРРРФ ЪЌ@ЬЩbБ€DС"ŒLџџџ‹ш1J€E ™ЁЊЙ™`њx˜˜˜„€,56~)†џ M @ў k;?jкФмP5< О‰%!•Љ `•П™ўƒТ0h7аYL С•ЙIљ9щ9€Дз{
8289 /АЫ35ќCвЧРд’™›ZЌр—ZЎ”Ÿ›˜Ч 5L€›Д€QŒЄ'Œ ъ..АлСцA\%РРцэћ–‘‰I)ИВИ$5—!ц*ˆ™Œ Ь`usд2УЖDd  шш№BВ
8290 №Ž
8291 S №A|?П џ№Ї€2№ жeTž)ѓ.2Zљщ9џќ-г`!№єжeTž)ѓ.2Zљщ9œр,РE8РТўxœu”_HSQЧЯљныtзЋЮщ№ЯlmSGъ”
8292 !)Ш@Э (rАYа4te=HO=є0,
8293 Ђ`=DŠєиƒвƒЌЈ— И– DЁQа:П{ю9нГкЦнЮчwОпп9чїЛїRт%Dги ќTБЫ 8вй”к
8294 ЅRЩŽ аV;2дQз‚№™@ЊЌИŸbžвNJh">ЦыlДЪЎBœU–Іжб˜фдtцвdіj’щ(л љ мŸЈНb?хй›a
8295 &Žšи(_Яc9:ъчБ§шБ{пЪc[фNm‘Лm"пf‡ШЗоЕˆ№^Œ
8296 я^HxЛ;…їa—№> яJ№žяоя1с ісЩ~Свo~О<–из7‘M'цЎчМ”дАџ!у‘цЃdЯс' ђВЮљ‡Уk”ѓЎєЈEў"§*/ыœЗЅŸѓg‡-X"ї;|SЛню^Tžз9‹§МЅœwЅџUН{§ Py^чМ-§œџюЧhvяЧ‚gђQЩ‰фч’=еШg%gЊTџћv_Т%бŒъЌ/“—гЩ…№Xr1<>—žž%N‡Рўџ&;5LЧћа“sИHяѕКyF{зМ(ѕЉNфЌд?ˆ"пzBО.ѕЏлмѓEjЖЉы…šмљfДbђ5|Ог–(юxфєј‰@й=XщЌgфнШЯ
8297 Вj{xnСŸbј
8298 HLqnвѓ]8?%ч Ux?ъSRџВCеяДИkeA(рЮoСАп] 6д|їMžЯїoWџѓД•їђ l@џIЩoТ*-*Ї9—W–TЈlМBeПвћ.”'гэJЦхќ…}ъќЙ {огцАдЊSѕЧ=ШCe;}•vЉP# nyе фQbўf7ьЗП]Ї>RэZD'В ™dšЬ–WCГu !шИDdlшш№BВ
8299 №в
8300 S №AМ?П џ№Ћ€2№ˆ(Š_CBЬtњш{їCDџdуж`!№\(Š_CBЬtњш{їCDF@р>**ўxœcdрd``Vf Ђ Р
8301 ФœL  312‚E™ўџџбc”‹21BUs3Сєё0=`vВдијЄўƒ41љ€Ќ ž4У  mмP5< О‰%!•Љ@5 З0ќb‚ш%АКŒгE˜^0}fБ„,IfˆиИи HчoІя‚ѕO9‘ ‚+s“ђs ц12pi#Ў(ІVF тє1щHњѕYAJ5Ёюc`Ra‡И…I“цfen˜›=y`n†‰эŠAьžIаЭЛ™ vЧ3Х№ Л~tЗЧ3…IAмNЎ§лИ(Г;д~QАў† P§ Q ўЬмдbПдr… ќмФ<Y.I`r’щ ѓНХ@|G8ЖЊ|П Њќ}~Tљ‡<Шђ“™ЅиAќ0ИМ4 D=Фх
8302 џ Й\G`К)вSч‹ЃђеС.Џ„ѓ…Pљљ`—WРљ'y!|Ь0%"N˜nэOѓх„Qљ|ОІЯ‰ˆѓ-ŒІ`ѓНрќJ!Tўi^dўs&7=0œFцŠ‚4щ тX•ŸNЭzP~у1pœТхЭ!ђЈ.йУ„Ы%Ит<Iœd’7œџœТG3тђaS<'HщE8џИLВ…ѓй™Qхѕ |.HЬ.ЇСA
8303 uƒ;’я™˜”‚+‹KRsђа§Ф VыгЯIDd„Јшш№BВ
8304 №–
8305 S №Az?П џ№€2№ГWЃ­ <СИ’5Р)Sџк `!№‡WЃ­ <СИ’5Р)S @@ь-–Uўxœ•”ЯkAЧпМЭЯЭЖнnлFBЂ zшMЌWAAлЊxВb JЗ-ЄЂё EяХ?A№P„RБTэС‹ ‚"о„ѕR[
8306 U*t73;н‰ы†ЭЮчНя{ѓц'ƒ,€хXќ
8307 @O’ПYЄV‚ПؘА0 УPXЊЌOX‘)uЃ8‡їJoэOuAB
8308 —ѓ*o-ђїb р я-Ї4œŸmЬдЁќ…ЩэЂ’ЛдђŸ;в№/MOЪŠsk†иЗ№#Щ]Ц1ёmЦтŸ'HzцЖPVJЯ€ю‰Fеƒ\MQ+Я[3вЖ ŽДmРdgdkvGЖЧљШ6жйŠ§ВвЙmh[)ЊJ™Њtпэ#щХo,Щ?/3Щ›Z?dжzЩыZ/yMё
8309 –ќKVйШџ•ќ+ј)ЯПdI^зzЩQў9\ЫПе|;I|Tѓk4§U\h™/В&ј|^ёkѕЪЉкѕЪ™i|
8310 œsq'г^ŠЙІйя%>Ўљ{Сєg<г?яšўNмџШZNŸеўР’zYy%ќWхЅПЌy€OŠsSё1vК?ЮŽѕ™\#ih§f>Юny&{bd7Дў~gœ\шˆsкjІхШZї0k{кvVтЉЈџВцЋ=&чЛ$ЛЮм.ЮШ{vNЬЧ Эп<“tH–љ‡џЛў—ЖЙ^БјJgКэm­œяЉ=tHѓ…n“Пf‰ЋŠчйyБƒк?ФЄпyЋктц…ЈбКєLме q`ЄQŸ­љ0е:ZKш~ 'зŠ?Dd›pшш№BВ
8311 №д
8312 S №AО?П џ№Б€2№Љ(А?<zЗ)?вЈl.вџ…Iн`!№}(А?<zЗ)?вЈl.в`€ ;$€†Kўxœ•”ЯkAЧпМйm“н˜ЎљaDbў dЕ!—Нˆ‡‚XбєRJ$[ T0i!Ё%З‚з
8313 § <(xюБ‡єюE<y­=x№ *F]gоL‡ьтвИaШ|fПпїоО™]ižхA^Жi”3K dŒV†aH+>;O+ѓШДкХ_wьV)'f—Їfр„вžрЁ˜НЃ\И"ЄЎжdрnа__lЖ…Ž‰ZрЇˆ–uЭRЦ
8314 Sб јžљ)9Ы‹й~ъDэХдLЋGp”Sъє
8315 R5Тƒ_IЛ'‹GёѓƒЮкЦа^ЄмUч!VЯJЩU˜ЬЧщџ‹ёЏт›Ђ”^гўчЇцU~Ў§MєfЄtuB<ПRўІю№пYе рVЉH1wў€Ž)•–ˆЙќИгю•—клх  ABuЛV=/=}ЭюQЗ5ЗјЭ)Щ›†}ЎюЋЬх№ДЬ•„чВиsвге|ŸН*Œg>ФЇžфuЭћXЪŒы‡ќbFзХХ5М4НŸ%nоЖЧу љ#Іи‹ѕpВ}нЕюхЄєЖщмэѓ;гЉg$W ;ŽфЭEЋ–ќ]ѓueзVќCs3ў5zo?”][ёБё+>2ѕмВЂѕњ и‹эьdчД†/ЈпsБ“q О@џ8Я:{ˆoѓjgЂЇ;9вJBM~І=к2ߘЅјo’"зjlёЎ:]ёїрk<Ц…”4U5Пduтyp@}YњњR`Н7Lu„!Ю6Н~ЛнxЕœtMзЬ\nDdа`шш№BВ
8316 №
8317 S №A?П џ№€2№иРкпЭ^ЂЌEљћХ2с 0џДс`!№ЌРкпЭ^ЂЌEљћХ2с 0<€ и_Xй
8318 zўxœ•’БJA†gію6ЙфР DŽv,"кha‚}$Ї xIH‚l,mb;_!……‚oЄ…šsgwoёAяXvОй™й‡ApЌ[`PњБ\F–-C”dqKO—ЄЇТPGчY’ч1ШDоЂАVљ,CLIPќ$Ќ™X5`ЦEŽŽё`Џ9j7Ц§`‚љЦЂЙ"˜ˆПP‡GНSЅhMxГbЏцІЮ4O!ЯšЏЙтЙffЅЯKЖтЭwЈј]ГЯm‹xSѓ ^йŠ‹R—+]Њ;BWЃC?8їzaГ ыZ!Ъ§E$ЛВRФ/]ђ š­vт9q,auЮкњЖˆ_ ЎЖПт!Oѓ@ЊЋCТI|1еЕпеqг?ЅЭЛ+YЊМcxCО{лp ˆЗL_ютcУ‘œ…Ос$>­l‚јчО%7Џd(gїGЅџПё‘SRrzђrr:e!PsW€Ь—"cЅњx8
8319 Bш~WgЩИOwщs‹'Ddчlшш№BВ
8320 №
8321 S №A?П џ№€2№‘г№Є ЃчŠp:КГУтџm‰у`!№eг№Є ЃчŠp:КГУтB@р8Џ 3ўxœu‘ПJAЦП™Mbr<ќbSˆ.OТТF “0т‚w’ ge‘вТв№ФBФТёЌ#xюЬ­ 9paoчЗ;пьwГ„`ЖЩ~АU;,QХN&вт<ЯuЇC›К1Йьeўг5љгєjЋ6кЉ­` ЙˆZ~Зб‹P x4Vуrš8N.йulsФ ц\(dДѕЦ}*ЊЏ3ИЇбšоHќ~ѓнO‘ћ@ъ™.“xм:ŽoZ'Ѓd˜"rUuЛvƒSžU%yЯѓGEИыљ\ЙуљЩGžЬтљŒѕsоEй!§уpъВЎ_ощНЉЋцV;RЊd{€АŸ%gЃ+ј?,єьѕ‡§Гу”ІŽзџ@пH[чюБЄєЊЏJЬэ~6žФ вВGЃyП|L)bDdДTшш№<В
8322 №
8323 C №Ac?П џ№Р2№в8Д…їPЮ N/МЩцг7џЎT``!№І8Д…їPЮ N/МЩцг7Ј  ШНXJtўxœcdрd``a!0Щ
8324 ФœL  312‚E™ўџџбc”‹21BUs3Сєё0)0)0‚ЬQcуgbјвФ фВ–ё ћP#7T ƒobIFHeA*CT” Ќ“ьf0 Pew Dd ##№0В
8325 №Г
8326 # № A›џ№Р2№ѓъˆDѕ“Ї-“77 ЙЫ}oџЯЄJ`!№ЧъˆDѕ“Ї-“77 ЙЫ}oZ]j: ј-4аžE•ўxœЬ˜xеЂЧчЬl2Лš0l”"Є(эJQ
8327 (э"  ="$tЅI‘&MЏiJ‘&MšR”ЂP)†:ЈЅ^оoЮl˜’ я{яћ}9џ’™3g'gfšGгŒEЅ5ЭЋезЌAбРмZˆvƒš–GKџзХ­iU‚4ы7dУ-:ъПѓИt\ZЈжЄ~У†Скв3Zы7ƒЁVЮсўуx§mЏlišЎ§aмzL•ляЫ–KЫЁ с?FщщЃz• .n#—ШЉ™ќМN&ЇЏYn)aЯњ/=@ўЖ•і'т–ЦЃск9­FаnMљн[qsAnC—ЋdЭ6ПеfЂЋsЁh жЬэЯe.ДœшkЪ‘œі y]Ћ!чЌЇgzgKбэГ Шјlї:–НZт–ГЛnЎ•†К*{?ѓ<'oмКz†ЧЭ'ЏьЃіёЦЅјс&бБТъwшж8>6*N{б”љѓм=ЎИДёЯVpХšVЮ›з яЂХЃЋ–шRЕь“eД0юК
8328 мn!šOў ѓџЎИyЅw[=“л­ѓ `йоw9ŸВqлЇlм\ыOк #TxŒЋ0СUФœрвн+ н*ЌЙ1 ЭЪŠ˜W…хЙЅЇk–ЖКщk˜~ѕщk{ћgwћlO ыа›…tэŽќЄ?‚\zVЎ&}fWЕЮт*Uъп…5ГєПЇ[яOЏ\ЎQtсЗъ‰гZЁ^SVЎхВ57хZю6зР цЄЗЯ5№Žй ЁњLzƒХѕћšн&z‰™ЌdЦГk.О™ЭЎЕHнФб@lЭtv™Эі+є;LэМѕЛwож}sоАя‹UїИЫ3Кš‹ЦUm’+ГЋ9ЅНчКЊ-wЙХ{ЎћYыY.ћNиšЭй-w Ы3н`БХ5“о`1чОfэВя„ьЎнrWsб'гйЕ#\нDWW—щь2оЃ Иžя_ніЬЪxЮЪNk]c9яE#E>sЛВЃоm?Эx>S]KDыUё`чггеSXѓщТnŸНљx.ˆоЎЉx>iЎ5r>ῘOж>ПWE Б]{аŸ_ya~}Е’й\ЏSт'б\Ф<рѕк"FШѕъ“эћЉŽnъŸ‹§љ=ЎлŸ_я{Ь'Ѓї…~)†Ÿ‘Yz.ЄП/„iМ+\ƒšz#ˆ6JBšђОpM4ЫKпAIЏІ~ыћBрЭћ$ГНk3ЋEяІ—vsнвяBћ- уж—s,Ђ•1ŠЪЦ\Q٘-ЉhЬeЉЂ„1Y„#E~c„а7ХozМ8 З[ѕІт Н‘X­П,–ъuФbНОјLЏ+щ‘тcНЁ˜Џџ[,д›р5kє–b“%іщБт”оWќ­я‰`cЌШmLсЦGЂ8чЖцPојX<eЬ‡O…=GqsЗ,€_й8$ъs2}nf|7ЕiЦ^mцЛ›BхнTM|!Ќ7ћєзвˆЎМšоёfй{C-fкЯѕ~^йyў<i^YН{2^­nFЫРX§„ё`WыgнхВVЋf|ь=ЃЃууЂbДЌL=(Уj•„P9.‘Сўš•3х‘gЊgИ\ŒjёЭ#:.’уе•ЧЮюДж8ЈЏв;>А=к^‡pуmэ{rЪ3НЧ™,чЙо"хбŠfs\bз§Т[Мr^]ЕіђNlиЙOBtЛЈ˜
8329 ђZ‹p­%фЕпџ'qфvХлž
8330 Ќа3KW|ыwпѕщп™юјю›я–Пзs|ЮЪеW4+`"з i{Фt+[%,:ЌTX‡Ј„ФˆА.ŒттЛ'vŽыЪА}|ЏИв‘к3rCф~Т8Dў,.*GЖЖxЏ$ЃgЄ[Aq#Ѕ—енъ?ЌRЖЈ“lO…МЮџ)мЖkщщЛV€Ѕ zлъ-<w>сгз(ыЧ)fД№Dщw;Юэѓ}Ьњўяuц{Зне™Aњюn„zAЦ3ЭќйlљUџJЕіdяЬ-<Чр~ЯœdиŸбб[>Ѓ;п
8331 B4ы‰ыеŽp•ЩFAIЊ$|оЃ^rŸзщчѓZ$љ%Љ’|L?/^^ђ`ЅŸлk‘lф‘ЄJrC.њ9ёr’чRњД?ˆ<ˆž<рF›ј&Й[щh~y= ЃО з•ўпž#Ц=ЩЦ O
8332 Є2NХK5ЎЃЏс_#Пюqњ—бW№Џ’_Ѕw.У%єŸј’_Rњчб№/’_ЄwЮУ9єяјП“ŸSњgаgё%џ•оY8ЇбЇ№O‘ŸVњЧаЧёOŸ wŽСQt~љQЅŒŸBžB/Ž@њќ_Ш“”ўєAќCф‡ш„№3њ'ќŸШVњ{бћ№ї“яЇЗіТшяёП'џAщяBяЦпCО‡оnи;бптKОSщoCoЧпAОƒоvи[б_уMОUщoBoЦпBО…оfиб_тIОQщЏCЏЧп@ОоzXkбk№зЏUњ+бЋ№W“ЏІЗ
8333
8334 єrќхф+”ўєRќeфЫш-…%АНљbЅ?Н!љBz `>ЬC‚џ љ<Ѕ?=.љ\zs`6ЬBЯФŸI>KщOCOЧŸA>ƒоt˜SбтH>UщOFOСџ€ќzS`2LBПџ>љ$Ѕ?="љDz`<ŒCХK>NщBЦC>†оh#б#№GTњCбУ№‡“Ї7 †Тєлјo“Qњаё‘Ђ7@є[јo‘їWњ}а}ёћ‘їЃзњ@ot/ќ^фН•~:Пyz‰нбн№Л‘wWњБш8ќxђxzq 1шЎј]Щc”~'tgќhђhzЁtDwРя@оQщGЁлтЗ#oGЏ-DAєыјЏ“ЗQњ-а-ё[‘ЗЂзZРkшWё_%Э“ўM-Гoewћо‘йГ§uO[}КћŸП#Мю)fLwgяЁЅџI•Э'ukžд­яћImyЊл>ѓLwіЮ<н} ўЩ;ТdЗ§Ž`]sця­=Щўћ'UвЌ{ЦКwZ’ЗRюЉц‹dџ§“*iЭш7ХkJоLщ7іX$џ–ЄJC#њ ё’7Rњ/Ё_ЦЏO^ŸоЫ№дCзХЏK^OщGЂ_Р‘ќEz/@$дFзТЏE^[щз@?‡џ<љѓєžƒP] ПyuЅ_§/ќgЩŸЅї/Ј•б•№+‘WVњOЃŸСЏ@^о3№4”G—У/G^^щ—F?…_†М НЇ 4”BGрG—RњХбOт— /AяI(ХаEё‹’Sњ…бу?AўНЧЁ0„ЃУ№УШУ•~AєЃј…Ш б{
8335 B(к‡я#Uњљбр‡‡а{ђC>t0~0y>ЅŸ§ўУфг{ђ@nt.ќ\фЙ•О„Ÿƒ<Н №‚эЦw“{”О €HH/\` u|мPњџu1nИ“ \ЃwУЭ{#ќэN1Ўу_'џлэєЏ ЏтџEўНЋp.Ѓ/с_"ПЌє/ /тџAўН‹pЮЃЯсŸ#?ЏєЯЂХџќ7zПТY8ƒ>šќŒв?Ž>’ќ$НpŽЁт%?Іє“б)јЉфЉєR Ž “№“Ш(§ƒшCј‡Щг;сњgќŸЩ(§}ш§ј?’џHo?ьƒНш№ пЋєwЃїрGўН=АvЁwтя$пЅєЗЃwрCў НАЖЁЗтo%пІє7ЃЗрEўН-А6Ё7тo$пЄєзЃ7рAўН АжЁзтЏ%_ЇєWЁWуNў9НеА
8336 VЂWрЏ _Љє—Ђ—сFўНeА– у/&_Ђє тJў)Н…АцЃчсЯ#ŸЏєч чтLў1НЙ0fЃgсЯ"Ÿ­єЇЃgрDўН0ІЁЇтO%ŸцЮъ;BFџЏ№“щ< ГњЌŸсnЋ'™џќa†Л˜‘dfясџцЩmљАЅRЬь9Щ<џфСњŒŽођныСКgІsoЬмэžqњSм|ЯЄJІРdњ“№&‘OVњм|ЯЄJ&Рxњу№Ц‘WњЃбc№п%—о Ѓа#ёG’RњУаУёп!‡оpCбC№‡Uњбƒ№“І7Тtќўф”~_t?ќ7ЩпЄзњBtoќоф}”~"К~Oђžєz@"$ Луw'OPњqшxќ7Шп q‹ŽС!Uњббј]ШЛа‹†Юа нП#y'ЅпнП=y{zэ -DЁлрЗ!Rњ-б­№[“ЗІз
8337 ZB єkјЏ‘ЗPњMбЭ№›“7Їз šТ+ш&јMШ_Qњ б№“7ІзBt}ќњф ”~]t=ќ—Ш_ЂWъBє‹ј/’зQњЕаЕё#Щ#ще†ZP§<ўѓф5•~5tuќф5шU‡jP§,ўГфU•~%teќ*фUшU†JP]ПyEЅ_]џiђЇщ•‡rP]П yYЅ.…_šМ4НR%б%№K—TњEбХ№‹“ЇW ŠBєјOQњaшpќТф…щ…C<†.„_ˆќ1ЅяC‡т$/H/|P‚B^@щЃѓсч'ЯO/C^єУј“чUњЙаЙёѓчЁ—rANtќф9•ОэСї’{щyР &:?мTњ:кРw‘Лш ƒ@kжЛ"ЙPњзMоЭdуПf
8338 №юзсњ/ќПШЏ™Nџњ2ўђ+є.У%ј§ўф*§sшѓјШ/а;чрwєoјП‘џЎєOЃЯрŸ%?Kя œ†Sш“ј'ЩO)§ЃшcјЧЩг;G! ŠŸJžІє“аG№“Щ“щ$ј}џ0љ/ц§ўПТџŸ'ЃuцGќg.hfўd,l„˜сf„Ё~|faДMШЭ•,ЦИ(С/BЇ(нbŸYЯЦщ—b%ёKв‰ [Jт3Kуй8§ђŒЫAYќВtЪб-/ё™Oуй8§ЪŒ+AEќŠt*б­,ё™U№lœ~uЦе *~U:ешV—јЬx6NП6уZPП&ZtkK|f$žгЏЧИ.дСЏCЇ.нzŸљžгoФИ!4Рo@Ї!нFŸйЯЦщ7cм^С…NSКЭ$>Г9žгoХИ%ДРoAЇ%нVŸйЯЦщЗcмЂ№ЃшДЅлNт3луй8§hЦЁ~':щFK|f<ЇЯ8bёcщФб—јЬ7№lœ~Ц‰€Ÿ@'‘n‰Яь‰gуєћ1ю }№ћащKЗŸФgО‰gує1№аHwФgЦГqњУƒЁјCщ Ѓ;\т3пСГqњc†QјЃшŒІ;Fт3пХГqњO€ёјущL ;Qт3пУГqњ0ž“ё'г™Bї‰ЯќžгŸСx:LУŸFg:нŸљžгŸЫxЬЦŸMgнЙŸљ1žг_ШxЬЧŸOgн…Ÿљ)žг_Цx),С_Bg)нeŸљžг_ЭxЌФ_IgнеŸљ9žгпРx=ЌУ_Gg=н ŸљžгпТx3lТпDg3н-ŸљžгпСx;lУпFg;нŸљ žгпУx7ьТпEg7н=ŸљžгпЯxьХпKgн§Ÿљ#žг?Фј Р?@ч нCŸyЯЦщѓvУг/„Ї_№1х‰hсущXРOH–ŸŒЗ?>іsh?gыIјЁHулtЁћ~Жжэ3ЗзГ{ц6zпПяџЬћŸСOfћщ_„'QVќ~ЯќКnŸЙxŸўmuvzhЃDщЁ~иљб6Юнв‰qGш€пNGК$ьќx6N?–q tХяJ'†nЌ„ЯЦщ'0юн№ЛбщN7AТЮgуєћ0ю Н№{бщMЗ„ЯЦщ`моТ‹NК$ьќx6N(у!№6ўлt†а*aчЧГqњЃ„ј#шŒЄ;JТЮgуєЧ3cёЧвGwМ„ЯЦщOf< оЧŸЮ$К“%ьќx6NуЉ№!ў‡tІв&aчЧГqњГЯ‚™ј3щЬЂ;[ТЮgуєч3žŸрBgнљv~<ЇП„ёbX„ПˆЮbКK$ьќx6N%уА9tWJиљёlœў:Цka ў:kщЎ“Аѓуй8§MŒ7Т—ј_вйHw“„ЯЦщocМОЦџšЮVКл$ьќx6Nу№-ўЗtvвн%љŸZЮК‰Њ У3Щ4“);ˆ–`!G-e)`[
8339 JAйД”п‚Z@ElJ…VР•#ъq;Јќ‚Aб‚
8340 .EvhУІ.АD”ВY*"№?soв™n4­ˆч1пї~яMf&7пLšфвљб$–;ё6ШCЯУГ яvMbљwРNєx
8341 №юаљб$–џGт}А}/ž}xаљб$–џёЯp§ žŸёxє_а$–џ7тЃp§žЃxxєпб$–џ$ё 8Ž~Я М'§šФђŸ"є"<g№ <њŸhЫžјo8‡~ЯпxЯ <њ4‰хwrІs€JV9:8:]3ћВРђФnабu<nМ†РЃ‡ЂI,=тКPНžКxы <z}4‰хoL|4Bo„ч
8342 М§J4‰хoJь&шM№x№6xєЋб$–_Оѓ г›Ѓ7Чу­фнп?9ћ›чЃaŽрЮGГUzМЉ6ЬR›њЁw‘KЌэŸK<оAЯМsє.4‰хŸOœяЃП' я|Н Mbљ/„а?ТГя"Н MbљgУgшŸсЩЦЛX@яB“XўФЫaњ2<ЫёЎаЛа$–?—8ж ЏС“ƒ7W@яB“XўФ`=њz<№nаЛа$– ёfј
8343 §+<›ёnаЛа$–?x+|‡ўž­xѓє.4‰хпIœпЃ'яNН MbљїяаРГя^Н Mbљ€ŸаТsяAН Mbљџ
8344 ‡буљяН MbљТ1єcx
8345 ёаЛа$–Пˆј8~Яx‹є.4‰х?GќœE?‹ч/Мчє.4‰хWщ]
8346 \DПˆGЁЗЉzНMbљub„ ‡рqсеє.4‰хЏC\jЁзТSoН Mbљ7„ш №4ФлH@яB“Xў&f WЁ_…' oН Mbљ›7ƒpєp<Э№6аЛа$–П%ёЕаНžkёЖxєVhЫIм"а#№ДЦ)№шmа$–ПqДGo'
8347 oGяˆ&БќБФ1'oЌРЃпˆ&Бќ]‰Л@zž.xЛ
8348 <њMhЫпƒИ;ФЃЧущŽЗ‡РЃп‚&Бќ}ˆ{C/є^xzуэ#№ш}б$–?‘И$ 'рщ‡7QрбћЃI,џ@т„ž„gо~'šФђ&ЩшЩxс,№шCа$5?хуйЧлБ&œюЙФї‘k‹эб”ѓjXшI8Ѕ НЧ ќBЈЁУZЌ2шGЁUmKрН^р1хЇН3Bs!Ёч‚њ…PMѓюЊЦoогCУцо=rY~ѓО›m\сR”pqŒэќј­ЗЯчSЊЋфш{Хб­Kw;эКЈwW ]чдcЎГм“ЉЇХj1кYjgёœХ[ь2ЧXуkбu§МB бџ„bђ"Е– X­‡ж€Z< №жгЭ1жјhЭЉ…у ЧNЗnЮи‚3ъuhд"№DрНN7ЧЦ+Ž8ДXjбtђhМбŒ‰х,'8ЃоŒO-O<о›usŒ5>IП &RKР“€71‰ŒMœQяBKІ–Œ'я]К9Іь,НвQфњ[ѕЙ~R‹\5›Ѕ…ЎљЮ{\Ћё;Жььь*чк&—rчкlзlCўњpџ%ОGxm/Pз дeЦ(СzЃьQЫR Œд5F–:ЯЈъЈ•н–,ЇЂЬbkВп”о–ђ3нЋ­3Ўбжзj>Ѓ•ЖšлхфЫ ЏЖTа ЎFѓPЛO3Мц˜Рx7q(ZmjuёдЦЪЗhhj^Зmќ ч:у”s­ё‡гgœqЎцvљRу„ŸBјэ(Епёт5ЧЦя†=ді9WqЛŒ|ЉQр\"Ш'оЖк<љxЭ1ё>тuАС™k|gоuŒё1ж$‡x5кJjЋёфр5Ч”}Юši;$m Ччн*ŸГŠgzŽq8Є­бBЋxІ—žеСЯє™F7­ц+‰fpeпвХЖ‡iл:Ž%ЦёJОЄ—›ЅЃИЃЙгм~‰oы%[8ЮO9ЃлŒџAйGЉЮwxZјПУs,ˆї†ђ3тЃњ~ё9ёoA~Fќ3њ!ApŸяCџQPйgФ–П€|њnъЛёэ‚иIžžO}ЇЭП|;њъ;№m‡mGО}+ѕ<›џkђoаПЅў-ОoрkиBО}3ѕ-6џф_ЂoЂО п—№l$п€ОњF›пGО}ѕuјж‚rЩsаsЈчкќ+ЩWЁЏІОп*X +Ш—Ѓ/ЇОТцџœ| њRъKё-Яa1y6z6ѕХ6џЧфŸ J§S|ŸРЧАˆ|!њBъ‹lўф H§C|Р˜Ož…žE}ОЭџ.љ<єїЈП‡oМ sЩч ЯЁ>зцŸMўњлдпЦїЬ†YфoЂПI}–Э?ƒќ є™дgт{fРtђзб_Ї>нц•ќ5єiдЇс{ ^…WШЇЂOЅўŠЭџ"љKш/SпK№"М@ў<њѓд_АљŸ!§9ъЯс{ž)фOЃ?M}ŠЭџ$љSш“ЉOЦї< O?Žў8ѕ'lў‰ф“аЅў(ОI0&?‚ўѕ 6џ8ђёшд3№‡q№0y:z:ѕ‡mўбфcагЈЇсЃс!ђQшЃЈ?dѓ'>’њH|#`8Є’Ї ЇPOЕљ‡’п>Œњ0|їУPИќ^є{Љпgѓ"Œ>„њ|ƒa$“п~7ѕd›љ@є;Љп‰o €$ђ;ая ždѓї#ODяOН?ОDш фЗЃпN=СцяMоН/ѕОјњ@oшEоН'ѕ^6wђшЗPП_шёфнаЛQЗљЛwEП‰њMјКBˆ#яŒо™zœЭC‹~#ѕёХB D“п€~ѕh›?ŠМzGъёu€(hOоНѕі6kђHє6длр‹„жA~=њѕд#‚~oьYUбGk\§Ъ]TvVНзёЪnКФЇхЯЊCЕx=AЉg@АgеŠЏbZщЛЇЛ2ЋqЃ\ђНa”ИŠQєišЙ–@[я€’ы˜6оє’И]ЛvтЗмqќ?АESџЕM˜џЗсщ•џцЛтН{Qк}жѕX%{ЇT№n$˜НKбgкіЎ“mя:§K{Wvцtbыb™.гЙЭ ъzЌф[;ŽџЩŽD#юpмcєrŒ3pЄ“ЙЭ$Ÿ†ž5НV‹Ф8ƒ?UЛє'кхЗlˆіОў_mЅоњj›є›Е}њ-OŸФmљKш#рŸЭw‡;V˜ћК\3"TЬˆ=њЭ!f„З‚g1је!Иv[–’™2)J‘џ•Н7љЗ_•лi\ъHЛІƒ\…ШЇЯ 1яјЙ
8349 оkдєoKzPпи|!ц–№’ъШKЊcљ5k‚Зџ˜KQNёфпЪ9р–3Б™Д|ŽCK?л"RцрВsШМuЊn1—jнj*щюMЊ\ћsеžњПШЕ?НšWЗю-АgЅяемgSщ VКДЦ5єoНЧЖкЉh9ьgO
8350 ЬѓќžкJТ§#LJOU”§%ЏДРњЈж+­єіqмW…˜Q#Ђ.љ|NОx>Ээa2зЏl>ЙХ+­cшЫЮ“!rх,™ЇЉ‡DžщЯ‡:r2—рНXе#DћѹߘР#љЗ9ф#е/Г­цЁ5я)iв˜acG+%[(Ч%[+ЖliЩ–F–Ъ‡:9Э|UIоYЌQжЕмуЉ>^йэъш'і1ХЖВЌьIц?y4ъ‹9X“Es8ЪН~ЂЫэMEззЉ/зљ>pПэ
8351 sO ІѓUЗЧŽ@uzЬїхя1F5zэЗ/ЄЊ^{щЋ‹:ЦЋjWWйUyƒќ‹Мz9Ј\Еh+\ЬР>i)ЉLсћ)VlЊhя‚Йчzтž›ъсТ=vИїюdџѕJOхжнЃмжЉКмжёЃ| е;vx+БЂ”ЙКRX…н=јчUu‡ ЅгФМђY­йYng†[ngК%(y­ФXџl АУмГЙXŠX,JЌЎеZЌЊUНYиЊVЄ{zhp+`ЛTЭ^WЗ‰§RjЅ(mџzP;{'ЄŽЯH—6fЌЙ$дјБ™#KВЬєєдqfиN)Л.TOБ2–WЬˆhЅПmuЈ–bЕ:sU(ѓˆЕ–ўZ jŒcЉС^'˜]щ;їЄyрЊќЪе(yпХф|ьzЬ­”њФФоЏ+юЯVŸ–g™вgесИ&iGnŒ’VЖ#”_‰мўЏєЪхf›‘{№ЋџSummaryInformation(MџџџџЂЬDocumentSummaryInformation8џџџџџџџџџџџџЊиCompObjџџџџџџџџџџџџВjџџџџџџџџџџџџh
8352 %,@РЃСё Н@%w“ Н@ЊXŒЅ Н8э1—ўџеЭеœ.“—+,љЎDеЭеœ.“—+,љЎ@ќ hp|„Œ” œЄЌД М нфMIT_‘]Г  DISCRETE FORMULATION Title˜ 6>
8353 _PID_GUIDфAN{CC1DC881-755C-11D1-96E4-0060971BA06B}ўџ
8354 џџџџ РFMicrosoft Word Document
8355 MSWordDocWord.Document.8є9Вq!
8356 [$@ёџ$NormalmH 4@ё4 Heading 1 &d@&;4@ё4 Heading 2dшўЄ№@&@@@ Heading 3$Є№Є<@& CJOJQJ<A@ђџЁ<Default Paragraph FontTўOT Heading Base$$d˜ўЄhЄx5CJKHOJQJ:B@: Body Text
8357 „аЄx CJOJQJ0/@0List„ „˜ўЄ< Ц >@"> Normal Indent„8 CJOJQJ4 @24Footer  ЦрР!OJQJ8&@ЂA8Footnote ReferenceH*6@R6 Footnote TextOJQJ,@b,Header  ЦрР!&)@Ђq& Page Number4@4TOC 1Єh5;CJOJQJ&@&TOC 2Є№5"@"TOC 3„Ш""TOC 4„""TOC 5„X""TOC 6„ ""TOC 7„ш""TOC 8„А""TOC 9 „xо=zЇ?­ƒГєЦTaѕ#ЯЬps8џџџџџџџџџџџџџџџџџџ џџ
8358 џџ џџ џџ џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџ џџ!џџ"џџ#џџ$џџ%џџ&џџ'џџ(џџ)џџ*џџ+џџ,џџ-џџ.џџ/џџ0џџ1џџ2џџ3џџ4џџ5џџ6џџ7џџ8ѕѕѕѕѕѕѕѕѕѕѕѕѕѕѕѕѕѕ#ЯЬЬЬpppppppppppppppppppppppps
8359  !"#$%&'()*+,-./012345679Taџџџџ џџџџ џџџџ9<џџ%tэзЊэhO$YTa<џџџџ!<џџџџ?<џџџџ]<џџџџ{<џџџџ™<џџџџК<џџџџ8!џџ!џџ џџ!џџ џџ!џџ!џџ!џџ!џџ !џџ
8360 !џџ !џџ !џџ !џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ !џџ!!џџ"!џџ#!џџ$!џџ%!џџ&!џџ'!џџ(!џџ)!џџ*!џџ+!џџ,!џџ-!џџ.!џџ/!џџ0!џџ1!џџ2!џџ3!џџ4!џџ5!џџ6!џџ7!џџ8Цѓax%г*u2Џ:с=[AЅHДOћV]kbСgyntn{:Н†RŠЊ˜—зœ‚ЃЈтЏЗ‰ПшХdЪfЯУгэзм№м^у;ьЊэЉє4ўыЛАU%A+43њ<ˆF‹KhO†OƒV$YTa EПo@ _
8361 0 8 K §KKѓѓk5žHњF ?!G"#$%&:'()@*.+Ѕ,T-.ќ/01234567 %33333@NNNNNNNNNNN[iiiiit‚‚‚‚‚‚‚‚‚‚‚…ЮЎa
8362 g ‡“Q+ž,z.f0€26g9G<Г=%@BbCжDI<K(RЫSЦXe[2]@^h`ЃbиdВf hpkцmЕorPuщ{з~љ€b„w†’‡NŠtށ‘ ”—•œ˜šlœн QЉ8ЌтЎБdЖЬЗRЙјЛдН…ПфС:Ч:ЩoЫйЯyв‘гчеёз9кTхсёњў2
8363 "д3+J"N[QPYяc-eTeђіїјњћќ§џ
8364    "#%&')*,-.0235679:;=>?BDFGHIKLMNPQRTUWXZ[\_`chjkmprvƒ™šœw8 _з*0 9Н@!BйHTSF[Lakf lyr7.†ф “˜›з гЇўВгУЪ вжм тГчЯэЋё6ќ;,Е3Н:‘JхJ2KgK›K#LЊLљLHM–MЬMAN N!OˆOЫOP|PМPџP8Q†Q R”RSESdS4XЁdeTeѓѕљў !$(+148<ACEJSVY]abdfgiloqstwxyz{|~€‚„…‡ˆ‰Š‹ŒŽ‘’“”•—˜›K.1DLah~`›ЛWзЎэЛp?„LеNіP^STeє /@O^enu}†–апщ24WsuЇУХпћ§24s’ГЯвђKgjЋЎЬшыћ.JMo‹Ž­ЩЬъ #?BZvyЌЏЯыю*-D`cƒŸЂОкнњSor–ВЕвюё36Gcfy•˜д№ѓ  " X t w І Т Х і 
8365 
8366 .
8367 J
8368 M
8369 g
8370 ƒ
8371 †
8372 Ш
8373 ф
8374 ч
8375   ! ? [ ^ ’ Ў Б У п т  0 3 G c f x ” — В Ю б ќ   i … ˆ е ё є 4PS–ВЕф,/<X[]Цкм-/‰Ÿи&ь&ю&!'3'5'='Q'S'‰'›''Ё'Е'З'ќ'(((((*(p(‚(„(ˆ(œ(ž(Ц(и(к(х(љ(ћ(1)C)E)™)­)Џ)и)ь)ю)4*F*H*д*ш*ъ*.+@+B+L+`+b+„+˜+š+,,,.,…-™-›-п-ѓ-ѕ-4.F.H.S.g.i.l.€.‚.….™.›.ž.В.Д. 00!0х2љ2ћ24#4%414E4G4Š4ž4 4R5f5h527B7D7b7r7t7z7Ž77і7
8376 8 8G8[8]8m88ƒ88Ѓ8Ѕ8ь8ќ8ў8œ9А9В9ё9::ѓ:; ;Ј;М;О;==Q=S=т=і=ј=љ= >>">6>8>9>M>O>‰>>Ÿ> >Д>Ж>ъ>ў>?M?a?c?р?є?і?2@F@H@‹@Ÿ@Ё@Є@И@К@Н@б@г@ж@ъ@ь@ЛAЯAбABBBEEE<EPEREуEїEљEF2F4FНHбHгH‹LŸLЁLMNaNcNjN~N€NO O"OДOШOЪO›PЏPБPЎRТRФRјR SS‡S›SST.T0TВTЦTШTцUіUјU*V>V@VћVWWOWcWeWjX~X€XŸXГXЕXКXЮXаXсXѕXїXY0Y2Y:YNYPYЂYЖYИYФYдYжYђYZZZ(Z*ZТZжZиZ№Z[[•[Љ[Ћ[.\B\D\S\g\i\г\ч\щ\]]]T]h]j]ж]ъ]ь]^Ѓ^Ѕ^ј^ ___Ѓ_Ѕ_`#`%`€`”`–`и`ь`ю`aЃaЅa€b”b–bbБbГbhc|c~cБcХcЧcкcюc№cєcd
8377 dd(d*dOdcdedъgўgh h!h#h†hšhœhпhѓhѕhћhiiвiцiшi*j>j@j„j˜jšjпjѓjѕjk1k3k kДkЖkёkll$m8m:m=mQmSm\mpmrmxmŒmŽmznŽnnЪnоnрnцnњnќn@oToVoОpвpдpqqq<qPqRqr2r4rsr‡r‰rЫrпrсrчrћr§rеwщwыwxxx:xNxPx˜xЌxЎx7{K{M{n{‚{„{К{Ю{а{ |!|#|х|љ|ћ|Т}ж}и}s~‡~‰~G€[€]€b€v€x€B‚V‚X‚^‚r‚t‚ƒƒƒ%ƒ9ƒ;ƒKƒ_ƒaƒbƒvƒxƒ}ƒ‘ƒ“ƒЏƒУƒХƒW…k…m…}…‘…“…ъ†ў†‡%‡9‡;‡d‡x‡z‡АˆЬˆЮˆО‹в‹д‹ŒŒŒ6JLmƒСез!57BVX‡›-/Pdf{‘ЕЩЫ‚‘–‘˜‘Ч‘л‘н‘’0’2’t“ˆ“Š“%”9”;”ˆ”œ”ž”т”і”ј”К•Ю•а•е•щ•ы•њ•––Z–n–p–u–‰–‹–`—t—v—0˜D˜F˜X˜l˜n˜<šPšRšНšбšгšVœjœlœЇœЛœНœнœёœѓœWkm{ЂЂ‘Ђ[ЇoЇqЇ~Ї’Ї”ЇЩЇнЇпЇЈЈЈ#Ј7Ј9ЈWЈkЈmЈЄЉИЉКЉаЉфЉцЉЮЊтЊфЊЇЌЛЌНЌџЌ­­M­a­c­i­}­­Н­б­г­ ЎЎЎžБВБДБoВƒВ…ВыВџВГ>ГRГTГ\ГpГrГЫГпГсГДДД#Д7Д9ДУДзДйД=ЕQЕSЕЬЕрЕтЕfЖzЖ|ЖЖ“Ж•ЖЗЗЗНИбИгИ ЙЙ!ЙIЙ]Й_ЙˆЙœЙžЙПЙгЙеЙфЙјЙњЙ+К?КAК‹КŸКЁКXЛlЛnЛqЛ…Л‡ЛЛЁЛЃЛМ#М%МЯМуМхМаНфНцНО+О-ОР%Р'РёУФФ)Ф=Ф?ФHФ\Ф^ФХХХ&Х:Х<ХeХyХ{ХшХќХўХЊЦОЦРЦoЧƒЧ…ЧЋЪПЪСЪpЫ„Ы†ЫХЫйЫлЫ,Ь@ЬBЬxЬŒЬŽЬѓЭЮ ЮЮ&Ю(ЮyЮЮЮ—ЮЋЮ­ЮыЮџЮЯЯ"Я$ЯfЯzЯ|Я}Я‘Я“Я
8378 бб бЃбЗбЙбЦбкбмбв-в/в?гSгUгЧгзгйгогюг№гігдд&д:д<дfдvдxд%е9е;етE§EџETa ”џ%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р•Œ:џ„:џ„:џ€:џ€ ”џ•€:џ„ ”џ•€:џ„ ”џ•€:џ€ ”џ•€:џ„ ”џ•€:џ„ ”џ•€:џ„:џ„ ”џ•€:џ„ ”џ•€:џ„:џ„:”џ•€:џ€:џ€ ”џ•€:џ„:џ„:џ€:џ€:џ„:џ„:џ„:џ„:џ€:џ„:џ„:џ„:џ€:џ„:џ€:џ„:џ€:џ€:џ„:џ„:џ„:џ€:џ„:џ€:џ„:џ€:џ„:џ€:џ„:џ€:џ€:џ€:џ€:џ„:џ„:џ€:џ€:џ€:џ„:џ„:џ„:џ„:џ„:џ„:”џ•€:џ„:џ„:џ„:џ„:џ„:џ„:џ„:”џ•€:џ„:”џ•€:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ€:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ€:џ€:”џ•€:џ„:џ€:џ„:џ„:џ€:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ€:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ€:џ€:џ„:џ„:џ€:џ€:џ„:џ„:џ„:џ„:џ€:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ€:џ„:џ„:џ„:џ„:џ„:џ„:џ€:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„ ”џ•€ !%,/3:<@GJNUW[beipt{~…!•!”џ•€!дџ•€!дџ•€!дџ•€!дџ•€!”џ•€!”џ•€!!џ€%9;ДШЪ s:џ€:џ„:џ€46<:”џ•€:”џ•Œ№˜№ /№X2№$ъˆDѕ“Ї-“77 ЙЫ}oџЯи<2№$8Д…їPЮ N/МЩцг7џЎЇ\@ёџџџ€€€ї№0№ №Ю№( №
8379 №№<
8380 №
8381 # № П?№№№TB
8382 №
8383 c №$бвгде?№№№TB
8384 №@
8385 c №$бвгде?№№№<
8386 №
8387 # № П?№№№TB
8388 № @
8389 c №$бвгде?№№№TB
8390 №
8391 
8392 c №$бвгде?№№№HВ
8393 № 
8394 C №A ?џ№№№NВ
8395 № 
8396 S №Š A ?џ№№№B
8397 №S №ПЫџ ?№mbЕbЖbpg/‚w‚x‚мTaЈMщ>t
8398 Ш DщE t ЈDЩ E t ˜Lе40ЯqРtТг tв “t џџџnћџџ‰%З.4џџф _Toc407078231 _Toc407078218 _Toc407169603 _Toc407090372 _Toc407090575 _Toc407169604 _Toc407078219 _Toc407090373 _Toc407090576 _Toc407169605 _Toc407078220 _Toc407090374 _Toc407090577 _Toc407169606 _Ref382795878 _Ref382795966 _Ref382795976 _Toc407078221 _Toc407090375 _Toc407090578 _Toc407169607 _Toc407078222 _Toc407090376 _Toc407090579 _Toc407169608 _Toc407078223 _Toc407090377 _Toc407090580 _Toc407169609 _Toc407078224 _Toc407090378 _Toc407090581 _Toc407169610 _Toc407078225 _Toc407090379 _Toc407090582 _Toc407169611 _Toc407078226 _Toc407090380 _Toc407090583 _Toc407169612 _Toc407078227 _Toc407090381 _Toc407090584 _Toc407169613 _Toc407078228 _Toc407090382 _Toc407090585 _Toc407169614 _Toc407078229 _Toc407090383 _Toc407090586 _Toc407169615 _Toc407078230 _Toc407090384 _Toc407090587 _Toc407169616 _Hlt406563553 _Toc407090385 _Toc407090588 _Toc407169617 _Toc407078232 _Toc407090386 _Toc407090589 _Toc407169618 _Toc407078233 _Toc407090387 _Toc407090590 _Toc407169619
8399 _919624913
8400 _919625430
8401 _919625551
8402 _919625620
8403 _919625675
8404 _919625787
8405 _919625882
8406 _919669414
8407 _919669514 _Toc407078234 _Toc407090388 _Toc407090591 _Toc407169620 _Toc407078235 _Toc407090389 _Toc407090592 _Toc407169621 _Toc407078236 _Toc407090390 _Toc407090593 _Toc407169622 _Toc407078237 _Toc407090391 _Toc407090594 _Toc407169623 _Toc407078238 _Toc407090392 _Toc407090595 _Toc407169624 _Toc407078239 _Toc407090393 _Toc407090596 _Toc407169625 _Toc407078240 _Toc407090394 _Toc407090597 _Toc407169626 _Toc407078241 _Toc407090395 _Toc407090598 _Toc407169627 _Toc407078242 _Toc407090396 _Toc407090599 _Toc407169628 _Toc407078243 _Toc407090397 _Toc407090600 _Toc407169629 _Toc407078244 _Toc407090398 _Toc407090601 _Toc407169630 _Toc407169631 _Toc407090399 _Toc407090602 _Toc407169632 _Toc407078245 _Toc407090400 _Toc407090603 _Toc407169633 _Toc407078246 _Toc407090401 _Toc407090604 _Toc407169634 _Toc407078247 _Toc407090402 _Toc407090605 _Toc407169635 _Toc407090403 _Toc407090606 _Toc407169636 _Toc407078252 _Toc407090404 _Toc407090607 _Toc407169637 _Toc407078253 _Toc407090405 _Toc407090608 _Toc407169638 _Toc407078254 _Toc407090406 _Toc407090609 _Toc407169639 _Toc407078255 _Toc407090407 _Toc407090610 _Toc407169640 _Toc407078256 _Toc407090408 _Toc407090611 _Toc407169641 _Toc407078257 _Toc407090409 _Toc407090612 _Toc407169642 _Toc407078258 _Toc407090410 _Toc407090613 _Toc407169643 _Toc407078259 _Toc407090411 _Toc407090614 _Toc407169644 _Toc407078260 _Toc407090412 _Toc407090615 _Toc407169645 _Toc407078261 _Toc407090413 _Toc407090616 _Toc407169646 _Toc407078262 _Toc407090414 _Toc407090617 _Toc407169647 _Toc407078263 _Toc407090415 _Toc407090618 _Toc407169648 _Toc407078264 _Toc407090416 _Toc407090619 _Toc407169649 _Toc407078265 _Toc407090417 _Toc407090620 _Toc407169650 _Toc407078266 _Toc407090418 _Toc407090621 _Toc407169651 _Toc407078267 _Toc407090419 _Toc407090622 _Toc407169652 _Toc407078268 _Toc407090420 _Toc407090623 _Toc407169653 _Toc407078269 _Toc407090421 _Toc407090624 _Toc407169654 _Toc407078270 _Toc407090422 _Toc407090625 _Toc407169655 _Toc407078271 _Toc407090423 _Toc407090626 _Toc407169656 _Toc407078272 _Toc407090424 _Toc407090627 _Toc407169657 _Toc407090425 _Toc407090628 _Toc407169658Цbbb%%%%<%<%<%<%и&и&6'Н1Н1Н1Н1Џ:Џ:Џ:Џ:ШBШBШBШBзKзKзKзKїKїKїKїKwUwUwUwUщaщaщaщaEgEgEgEgagagagagnnnn‘ntttjzjzjzjzќƒќƒќƒќƒЬˆЬˆЬˆЬˆЬˆЬˆЬˆЬˆЬˆ9Š9Š9Š9Š\’\’\’\’˜—˜—˜—˜—у™у™у™у™№›№›№›№›ЖЖЖЖ1Ё1Ё1Ё1ЁЙЃЙЃЙЃЙЃQЅQЅQЅQЅdОdОdОdОэзэзэзэз;кёмёмёмнннн'н'н'н'н;ь;ь;ь;ьЪьЪьЪьЋэЋэЋэЋэbюbюbюbю ю ю ю юЉєЉєЉєЉєњњњњњњњњ4ў4ў4ў4ў™™™™хххх8888####ј'ј'ј'ј')()()()(ѕ)ѕ)ѕ)ѕ)>,>,>,>,D6D6D6D6Н6Н6Н6Н6$;$;$;$;~?~?~?~?dCdCdCdCxExExExEhOhOhOhO‡O‡O‡OUa9
8408   !"#$%&'()*+,-./012345678:;<=>?@ABCDE@F@G@H@I@J@K@L@M@NOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuzvwxy{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ЁЂЃЄЅІЇЈЉЊЋЌ­ЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯабвгдежзийклмрнопстуЮnnnn9%9%9%9%k%k%k%k%6';';'д1д1д1д1Х:Х:Х:Х:CCCCѕKѕKѕKѕKLLLLЎUЎUЎUЎU b b b b`g`g`g`gngngngngnnnn‘n9t9t9t9t†z†z†z†z„„„„ЬˆЬˆЬˆЬˆЬˆЬˆЬˆЬˆЬˆPŠPŠPŠPŠq’q’q’q’Ќ—Ќ—Ќ—Ќ—šššš œ œ œ œЪЪЪЪNЁNЁNЁNЁвЃвЃвЃвЃkЅkЅkЅkЅ›О›О›О›ОиииUкнннн%н%н%н%н7н7н7н7нAьAьAьtьзьзьзьоэоэоэоэŽюŽюŽюŽюЮюЮюЮюЮюПєПєПєПєћћћћsўsўsўsўББББiiii####'('('('(:(:(:(:(****V,V,V,V,l6l6l6l67777n;n;n;n;Л?Л?Л?Л?ЄCЄCЄCЄCЄEЄEЄEЄErOrOrO‘O‘O‘O‘OUaU[iqryIOCI3=‚ˆБЙS]cm‹‘žЄ
8409 оцio—ž(c!r!™#Ÿ#N$X$‰&“&Д*У*Њ+Г+Е+Н+е+р+Ј,Њ,Џ,Б,Ц,б,--а.л.e2r2z3ƒ3п4ъ4 5"5О5Х5В6О6Ы7ж7\;f;Ÿ<Ё< ==c=k=Б=Л=ЂBЅBЇBЏBчFюF0G3GIIoIrIфJщJ—K›KKЅKuLƒL}Q…QvS€SX X|Y~YqZtZЁ]Ѓ]ЈaЊaAeDeFeNe=gAg%i/iUn^ncnmnzo„osq}qЈqЏq­sЗsatlt&u,u†uŒuv!vВxРxїyћyOzUzwz…zјz{­|Б|{}„}*2оь„„” ”B”E”ž—І—ђ—њ—п˜ч˜Т™Ъ™Ы™в™й›р›œœ$žž„žŠž ŸŸDŸOŸˆŸŸL T ЁЁmЃvЃтЈхЈ ЉЉЉЉyЉ|Љ=ЊCЊЖЊРЊ8Ћ:Ћ_ЌbЌPЎSЎЏЏ“ЏœЏ‰Д‹ДыЕьЕ(Й+ЙOН]НЅНГНYПdПxП‡ПЄР­РеСфСIУWУ•У—УГФДФ›ХžХЃХІХ•ШЃШмШыШЩЩбЮпЮBЯPЯ‡а•ааагалвовЖдКд…ж“жЮкЯкhрtрXс`сясјсOт]тт™т№тўтЂхЄхЅхЇх'ц)ц*ц,цЊцЌц­цЏцечнчшш&щ.щbщkщ[ъgъ„яŒясящяTё\ёIђKђMђRђkѓsѓЮѓйѓžєЃєщєыєэєяєёєѓєѕѕ?ѕGѕeѕgѕiѕkѕmѕoѕœѕЅѕі
8410 іCіEіnіwіЧіЫіаіжі§іїqїwї†їŽїБїМїј јјј+ј0јљљБћДћЙћЛћСћЦћЫћЮћJќYќ ќІќДќЙќмќьќёќњќ§ §§(§Šў˜ўаўоў%џ3џ :H_o#fvyŠЎЗ2=ўdlЦжЙСџVf—šыћ~Ž’ ІЖЬкL T ’ Ÿ Н Ц л у ю ѓ x
8411
8412
8413
8414
8415
8416   ƒ ”   Ў Г ж р % 3 e o Ÿ Ї ˆ—,8:HMX'ак~†фђ=\‡‘§
8417  %Ђ­ЏДЖПХЪ‚‰‹’ВОэѓ@JЗХ?EGMяј,ЛЧЩеАГИН Žбкў cp„ŒйтŒŽ›эј]hЧв$^i5?‘ ЂБфю ! и у х № )"3"T"h"Й"У"##*#4#2$:$„$$$–$›$Ÿ$Ч&б&''q'z'Ж(П(р(ш(X)`)B*J*Ч-Ь-B.G.}.‚.V/`/д/ж/ъ/э/ 0060D0В0Д0щ0ь0B1L1N2X2ѓ2§2Ј3Џ3X4b45$55•5›5 546@6L7O77–7P9Y9й9у9V:Y:Њ:Ж:;;'>5>?>I>х>я>ќ?@јABPCZC0E7E8ECERE`E­FАFВFДFЕFЗFцFяFёFњF§FG GG=GAGBGHGIGOGQGTGhGnGЭGзGH"H$H3H4H7H9H;H=HBHDHGHIHOHVH[HЫHйHњH
8418 I(I9IWIbIqIyI—IЇIбIоIрIщIьIђIѕIћIJJDJUJ JЎJмJыJ;KGKHKVKWKbK‹K›KЙKУKсKщKLLjLqLrLyL‡L“LЏLЙLфLъLыLёL,M/M4M7M<M?M@MGMNMZMxM…MЃMАMоMыM NNeNtNЏNКNO)O8O@OJOOO”O›OPP:Q@QВQИQЮQжQ:RARlRqR{R‚R“R›RzS}SЁSЊST$TДTМTчTяTљTU1U?USUZUUˆU˜U UЊUАUнUуU$V+V’VšVЃVЌVЙVТV WW&W+W5W:WЊWВWеWмWWX_XpXxXАXМXжXмX%YЖ[Н[в]е]^"^‘_œ_К_Ш_–`aUaлх +ZС В!К!ш$ъ$`%k%И%Р%6';'о(у(I)K)а)е)L*N*F+K+›+Ѕ+х,ц,M.R.-/6/Ц/Ш/Ї1Љ122;3@3у3я3"5$5Ѕ5Џ5з7п7A8F8ы9№9.;/;==U=X=ф>щ>…@Š@[ClC6E;EєFѕFщJыJЗNМNрNѓNЏOВOёRіRGWLWьYёYj\p\M]R]Ѓ]Ѕ]4`6`б`ж`ЊaЌa˜bbёbcidЪddhihйhоh‘i—i$j)jйjоjukzkыk№kzlmФnЩnqqХrЪr|sŒst9tЁvЉvЪvвvnz†z_€a€{€€€Y‚^‚ ‚С‚Щƒњƒ„„H„m„еˆиˆŒŒ!Œ$ŒœŒюŒglѕaŽ<A ЃЋА™‘‘Б”Ж”6•9•Œ––Д–Р–њ–—y—€—R˜W˜жšлšц›ш›‹œŽœиœнœЙЃСЃ)Є7ЄмЄ3ЅУЇШЇНЉТЉqЊvЊbЌdЌљЌўЌўЎ’А•АЊАfВhВ8Г=Г‹ДД‘Е˜ЕхЕъЕБЖЛЖЗЗcЗrЗжЙкЙTЛŒЛлЛуЛhРkРфСхСњТћТ—У™УBФGФХ$Х?ХAХ~Х€Х›ХžХЦЉЦѕЦ§ЦБЧЕЧ7Ш<ШЫШчЩRЪWЪФЪЩЪlЫ‹Ы ЮЮ'Я-ЯМбОбcгlгкгог=дAд{д~д‚е‡еGжNжwжъз7к8к?кUкаквкљмнФнфноJоgо”оМотоп<пpппЛпЮпKрdр‘рЇр4сWссЇсФсыст@тeтŒтЕтст уRуkу–уИу ф&фRф‚фЇфвфххKхlх˜хФхмхёхцIцaцvц цЛц§цч=чbч‡чЄчХчыч
8419 ш(ш\шlш•шКшйшѕшщ<щ[щyщ­щсщџщ#ъRъ‚ъ–ъЎъцъы.ыBыtы ыЮыљы'ь~эƒэсэыэю•юэєяєiѕkѕЗјёјњјљЊћАћ;џCџ(21;<Oзп‹“>FзрmujtОЧШЫ<
8420 B
8421 •  Е З 4 < ˜ уэƒ‹™Є˜ЃѓќT]гмосŸЇ(CJЅ‰ŽГЛ& + ђ њ œ!Ђ!y%й%Ч&б&''q'z'<(E(9*@*о*с*+#+,,%-*-K.S.,101z1~1Ц1Ъ1w223 3Z3h3v5~5H6R6E8I8Н9Ч92;7;ў;<@@@ @@—@9A:A_BdBqCvCqEwE-F5FкHсHтHшHщH№HёHјH IIIIII I&I:I@IAIGIHINIOIUIiIoIzI€II‡IˆIŽII•IЈIЏIАIЗIИIПIVJ\J]JcJdJjJkJqJЏJЖJЗJОJьJђJK KKK(K.KcKiKjKpKqKwKœKЂKЃKЉKЊKАKБKЗKФKЪKЫKбKвKиKйKпKLLLL L&L'L-L”L›LœLЃLЄLЋL[MaMbMhMiMoMpMvM†MŒMM“M”MšM›MЁMьMђMѓMљMњMNNNuN|N}N„N…N‹NŒN“NЛNТNУNЩNхNьNэNѓN0O6OЇOАOPВPеPтP2QAQBQUQЏQЙQКQЬQBRGRiR‘RISdS$T&TМTОT UUPU[U\UqU!V,V-VBVВWДWУWЩWgXyXzXXІXЏXY#Y%YšYЋYZŠ[8\С]е]з]a^d^–`aUaџџPhysical Oceanography0C:\WINDOWS\TEMP\AutoRecovery save of Fulldoc.asdPhysical Oceanography0C:\WINDOWS\TEMP\AutoRecovery save of Fulldoc.asdPhysical Oceanography0C:\WINDOWS\TEMP\AutoRecovery save of Fulldoc.asdPhysical OceanographyC:\HOME\Daniel\Doc\FulldocPhysical OceanographyC:\HOME\Daniel\Doc\FulldocPhysical OceanographyC:\HOME\Daniel\Doc\Fulldoc.docPhysical OceanographyC:\HOME\Daniel\Doc\Fulldoc.docPhysical OceanographyC:\HOME\Daniel\Doc\Fulldoc.docPhysical Oceanography0C:\WINDOWS\TEMP\AutoRecovery save of Fulldoc.asdPhysical OceanographyC:\HOME\Daniel\Doc\Fulldoc.doc,|џџџlХrЯџџџџџџџџџ}џџџЄЏиsџџџџџџџџџ~џџџ;
8422 џџџџџџџџџџџџЪзР+џџџџџџџџџ€џџџ&]†џџџџџџџџџџџџвњјјџџџџџџџџџ‚џџџі^Цџџџџџџџџџƒџџџž\<џџџџџџџџџˆџџџопž џџџџџџџџџ‰џџџШ4”џџџџџџџџџg ŠX ЂџџџџџџџџџЬ  џ2ж‰ŠМџџџџџџџџџL\Ž џk#Ц џцzQ‰R1џџџџџџџџџ%0ў џєˆH\џџџџџџџџџи!4 ’гJFџџџџџџџџџ-r#а›кIџ01$а›кIџЂ% џ№Д&жŸDИџќM4* џa~* џ(Ы7 џi-];Є/ЖЉџџџџџџџџџ.` = џ=tўA џХ RB џЦ9JCоЬ–JџџџџџџџџџёfИTJ†јЕџџџџџџџџџж\ГVа›кIџЩ4+X џЮ[„Y џdaЋc џЈtVdа›кIџУ-rdжŸDИџ
8423 oщiкiє(џџџџџџџџџ]Fj џ.gk џЩZ pdО@џџџџџџџџџЩ2Жx џжZ“y`;Дљџџџџџџџџџ„„˜ўЦ.„ „˜ўЦ .„8„˜ўЦ8.„а„˜ўЦа. „„˜ўЦOJQJo(З№ „ „˜ўЦ OJQJo(З№ „8„˜ўЦ8OJQJo(З№ „а„˜ўЦаOJQJo(З№„h„˜ўЦh. „h„˜ўЦhOJQJo(З№„•„kўЦ•o(„а„0§Цаo(.„а„0§Цаo(..„8„ШћЦ8o(... „ „`њЦ o( .... „ „`њЦ o( ..... „„јјЦo( ...... „„јјЦo(....... „p„їЦpo(........„h„˜ўЦh.„ „ѓ§Ц o(„ „ѓ§Ц o(.„а„0§Цаo(..„8„ШћЦ8o(... „8„ШћЦ8o( .... „ „`њЦ o( ..... „ „`њЦ o( ...... „„јјЦo(....... „„јјЦo(........„h„˜ўЦho() „h„˜ўЦhOJQJo(З№„ „ѓ§Ц o(„ „ѓ§Ц o(.„а„0§Цаo(..„8„ШћЦ8o(... „8„ШћЦ8o( .... „ „`њЦ o( ..... „ „`њЦ o( ...... „„јјЦo(....... „„јјЦo(........ „h„˜ўЦhOJQJo(З№„†„zўЦ†o(„ю„zўЦюo(.„ „0§Ц o(..„p„ШћЦpo(... „и „ШћЦи o( .... „Ј „`њЦЈ o( ..... „„`њЦo( ...... „р„јјЦрo(....... „H„јјЦHo(........„ „ѓ§Ц o(„ „ѓ§Ц o(.„а„0§Цаo(..„8„ШћЦ8o(... „8„ШћЦ8o( .... „ „`њЦ o( ..... „ „`њЦ o( ...... „„јјЦo(....... „„јјЦo(........ „h„˜ўЦhOJQJo(- „h„˜ўЦhOJQJo(- „h„˜ўЦhOJQJo(v№„ „0§Ц o(() „h„˜ўЦhOJQJo(v№ „h„˜ўЦhOJQJo(З№ „h„˜ўЦhOJQJo(З№„ „ѓ§Ц o(„ „ѓ§Ц o(.„а„0§Цаo(..„8„ШћЦ8o(... „8„ШћЦ8o( .... „ „`њЦ o( ..... „ „`њЦ o( ...... „„јјЦo(....... „„јјЦo(........„h„˜ўЦho()„h„˜ўЦh. „h„˜ўЦhOJQJo(v№„•„kўЦ•o(„а„0§Цаo(.„а„0§Цаo(..„8„ШћЦ8o(... „ „`њЦ o( .... „ „`њЦ o( ..... „„јјЦo( ...... „„јјЦo(....... „p„їЦpo(........„ „ѓ§Ц o(„ „ѓ§Ц o(.„а„0§Цаo(..„8„ШћЦ8o(... „8„ШћЦ8o( .... „ „`њЦ o( ..... „ „`њЦ o( ...... „„јјЦo(....... „„јјЦo(........ „h„˜ўЦhOJQJo(- „h„˜ўЦhOJQJo(З№ „h„˜ўЦhOJQJo(v№ „h„˜ўЦhOJQJo(v№ „h„˜ўЦhOJQJo(-„ „0§Ц o(()„б„/ўЦбo(„Ё„/ўЦЁo(.„p„0§Цpo(..„@ „0§Ц@ o(... „x„ШћЦxo( .... „H„ШћЦHo( ..... „€„`њЦ€o( ...... „P„`њЦPo(....... „ˆ„јјЦˆo(........ „h„˜ўЦhOJQJo(З№„h„˜ўЦh. „ „ѓ§Ц OJQJo( „ „ѓ§Ц OJQJo(. „а„0§ЦаOJQJo(.. „8„ШћЦ8OJQJo(... „8„ШћЦ8OJQJo( .... „ „`њЦ OJQJo( ..... „ „`њЦ OJQJo( ......  „„јјЦOJQJo(.......  „„јјЦOJQJo(........„h„˜ўЦh.„•„kўЦ•o(„а„0§Цаo(.„а„0§Цаo(..„8„ШћЦ8o(... „ „`њЦ o( .... „ „`њЦ o( ..... „„јјЦo( ...... „„јјЦo(....... „p„їЦpo(........,‰џџџƒџџџ‚џџџџџџ€џџџˆџџџџџџ~џџџ}џџџ|џџџ=tўAa~*Ь ]FjУ-rd№Д&%0ўЩ4+X(Ы7k#ЦЂ%Щ2Жx
8424 oщiЦ9JCg L\Ž.` =-r#01$ж\ГVdaЋcЈtVdХ RB.gkЮ[„YќM4*ЩZ pi-];2и!4 цzQёfИTжZ“yџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџ,џ@€ЯЯ@т…ЯЯTap@GTimes New Roman5€Symbol3& Arial9Palatino;"HelveticaWTms RmnTimes New Roman;€Wingdings"qŒаhИ{&+›Іа“†<э1—8‘_8!ЅРДД€>0d]ѓџџDISCRETE FORMULATIONPhysical OceanographyPhysical Oceanography-e.e/e0e2e3eMeNeOePeQeTe*^<^>^D^F^ѕющтпгЬтпЩРМЗ0JmH5mHCJOJQJmHmH jЮцCJUj.б6
8425 CJUVmHCJ jCJU jU jlхEHіџUjЙ™;8
8426 UVmHe1e2eQeReSeTeF^§§§§§§§`ЛTЭ^WЗ‰§RjЅ(mџzP;{'ЄŽЯH—6fЌЙ$дјБ™#KВЬєєдqfиN)Л.TOБ2–WЬˆhЅПmuЈ–bЕ:sU(ѓˆЕ–ўZ jŒcЉС^'˜]щ;їЄyрЊќЪе(yпХф|ьzЬ­”њФФоЏ+юЯVŸ–g™вgесИ&iGnŒ’VЖ#”_‰мўЏєЪхf›‘{№Ћџ`!№І8Д…їPЮ N/МЩцг7Ј  ШНXJtўxœcdрd``a!0Щ
8427 ФœL  312‚E™ўџџбc”‹21BUs3Сєё0)0)0‚ЬQcуgbјвФ фВ–ё ћP#7T ƒobIFHeA*CT” Ќ“ьf0 Pe34667911121213151616171919212224252525262627273036363838384040414141424243434445464747474849495050505153541234567891456 !
8428 [$@ёџ$NormalmH 4@ё4 Heading 1 &d@&;4@ё4 Heading 2dшўЄ№@&@@@ Heading 3$Є№Є<@& CJOJQJ<A@ђџЁ<Default Paragraph FontTўOT Heading Base$$d˜ўЄhЄx5CJKHOJQJ:B@: Body Text
8429 „аЄx CJOJQJ0/@0List„ „˜ўЄ< Ц >@"> Normal Indent„8 CJOJQJ4 @24Footer  ЦрР!OJQJ8&@ЂA8Footnote ReferenceH*6@R6 Footnote TextOJQJ,@b,Header  ЦрР!&)@Ђq& Page Number4@4TOC 1Єh5;CJOJQJ&@&TOC 2Є№5"@"TOC 3„Ш""TOC 4„""TOC 5„X""TOC 6„ ""TOC 7„ш""TOC 8„А""TOC 9 „xо=zЇ?­ƒГєЦTaѕ#ЯЬps8џџџџџџџџџџџџџџџџџџ џџ
8430 џџ џџ џџ џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџ џџ!џџ"џџ#џџ$џџ%џџ&џџ'џџ(џџ)џџ*џџ+џџ,џџ-џџ.џџ/џџ0џџ1џџ2џџ3џџ4џџ5џџ6џџ7џџ8ѕѕѕѕѕѕѕѕѕѕѕѕѕѕѕѕѕѕ#ЯЬЬЬpppppppppppppppppppppppps
8431  !"#$%&'()*+,-./012345679Taџџџџ џџџџ џџџџ9<џџ%tэзЊэhO$YTa<џџџџ!<џџџџ?<џџџџ]<џџџџ{<џџџџ™<џџџџК<џџџџ8!џџ!џџ џџ!џџ џџ!џџ!џџ!џџ!џџ !џџ
8432 !џџ !џџ !џџ !џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ!џџ !џџ!!џџ"!џџ#!џџ$!џџ%!џџ&!џџ'!џџ(!џџ)!џџ*!џџ+!џџ,!џџ-!џџ.!џџ/!џџ0!џџ1!џџ2!џџ3!џџ4!џџ5!џџ6!џџ7!џџ8Цѓax%г*u2Џ:с=[AЅHДOћV]kbСgyntn{:Н†RŠЊ˜—зœ‚ЃЈтЏЗ‰ПшХdЪfЯУгэзм№м^у;ьЊэЉє4ўыЛАU%A+43њ<ˆF‹KhO†OƒV$YTa EПo@ _
8433 0 8 K §KKѓѓk5žHњF ?!G"#$%&:'()@*.+Ѕ,T-.ќ/01234567Яа 6wЧџ6”дlАэOЮ D{Б№/eЄпtЗѓ8hšѕ$ y Ч 
8434 O
8435 ˆ
8436 щ
8437 # ` Г ф 5 h ™ г  Š і UЗ1]_$Y%YЁ`Ќ`
8438 aaUaР!sР!ЌР!ЌР!ЌР!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!ЌР!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!ЌР!v:Р!ЌР!v:Р!v:Р!v:Р!v:Р!ЌР!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!v:Р!ЌР!ЌР!sР!sР!v:џР!о}ev:Р!v:Щv:Р!v:LMN‰Š‹™š›œУФХЯа 6wЧџ6”дlАэOЮ D{Б№/eЄпtЗѓ8hšѕ$ y Ч 
8439 O
8440 ˆ
8441 щ
8442 # ` Г ф 5 h ™ г  Š і UЗ1]_`bopqўџТУ78cdЫ$Ь$%%%%%:%;%<%l%m%з&и&<'=' 'Ё'((‡(ˆ(н(о(ф(х(H)I)з)и)K*L*г*д*E+F+,,Y,Z,P-„-…-о-п-L.M.//
8443 0 0]0^0Л1М1Н1е1ж1ф2х2:3;35 5Q5R5Є5Ѕ5ѕ7і7@8A8ы8ь8I9J9›9œ9ъ9ы9>:?:Џ:Ц:Ч:Ї;Ј;ћ;ќ;Л<М<Н<О<П<Р<С<Т<У<Ф<Х<Ц<Ч<Ш<Щ<Ъ<Ы<Ь<п<р<с<т<у<ф<х<ц<<===с=т=!>">ˆ>‰>у>ф>І?Ї?о?п?р?1@2@„@…@ZA[AКAЛAџAB6B7BЦBЧBШBCCйDкDлDEE5E6E G GеKжKзKіKїKLL NNiNjNЖNЗNлNмNOOSOTOГOДOьOэOšP›PэPюP­RЎR№RёRїRјR@SASJUKUwUЏUАUхUцUVVњVћVFWGWNWOWŽWW3X4XkYlYУYФYыYьYZZ=Z>ZяZ№Z6[7[”[•[у[ф[]]L]M]S]T] ]Ё]е]ж]/^0^ъ^ы^`€`а`б`з`и`*a+aчaшaщa b bibjbkblbmbobЕbИbМbгb c!c"c€cЉc dgdhdidЫdЬdCgDgEgagogpg h hchdh…h†hиhйhбiвi#j$jƒj„jиjйjkktkukŸk kъkыknnnnynznУnФnЬoЭoНpОpqqrrsrФrХrt:t;t<tЬuЭuhzizjz‡zˆz6{7{m{n{Й{К{ | |X|Y|е|ж|С}Т}~~ыьF€G€z€{€9:-‚.‚/‚1‚w‚z‚}‚‚€‚Т‚JƒKƒ}ƒЧƒШƒЩƒћƒќƒ„„Аˆф‰х‰8Š9ŠQŠRŠН‹О‹ŒŒŒŒ Œ!Œ56fgcŽdŽ !;<†‡Ÿ z{ЊЋ[’\’r’s’‡”ˆ”А”Б”с”т”5•6•†•‡•В–Г–љ–_—`—x—y———˜—­—Ў—/˜0˜Q˜R˜Щ˜Ъ˜т™у™šš;š<š{š|šя›№›œœUœVœŠœ‹œІœЇœзœиœ  ‡ˆЕЖЫЬ\ ] ‚ ƒ 0Ё1ЁOЁPЁxЂ{Ђ“Ђ”ЂЃ‚ЃЗЃИЃЙЃгЃдЃPЅQЅlЅmЅ}Ѕ~Ѕ}Ї~ЇТЇУЇЩЇЈЈgЉhЉЃЉЄЉМЉНЉIЌJЌІЌЇЌјЌљЌ§ЎўЎ*Б+Б=Б>БъВыВ7Г8ГЫЕЬЕфЕхЕџЖЗМИНИњИћИrКsКcОdОœОО‰ПŠПгПдПgРhР˜Р™РYУZУ€УУ(Ф)ФAФBФЭФЮФХХ%Х&Х>Х?ХdХeХ}Х~ХчХшХЦЦnЧoЧЋЧЌЧоЧпЧЪШЫШdЪeЪuЪvЪЊЪЋЪУЪФЪ+Ь,ЬDЬEЬ‡ЭˆЭђЭѓЭ Ю ЮMЮ–Ю—ЮЗЮИЮ ЯЯ&Я'ЯeЯfЯЅЯІЯ0а1аCаDаїаја;б<бЂбЃбЛбМбвв1в2в>г?гWгXгТгУг
8444 д дeдfдzд{дˆд‰дяд№де‚еvжwжызьзэзиии"и#и9к:к;кVкWкмямёмннн&н'н8н9нЄнЅнІнЋнИнЛн о`оАоВопLпNп^пЉпэпр9ррЪрррір с"сoсНс т^тЎтџту^у`уБуГуфcфfфwф{фЩфх`хЈххх-цjцАцДц чSч™чочш]шЉшъш/щlщЎщВщЫщЯщъъhъŸъЃъјъ7ы;ы‹ыынысы9ь:ь;ьuьvьШьЩьЪьиьйькьЇэЈэЉэЊэЋэпэрэсэ`юaюbюююžюŸю юЯюаюђёѓёеђжђЈєЉєРєСєЬєѕ€ѕ…ѕ5ј6јAјЮљљњњњћћ3ў4ўtўuў˜™ВГPQ"ЭЮл§ў   , с т № 1АБХфхЅІЛ`arrsŒ78jk  r s  (")"?"€##‘#’#Ÿ#T%U%f%L&M&T&і'ї'ј'(()(;(<(є)ѕ)**A*B*^*ƒ*н*о*ё*ђ*++@+A+=,>,W,X,(/)/Q/~/Е/и/я/ 0/0U0€0К0ђ0,1:1z1ˆ1Ц1р12=2w2в233343B6C6D6m6n6Н6 7
8445 7ё9ђ9#;$;o;p;??}?~?М?Н?cCdCЅCІCxEЅEІEиEйEкE‡F$Y%Y–`Ё`Ќ`
8446 aaaUa˜€€˜€€˜€€˜€€˜€€˜€€˜€€˜€€˜€€˜€€˜€€˜€€˜€€˜€€˜€€˜€€˜€€˜€€˜€€˜€€˜€€˜€€€€˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х˜€Х€€˜€b˜€b˜€b˜€b˜€b˜€b˜€b˜€b˜€b˜€b˜€b˜€b˜€b˜€b˜€b˜`€b˜€b€€˜€%˜€%€%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%˜€<%€%˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1˜€Н1€%˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:˜€Џ:€%˜€ШB˜€ШB˜€ШB˜€ШB˜€ШB˜€ШB˜€ШB˜€ШB˜€ШB˜€ШB˜€ШB˜€ШB˜€ШB€%˜€зK(€зK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK˜€їK(€зK˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU˜€wU€%˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa˜€щa€%(€Eg˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag˜€ag(€Eg˜€n˜€n˜€n˜€n˜€n˜€n˜€n˜€n˜€n˜€n˜€n˜€n˜€n˜€n˜€n˜@€n€€˜€t˜€t˜€t˜€t˜€t˜€t˜€t€t˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz˜€jz€€€€€ћƒ˜€ќƒ˜€ќƒ˜€ќƒ€€€€€€(€8Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š˜€9Š(€8Š˜€\’˜€\’˜€\’˜€\’˜€\’˜€\’˜€\’˜€\’˜€\’˜€\’˜€\’˜€\’˜€\’˜€\’˜€\’˜€\’˜€\’˜€\’˜€\’€€(€——˜€˜—˜€˜—˜€˜—˜€˜—˜€˜—˜€˜—˜€˜—˜€˜—˜€˜—(€——˜€у™˜€у™˜€у™˜€у™˜€у™˜€у™˜€у™(€——˜€№›˜€№›˜€№›˜€№›˜€№›˜€№›˜€№›˜€№›˜€№›˜€№›˜€№›˜€№›˜€№›˜€№›˜€№›(€——˜€Ж˜€Ж˜€Ж˜€Ж˜€Ж˜€Ж˜€Ж(€——˜€1Ё˜€1Ё˜€1Ё˜€1Ё˜€1Ё˜€1Ё˜€1Ё˜€1Ё˜€1Ё˜€1Ё€——˜€ЙЃ˜€ЙЃ˜€ЙЃ(€ЙЃ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ˜€QЅ(€ЙЃ˜€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ€dΘ`€dО€€˜€эз˜€эз˜€эз˜€эз˜€эз˜€эз˜€эз€эз˜€;к€€€€˜€м€€˜€ём˜€ём€ём˜€н(€н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н˜€'н(€н˜€;ь˜€;ь˜€;ь˜€;ь€ём˜€Ъь˜€Ъь˜€Ъь˜€Ъь˜€Ъь˜`€Ъь˜€Ъь€€˜€Ћэ˜€Ћэ˜€Ћэ˜€Ћэ˜€Ћэ€Ћэ˜€bю˜€bю˜€bю˜€bю€Ћэ˜€ ю˜€ ю˜€ ю˜€ ю˜€ ю˜€ ю˜€ ю(€ ю˜€Љє˜ €Љє˜€Љє˜€Љє˜ €Љє˜€Љє˜€Љє˜ €Љє€€˜€Aј˜€Aј(€Aј˜€њњ˜€њњ˜€њњ(€Aј˜€4ў˜€4ў˜€4ў(€Aј˜€™˜€™˜€™˜€™˜€™˜ €™˜€™˜€™˜ €™˜€™˜€™˜ €™˜€™˜€™˜ €™˜€™˜€™˜ €™˜€™˜€™˜€™˜ €™˜€™˜€™(€Aј˜€х˜€х˜€х˜ €х˜€х˜€х˜
8447 €х˜€х˜€х˜ €х˜€х˜€х(€Aј˜€8˜€8˜€8˜ €8˜€8˜€8˜ €8˜€8˜€8˜ €8˜€8˜€8˜! €8˜€8˜€8(€Aј˜€#˜ €#˜€#˜€#˜ €#˜€#˜€#˜ €#˜€#˜€#˜€#€Aј˜€ј'(€ј'˜€)(˜€)(˜€)((€ј'˜€ѕ)˜€ѕ)˜€ѕ)˜ €ѕ)˜ €ѕ)˜ €ѕ)˜€ѕ)˜€ѕ)˜€ѕ)˜ €ѕ)˜ €ѕ)˜ €ѕ)˜€ѕ)˜€ѕ)˜€ѕ)(€ј'˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,˜€>,€Aј˜€D6˜€D6(€D6˜€Н6˜€Н6˜€Н6˜€Н6˜€Н6(€D6˜€$;˜€$;˜€$;˜€$;˜€$;(€D6˜€~?˜€~?˜€~?(€D6˜€dC˜€dC(€D6˜€xE˜€xE˜€xE˜€xEš€xEž€€˜€€š€€š€€š€€š€€˜€€˜€€š€€ %33333@NNNNNNNNNNN[iiiiit‚‚‚‚‚‚‚‚‚‚‚…ЮЎa
8448 g ‡“Q+ž,z.f0€26g9G<Г=%@BbCжDI<K(RЫSЦXe[2]@^h`ЃbиdВf hpkцmЕorPuщ{з~љ€b„w†’‡NŠtށ‘ ”—•œ˜šlœн QЉ8ЌтЎБdЖЬЗRЙјЛдН…ПфС:Ч:ЩoЫйЯyв‘гчеёз9кTхсёњў2
8449 "д3+J"N[QPYяc-eF^ђіїјњћќ§џ
8450    "#%&')*,-.0235679:;=>?BDFGHIKLMNPQRTUWXZ[\_`chjkmprvƒ™šœw8 _з*0 9Н@!BйHTSF[Lakf lyr7.†ф “˜›з гЇўВгУЪ вжм тГчЯэЋё6ќ;,Е3Н:‘JхJ2KgK›K#LЊLљLHM–MЬMAN N!OˆOЫOP|PМPџP8Q†Q R”RSESdS4XЁdeF^ѓѕљў !$(+148<ACEJSVY]abdfgiloqstwxyz{|~€‚„…‡ˆ‰Š‹ŒŽ‘’“”•—˜›K.1DLah~`›ЛWзЎэЛp?„LеNіP^STeє /@O^enu}†–џџUnknownPhysical Oceanographyапщ24WsuЇУХпћ§24s’ГЯвђKgjЋЎЬшыћ.JMo‹Ž­ЩЬъ #?BZvyЌЏЯыю*-D`cƒŸЂОкнњSor–ВЕвюё36Gcfy•˜д№ѓ  " X t w І Т Х і 
8451 
8452 .
8453 J
8454 M
8455 g
8456 ƒ
8457 †
8458 Ш
8459 ф
8460 ч
8461   ! ? [ ^ ’ Ў Б У п т  0 3 G c f x ” — В Ю б ќ   i … ˆ е ё є 4PS–ВЕф,/<X[]Цкм-/‰Ÿи&ь&ю&!'3'5'='Q'S'‰'›''Ё'Е'З'ќ'(((((*(p(‚(„(ˆ(œ(ž(Ц(и(к(х(љ(ћ(1)C)E)™)­)Џ)и)ь)ю)4*F*H*д*ш*ъ*.+@+B+L+`+b+„+˜+š+,,,.,…-™-›-п-ѓ-ѕ-4.F.H.S.g.i.l.€.‚.….™.›.ž.В.Д. 00!0х2љ2ћ24#4%414E4G4Š4ž4 4R5f5h527B7D7b7r7t7z7Ž77і7
8462 8 8G8[8]8m88ƒ88Ѓ8Ѕ8ь8ќ8ў8œ9А9В9ё9::ѓ:; ;Ј;М;О;==Q=S=т=і=ј=љ= >>">6>8>9>M>O>‰>>Ÿ> >Д>Ж>ъ>ў>?M?a?c?р?є?і?2@F@H@‹@Ÿ@Ё@Є@И@К@Н@б@г@ж@ъ@ь@ЛAЯAбABBBEEE<EPEREуEїEљEF2F4FНHбHгH‹LŸLЁLMNaNcNjN~N€NO O"OДOШOЪO›PЏPБPЎRТRФRјR SS‡S›SST.T0TВTЦTШTцUіUјU*V>V@VћVWWOWcWeWjX~X€XŸXГXЕXКXЮXаXсXѕXїXY0Y2Y:YNYPYЂYЖYИYФYдYжYђYZZZ(Z*ZТZжZиZ№Z[[•[Љ[Ћ[.\B\D\S\g\i\г\ч\щ\]]]T]h]j]ж]ъ]ь]^Ѓ^Ѕ^ј^ ___Ѓ_Ѕ_`#`%`€`”`–`и`ь`ю`aЃaЅa€b”b–bbБbГbhc|c~cБcХcЧcкcюc№cєcd
8463 dd(d*dOdcdedъgўgh h!h#h†hšhœhпhѓhѕhћhiiвiцiшi*j>j@j„j˜jšjпjѓjѕjk1k3k kДkЖkёkll$m8m:m=mQmSm\mpmrmxmŒmŽmznŽnnЪnоnрnцnњnќn@oToVoОpвpдpqqq<qPqRqr2r4rsr‡r‰rЫrпrсrчrћr§rеwщwыwxxx:xNxPx˜xЌxЎx7{K{M{n{‚{„{К{Ю{а{ |!|#|х|љ|ћ|Т}ж}и}s~‡~‰~G€[€]€b€v€x€B‚V‚X‚^‚r‚t‚ƒƒƒ%ƒ9ƒ;ƒKƒ_ƒaƒbƒvƒxƒ}ƒ‘ƒ“ƒЏƒУƒХƒW…k…m…}…‘…“…ъ†ў†‡%‡9‡;‡d‡x‡z‡АˆЬˆЮˆО‹в‹д‹ŒŒŒ6JLmƒСез!57BVX‡›-/Pdf{‘ЕЩЫ‚‘–‘˜‘Ч‘л‘н‘’0’2’t“ˆ“Š“%”9”;”ˆ”œ”ž”т”і”ј”К•Ю•а•е•щ•ы•њ•––Z–n–p–u–‰–‹–`—t—v—0˜D˜F˜X˜l˜n˜<šPšRšНšбšгšVœjœlœЇœЛœНœнœёœѓœWkm{ЂЂ‘Ђ[ЇoЇqЇ~Ї’Ї”ЇЩЇнЇпЇЈЈЈ#Ј7Ј9ЈWЈkЈmЈЄЉИЉКЉаЉфЉцЉЮЊтЊфЊЇЌЛЌНЌџЌ­­M­a­c­i­}­­Н­б­г­ ЎЎЎžБВБДБoВƒВ…ВыВџВГ>ГRГTГ\ГpГrГЫГпГсГДДД#Д7Д9ДУДзДйД=ЕQЕSЕЬЕрЕтЕfЖzЖ|ЖЖ“Ж•ЖЗЗЗНИбИгИ ЙЙ!ЙIЙ]Й_ЙˆЙœЙžЙПЙгЙеЙфЙјЙњЙ+К?КAК‹КŸКЁКXЛlЛnЛqЛ…Л‡ЛЛЁЛЃЛМ#М%МЯМуМхМаНфНцНО+О-ОР%Р'РёУФФ)Ф=Ф?ФHФ\Ф^ФХХХ&Х:Х<ХeХyХ{ХшХќХўХЊЦОЦРЦoЧƒЧ…ЧЋЪПЪСЪpЫ„Ы†ЫХЫйЫлЫ,Ь@ЬBЬxЬŒЬŽЬѓЭЮ ЮЮ&Ю(ЮyЮЮЮ—ЮЋЮ­ЮыЮџЮЯЯ"Я$ЯfЯzЯ|Я}Я‘Я“Я
8464 бб бЃбЗбЙбЦбкбмбв-в/в?гSгUгЧгзгйгогюг№гігдд&д:д<дfдvдxд%е9е;етE§EџETa ”џ%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р%”џ•Р•Œ:џ„:џ„:џ€:џ€ ”џ•€:џ„ ”џ•€:џ„ ”џ•€:џ€ ”џ•€:џ„ ”џ•€:џ„ ”џ•€:џ„:џ„ ”џ•€:џ„ ”џ•€:џ„:џ„:”џ•€:џ€:џ€ ”џ•€:џ„:џ„:џ€:џ€:џ„:џ„:џ„:џ„:џ€:џ„:џ„:џ„:џ€:џ„:џ€:џ„:џ€:џ€:џ„:џ„:џ„:џ€:џ„:џ€:џ„:џ€:џ„:џ€:џ„:џ€:џ€:џ€:џ€:џ„:џ„:џ€:џ€:џ€:џ„:џ„:џ„:џ„:џ„:џ„:”џ•€:џ„:џ„:џ„:џ„:џ„:џ„:џ„:”џ•€:џ„:”џ•€:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:”џ•€:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ€:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ€:џ€:”џ•€:џ„:џ€:џ„:џ„:џ€:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ€:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ€:џ€:џ„:џ„:џ€:џ€:џ„:џ„:џ„:џ„:џ€:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ€:џ„:џ„:џ„:џ„:џ„:џ„:џ€:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„:џ„ ”џ•€ !%,/3:<@GJNUW[beipt{~…!•!”џ•€!дџ•€!дџ•€!дџ•€!дџ•€!”џ•€!”џ•€!!џ€%9;ДШЪ s:џ€:џ„:џ€46<:”џ•€:”џ•Œ№˜№ /№X2№$ъˆDѕ“Ї-“77 ЙЫ}oџЯи<2№$8Д…їPЮ N/МЩцг7џЎЇ\@ёџџџ€€€ї№0№ №Ю№( №
8465 №№<
8466 №
8467 # № П?№№№TB
8468 №
8469 c №$бвгде?№№№TB
8470 №@
8471 c №$бвгде?№№№<
8472 №
8473 # № П?№№№TB
8474 № @
8475 c №$бвгде?№№№TB
8476 №
8477 
8478 c №$бвгде?№№№HВ
8479 № 
8480 C №A ?џ№№№NВ
8481 № 
8482 S №Š A ?џ№№№B
8483 №S №ПЫџ ?№mbЕbЖbpg/‚w‚x‚мTaЈMщ>t
8484 Ш DщE t ЈDЩ E t ˜Lе40ЯqРtТг tв “t џџџnћџџ‰%З.4џџф _Toc407078231 _Toc407078218 _Toc407169603 _Toc407090372 _Toc407090575 _Toc407169604 _Toc407078219 _Toc407090373 _Toc407090576 _Toc407169605 _Toc407078220 _Toc407090374 _Toc407090577 _Toc407169606 _Ref382795878 _Ref382795966 _Ref382795976 _Toc407078221 _Toc407090375 _Toc407090578 _Toc407169607 _Toc407078222 _Toc407090376 _Toc407090579 _Toc407169608 _Toc407078223 _Toc407090377 _Toc407090580 _Toc407169609 _Toc407078224 _Toc407090378 _Toc407090581 _Toc407169610 _Toc407078225 _Toc407090379 _Toc407090582 _Toc407169611 _Toc407078226 _Toc407090380 _Toc407090583 _Toc407169612 _Toc407078227 _Toc407090381 _Toc407090584 _Toc407169613 _Toc407078228 _Toc407090382 _Toc407090585 _Toc407169614 _Toc407078229 _Toc407090383 _Toc407090586 _Toc407169615 _Toc407078230 _Toc407090384 _Toc407090587 _Toc407169616 _Hlt406563553 _Toc407090385 _Toc407090588 _Toc407169617 _Toc407078232 _Toc407090386 _Toc407090589 _Toc407169618 _Toc407078233 _Toc407090387 _Toc407090590 _Toc407169619
8485 _919624913
8486 _919625430
8487 _919625551
8488 _919625620
8489 _919625675
8490 _919625787
8491 _919625882
8492 _919669414
8493 _919669514 _Toc407078234 _Toc407090388 _Toc407090591 _Toc407169620 _Toc407078235 _Toc407090389 _Toc407090592 _Toc407169621 _Toc407078236 _Toc407090390 _Toc407090593 _Toc407169622 _Toc407078237 _Toc407090391 _Toc407090594 _Toc407169623 _Toc407078238 _Toc407090392 _Toc407090595 _Toc407169624 _Toc407078239 _Toc407090393 _Toc407090596 _Toc407169625 _Toc407078240 _Toc407090394 _Toc407090597 _Toc407169626 _Toc407078241 _Toc407090395 _Toc407090598 _Toc407169627 _Toc407078242 _Toc407090396 _Toc407090599 _Toc407169628 _Toc407078243 _Toc407090397 _Toc407090600 _Toc407169629 _Toc407078244 _Toc407090398 _Toc407090601 _Toc407169630 _Toc407169631 _Toc407090399 _Toc407090602 _Toc407169632 _Toc407078245 _Toc407090400 _Toc407090603 _Toc407169633 _Toc407078246 _Toc407090401 _Toc407090604 _Toc407169634 _Toc407078247 _Toc407090402 _Toc407090605 _Toc407169635 _Toc407090403 _Toc407090606 _Toc407169636 _Toc407078252 _Toc407090404 _Toc407090607 _Toc407169637 _Toc407078253 _Toc407090405 _Toc407090608 _Toc407169638 _Toc407078254 _Toc407090406 _Toc407090609 _Toc407169639 _Toc407078255 _Toc407090407 _Toc407090610 _Toc407169640 _Toc407078256 _Toc407090408 _Toc407090611 _Toc407169641 _Toc407078257 _Toc407090409 _Toc407090612 _Toc407169642 _Toc407078258 _Toc407090410 _Toc407090613 _Toc407169643 _Toc407078259 _Toc407090411 _Toc407090614 _Toc407169644 _Toc407078260 _Toc407090412 _Toc407090615 _Toc407169645 _Toc407078261 _Toc407090413 _Toc407090616 _Toc407169646 _Toc407078262 _Toc407090414 _Toc407090617 _Toc407169647 _Toc407078263 _Toc407090415 _Toc407090618 _Toc407169648 _Toc407078264 _Toc407090416 _Toc407090619 _Toc407169649 _Toc407078265 _Toc407090417 _Toc407090620 _Toc407169650 _Toc407078266 _Toc407090418 _Toc407090621 _Toc407169651 _Toc407078267 _Toc407090419 _Toc407090622 _Toc407169652 _Toc407078268 _Toc407090420 _Toc407090623 _Toc407169653 _Toc407078269 _Toc407090421 _Toc407090624 _Toc407169654 _Toc407078270 _Toc407090422 _Toc407090625 _Toc407169655 _Toc407078271 _Toc407090423 _Toc407090626 _Toc407169656 _Toc407078272 _Toc407090424 _Toc407090627 _Toc407169657 _Toc407090425 _Toc407090628 _Toc407169658Цbbb%%%%<%<%<%<%и&и&6'Н1Н1Н1Н1Џ:Џ:Џ:Џ:ШBШBШBШBзKзKзKзKїKїKїKїKwUwUwUwUщaщaщaщaEgEgEgEgagagagagnnnn‘ntttjzjzjzjzќƒќƒќƒќƒЬˆЬˆЬˆЬˆЬˆЬˆЬˆЬˆЬˆ9Š9Š9Š9Š\’\’\’\’˜—˜—˜—˜—у™у™у™у™№›№›№›№›ЖЖЖЖ1Ё1Ё1Ё1ЁЙЃЙЃЙЃЙЃQЅQЅQЅQЅdОdОdОdОэзэзэзэз;кёмёмёмнннн'н'н'н'н;ь;ь;ь;ьЪьЪьЪьЋэЋэЋэЋэbюbюbюbю ю ю ю юЉєЉєЉєЉєњњњњњњњњ4ў4ў4ў4ў™™™™хххх8888####ј'ј'ј'ј')()()()(ѕ)ѕ)ѕ)ѕ)>,>,>,>,D6D6D6D6Н6Н6Н6Н6$;$;$;$;~?~?~?~?dCdCdCdCxExExExEhOhOhOhO‡O‡O‡OUa9
8494   !"#$%&'()*+,-./012345678:;<=>?@ABCDE@F@G@H@I@J@K@L@M@NOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuzvwxy{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ЁЂЃЄЅІЇЈЉЊЋЌ­ЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯабвгдежзийклмрнопстуЮnnnn9%9%9%9%k%k%k%k%6';';'д1д1д1д1Х:Х:Х:Х:CCCCѕKѕKѕKѕKLLLLЎUЎUЎUЎU b b b b`g`g`g`gngngngngnnnn‘n9t9t9t9t†z†z†z†z„„„„ЬˆЬˆЬˆЬˆЬˆЬˆЬˆЬˆЬˆPŠPŠPŠPŠq’q’q’q’Ќ—Ќ—Ќ—Ќ—šššš œ œ œ œЪЪЪЪNЁNЁNЁNЁвЃвЃвЃвЃkЅkЅkЅkЅ›О›О›О›ОиииUкнннн%н%н%н%н7н7н7н7нAьAьAьtьзьзьзьоэоэоэоэŽюŽюŽюŽюЮюЮюЮюЮюПєПєПєПєћћћћsўsўsўsўББББiiii####'('('('(:(:(:(:(****V,V,V,V,l6l6l6l67777n;n;n;n;Л?Л?Л?Л?ЄCЄCЄCЄCЄEЄEЄEЄErOrOrO‘O‘O‘O‘OUaU[iqryIOCI3=‚ˆБЙS]cm‹‘žЄ
8495 оцio—ž(c!r!™#Ÿ#N$X$‰&“&Д*У*Њ+Г+Е+Н+е+р+Ј,Њ,Џ,Б,Ц,б,--а.л.e2r2z3ƒ3п4ъ4 5"5О5Х5В6О6Ы7ж7\;f;Ÿ<Ё< ==c=k=Б=Л=ЂBЅBЇBЏBчFюF0G3GIIoIrIфJщJ—K›KKЅKuLƒL}Q…QvS€SX X|Y~YqZtZЁ]Ѓ]ЈaЊaAeDeFeNe=gAg%i/iUn^ncnmnzo„osq}qЈqЏq­sЗsatlt&u,u†uŒuv!vВxРxїyћyOzUzwz…zјz{­|Б|{}„}*2оь„„” ”B”E”ž—І—ђ—њ—п˜ч˜Т™Ъ™Ы™в™й›р›œœ$žž„žŠž ŸŸDŸOŸˆŸŸL T ЁЁmЃvЃтЈхЈ ЉЉЉЉyЉ|Љ=ЊCЊЖЊРЊ8Ћ:Ћ_ЌbЌPЎSЎЏЏ“ЏœЏ‰Д‹ДыЕьЕ(Й+ЙOН]НЅНГНYПdПxП‡ПЄР­РеСфСIУWУ•У—УГФДФ›ХžХЃХІХ•ШЃШмШыШЩЩбЮпЮBЯPЯ‡а•ааагалвовЖдКд…ж“жЮкЯкhрtрXс`сясјсOт]тт™т№тўтЂхЄхЅхЇх'ц)ц*ц,цЊцЌц­цЏцечнчшш&щ.щbщkщ[ъgъ„яŒясящяTё\ёIђKђMђRђkѓsѓЮѓйѓžєЃєщєыєэєяєёєѓєѕѕ?ѕGѕeѕgѕiѕkѕmѕoѕœѕЅѕі
8496 іCіEіnіwіЧіЫіаіжі§іїqїwї†їŽїБїМїј јјј+ј0јљљБћДћЙћЛћСћЦћЫћЮћJќYќ ќІќДќЙќмќьќёќњќ§ §§(§Šў˜ўаўоў%џ3џ :H_o#fvyŠЎЗ2=ўdlЦжЙСџVf—šыћ~Ž’ ІЖЬкL T ’ Ÿ Н Ц л у ю ѓ x
8497
8498
8499
8500
8501
8502   ƒ ”   Ў Г ж р % 3 e o Ÿ Ї ˆ—,8:HMX'ак~†фђ=\‡‘§
8503  %Ђ­ЏДЖПХЪ‚‰‹’ВОэѓ@JЗХ?EGMяј,ЛЧЩеАГИН Žбкў cp„ŒйтŒŽ›эј]hЧв$^i5?‘ ЂБфю ! и у х № )"3"T"h"Й"У"##*#4#2$:$„$$$–$›$Ÿ$Ч&б&''q'z'Ж(П(р(ш(X)`)B*J*Ч-Ь-B.G.}.‚.V/`/д/ж/ъ/э/ 0060D0В0Д0щ0ь0B1L1N2X2ѓ2§2Ј3Џ3X4b45$55•5›5 546@6L7O77–7P9Y9й9у9V:Y:Њ:Ж:;;'>5>?>I>х>я>ќ?@јABPCZC0E7E8ECERE`E­FАFВFДFЕFЗFцFяFёFњF§FG GG=GAGBGHGIGOGQGTGhGnGЭGзGH"H$H3H4H7H9H;H=HBHDHGHIHOHVH[HЫHйHњH
8504 I(I9IWIbIqIyI—IЇIбIоIрIщIьIђIѕIћIJJDJUJ JЎJмJыJ;KGKHKVKWKbK‹K›KЙKУKсKщKLLjLqLrLyL‡L“LЏLЙLфLъLыLёL,M/M4M7M<M?M@MGMNMZMxM…MЃMАMоMыM NNeNtNЏNКNO)O8O@OJOOO”O›OPP:Q@QВQИQЮQжQ:RARlRqR{R‚R“R›RzS}SЁSЊST$TДTМTчTяTљTU1U?USUZUUˆU˜U UЊUАUнUуU$V+V’VšVЃVЌVЙVТV WW&W+W5W:WЊWВWеWмWWX_XpXxXАXМXжXмX%YЖ[Н[в]е]^"^‘_œ_К_Ш_–`aUaлх +ZС В!К!ш$ъ$`%k%И%Р%6';'о(у(I)K)а)е)L*N*F+K+›+Ѕ+х,ц,M.R.-/6/Ц/Ш/Ї1Љ122;3@3у3я3"5$5Ѕ5Џ5з7п7A8F8ы9№9.;/;==U=X=ф>щ>…@Š@[ClC6E;EєFѕFщJыJЗNМNрNѓNЏOВOёRіRGWLWьYёYj\p\M]R]Ѓ]Ѕ]4`6`б`ж`ЊaЌa˜bbёbcidЪddhihйhоh‘i—i$j)jйjоjukzkыk№kzlmФnЩnqqХrЪr|sŒst9tЁvЉvЪvвvnz†z_€a€{€€€Y‚^‚ ‚С‚Щƒњƒ„„H„m„еˆиˆŒŒ!Œ$ŒœŒюŒglѕaŽ<A ЃЋА™‘‘Б”Ж”6•9•Œ––Д–Р–њ–—y—€—R˜W˜жšлšц›ш›‹œŽœиœнœЙЃСЃ)Є7ЄмЄ3ЅУЇШЇНЉТЉqЊvЊbЌdЌљЌўЌўЎ’А•АЊАfВhВ8Г=Г‹ДД‘Е˜ЕхЕъЕБЖЛЖЗЗcЗrЗжЙкЙTЛŒЛлЛуЛhРkРфСхСњТћТ—У™УBФGФХ$Х?ХAХ~Х€Х›ХžХЦЉЦѕЦ§ЦБЧЕЧ7Ш<ШЫШчЩRЪWЪФЪЩЪlЫ‹Ы ЮЮ'Я-ЯМбОбcгlгкгог=дAд{д~д‚е‡еGжNжwжъз7к8к?кUкаквкљмнФнфноJоgо”оМотоп<пpппЛпЮпKрdр‘рЇр4сWссЇсФсыст@тeтŒтЕтст уRуkу–уИу ф&фRф‚фЇфвфххKхlх˜хФхмхёхцIцaцvц цЛц§цч=чbч‡чЄчХчыч
8505 ш(ш\шlш•шКшйшѕшщ<щ[щyщ­щсщџщ#ъRъ‚ъ–ъЎъцъы.ыBыtы ыЮыљы'ь~эƒэсэыэю•юэєяєiѕkѕЗјёјњјљЊћАћ;џCџ(21;<Oзп‹“>FзрmujtОЧШЫ<
8506 B
8507 •  Е З 4 < ˜ уэƒ‹™Є˜ЃѓќT]гмосŸЇ(CJЅ‰ŽГЛ& + ђ њ œ!Ђ!y%й%Ч&б&''q'z'<(E(9*@*о*с*+#+,,%-*-K.S.,101z1~1Ц1Ъ1w223 3Z3h3v5~5H6R6E8I8Н9Ч92;7;ў;<@@@ @@—@9A:A_BdBqCvCqEwE-F5FкHсHтHшHщH№HёHјH IIIIII I&I:I@IAIGIHINIOIUIiIoIzI€II‡IˆIŽII•IЈIЏIАIЗIИIПIVJ\J]JcJdJjJkJqJЏJЖJЗJОJьJђJK KKK(K.KcKiKjKpKqKwKœKЂKЃKЉKЊKАKБKЗKФKЪKЫKбKвKиKйKпKLLLL L&L'L-L”L›LœLЃLЄLЋL[MaMbMhMiMoMpMvM†MŒMM“M”MšM›MЁMьMђMѓMљMњMNNNuN|N}N„N…N‹NŒN“NЛNТNУNЩNхNьNэNѓN0O6OЇOАOPВPеPтP2QAQBQUQЏQЙQКQЬQBRGRiR‘RISdS$T&TМTОT UUPU[U\UqU!V,V-VBVВWДWУWЩWgXyXzXXІXЏXY#Y%YšYЋYZŠ[8\С]е]з]a^d^–`aUaўџр…ŸђљOhЋ‘+'Гй0œ˜ИФф№ $0
8508 L X d p|„Œ”фDISCRETE FORMULATION8ISCPhysical Oceanography8hys Normal.dotePhysical Oceanography819sMicrosoft Word 8.0h@f0@№АЅ Н@%w“ Н@њ_­ Н8э1—Templates А&C,@ъ:iЂи+00/CўџеЭеœ.“—+,љЎDеЭеœ.“—+,љЎ@ќ hp|„Œ” œЄЌД М нфMIT_‘]Г  DISCRETE FORMULATION Title˜ 6>
8509 _PID_GUIDфAN{CC1DC881-755C-11D1-96E4-0060971BA06B}lates А&C,@ъ:iЂи+00/CџџPhysical Oceanography0C:\WINDOWS\TEMP\AutoRecovery save of Fulldoc.asdPhysical Oceanography0C:\WINDOWS\TEMP\AutoRecovery save of Fulldoc.asdPhysical OceanographyC:\HOME\Daniel\Doc\FulldocPhysical OceanographyC:\HOME\Daniel\Doc\FulldocPhysical OceanographyC:\HOME\Daniel\Doc\Fulldoc.docPhysical OceanographyC:\HOME\Daniel\Doc\Fulldoc.docPhysical OceanographyC:\HOME\Daniel\Doc\Fulldoc.docPhysical Oceanography0C:\WINDOWS\TEMP\AutoRecovery save of Fulldoc.asdPhysical OceanographyC:\HOME\Daniel\Doc\Fulldoc.docPhysical OceanographyC:\HOME\Daniel\Doc\Fulldoc.doc,|џџџlХrЯџџџџџџџџџ}џџџЄЏиsџџџџџџџџџ~џџџ;
8510 џџџџџџџџџџџџЪзР+џџџџџџџџџ€џџџ&]†џџџџџџџџџџџџвњјјџџџџџџџџџ‚џџџі^Цџџџџџџџџџƒџџџž\<џџџџџџџџџˆџџџопž џџџџџџџџџ‰џџџШ4”џџџџџџџџџg ŠX ЂџџџџџџџџџЬ  џ2ж‰ŠМџџџџџџџџџL\Ž џk#Ц џцzQ‰R1џџџџџџџџџ%0ў џєˆH\џџџџџџџџџи!4 ’гJFџџџџџџџџџ-r#а›кIџ01$а›кIџЂ% џ№Д&жŸDИџќM4* џa~* џ(Ы7 џi-];Є/ЖЉџџџџџџџџџ.` = џ=tўA џХ RB џЦ9JCоЬ–JџџџџџџџџџёfИTJ†јЕџџџџџџџџџж\ГVа›кIџЩ4+X џЮ[„Y џdaЋc џЈtVdа›кIџУ-rdжŸDИџ
8511 oщiкiє(џџџџџџџџџ]Fj џ.gk џЩZ pdО@џџџџџџџџџЩ2Жx џжZ“y`;Дљџџџџџџџџџ„„˜ўЦ.„ „˜ўЦ .„8„˜ўЦ8.„а„˜ўЦа. „„˜ўЦOJQJo(З№ „ „˜ўЦ OJQJo(З№ „8„˜ўЦ8OJQJo(З№ „а„˜ўЦаOJQJo(З№„h„˜ўЦh. „h„˜ўЦhOJQJo(З№„•„kўЦ•o(„а„0§Цаo(.„а„0§Цаo(..„8„ШћЦ8o(... „ „`њЦ o( .... „ „`њЦ o( ..... „„јјЦo( ...... „„јјЦo(....... „p„їЦpo(........„h„˜ўЦh.„ „ѓ§Ц o(„ „ѓ§Ц o(.„а„0§Цаo(..„8„ШћЦ8o(... „8„ШћЦ8o( .... „ „`њЦ o( ..... „ „`њЦ o( ...... „„јјЦo(....... „„јјЦo(........„h„˜ўЦho() „h„˜ўЦhOJQJo(З№„ „ѓ§Ц o(„ „ѓ§Ц o(.„а„0§Цаo(..„8„ШћЦ8o(... „8„ШћЦ8o( .... „ „`њЦ o( ..... „ „`њЦ o( ...... „„јјЦo(....... „„јјЦo(........ „h„˜ўЦhOJQJo(З№„†„zўЦ†o(„ю„zўЦюo(.„ „0§Ц o(..„p„ШћЦpo(... „и „ШћЦи o( .... „Ј „`њЦЈ o( ..... „„`њЦo( ...... „р„јјЦрo(....... „H„јјЦHo(........„ „ѓ§Ц o(„ „ѓ§Ц o(.„а„0§Цаo(..„8„ШћЦ8o(... „8„ШћЦ8o( .... „ „`њЦ o( ..... „ „`њЦ o( ...... „„јјЦo(....... „„јјЦo(........ „h„˜ўЦhOJQJo(- „h„˜ўЦhOJQJo(- „h„˜ўЦhOJQJo(v№„ „0§Ц o(() „h„˜ўЦhOJQJo(v№ „h„˜ўЦhOJQJo(З№ „h„˜ўЦhOJQJo(З№„ „ѓ§Ц o(„ „ѓ§Ц o(.„а„0§Цаo(..„8„ШћЦ8o(... „8„ШћЦ8o( .... „ „`њЦ o( ..... „ „`њЦ o( ...... „„јјЦo(....... „„јјЦo(........„h„˜ўЦho()„h„˜ўЦh. „h„˜ўЦhOJQJo(v№„•„kўЦ•o(„а„0§Цаo(.„а„0§Цаo(..„8„ШћЦ8o(... „ „`њЦ o( .... „ „`њЦ o( ..... „„јјЦo( ...... „„јјЦo(....... „p„їЦpo(........„ „ѓ§Ц o(„ „ѓ§Ц o(.„а„0§Цаo(..„8„ШћЦ8o(... „8„ШћЦ8o( .... „ „`њЦ o( ..... „ „`њЦ o( ...... „„јјЦo(....... „„јјЦo(........ „h„˜ўЦhOJQJo(- „h„˜ўЦhOJQJo(З№ „h„˜ўЦhOJQJo(v№ „h„˜ўЦhOJQJo(v№ „h„˜ўЦhOJQJo(-„ „0§Ц o(()„б„/ўЦбo(„Ё„/ўЦЁo(.„p„0§Цpo(..„@ „0§Ц@ o(... „x„ШћЦxo( .... „H„ШћЦHo( ..... „€„`њЦ€o( ...... „P„`њЦPo(....... „ˆ„јјЦˆo(........ „h„˜ўЦhOJQJo(З№„h„˜ўЦh. „ „ѓ§Ц OJQJo( „ „ѓ§Ц OJQJo(. „а„0§ЦаOJQJo(.. „8„ШћЦ8OJQJo(... „8„ШћЦ8OJQJo( .... „ „`њЦ OJQJo( ..... „ „`њЦ OJQJo( ......  „„јјЦOJQJo(.......  „„јјЦOJQJo(........„h„˜ўЦh.„•„kўЦ•o(„а„0§Цаo(.„а„0§Цаo(..„8„ШћЦ8o(... „ „`њЦ o( .... „ „`њЦ o( ..... „„јјЦo( ...... „„јјЦo(....... „p„їЦpo(........,‰џџџƒџџџ‚џџџџџџ€џџџˆџџџџџџ~џџџ}џџџ|џџџ=tўAa~*Ь ]FjУ-rd№Д&%0ўЩ4+X(Ы7k#ЦЂ%Щ2Жx
8512 oщiЦ9JCg L\Ž.` =-r#01$ж\ГVdaЋcЈtVdХ RB.gkЮ[„YќM4*ЩZ pi-];2и!4 цzQёfИTжZ“yџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџ,џ@€ЯЯ@т…ЯЯа34tuФХќ§34’авhjЌЎщыKMŒŽЪЬ @Bwy­Џью+-ac ЂлнprГЕяё46df–˜ёѓ " u w У Х 
8513 
8514 K
8515 M
8516 „
8517 †
8518 х
8519 ч
8520  ! \ ^ Џ Б р т 1 3 d f • — Я б   † ˆ ђ є QSГЕ-/Y[4'5'œ''((ƒ(„(й(к(D)E)G*H*A+B+G.H.ўEџE$Y%Y•`–`Љ`Њ`aaaaRaSaTap@qV]p
8521 @qX]ph
8522 @qZ]pъ
8523 @q\]pŠ @q^]pњ @q`]ph @qb]p$ @qf]pЄ @qj]p"@qn]pд@qr]p\@qv]pж@qz]p4@q~]pš@q‚]p@q†]p˜@qŠ]p@qŽ]p„@q’]pђ@q–]p^@qš]pм@qž]pZ@qЂ]pЦ@qІ]pD@qЊ]pК@qЎ]p2@qВ]pф@qЖ]pj@qК]pт@qО]pl@qТ]pЬ@qЦ]p0@qЪ]pц@qЮ]pD@qв]pю@qж]pŠ@qк]p*@qо]pš@qт]p @qц]pЮ@qъ]pB@qю]pМ@qђ]pb@qі]pФ@qњ]pf @qў]pЬ @q^p.!@q^pЂ!@q
8524 ^p6"@q^p#@q^pш#@q^pІ$@q^pj%@q^p&@q"^p^&@q&^pЖ&@q*^pjV@q,^p:W@q.^p X@q0^pY@q2^pДY@q4^pŠZ@q6^p\@q8^p„^@q:^pd@q<^pў“@pІЪ@pJК@p*Щ@p,Щ@q>^pTЩ@q@^p(Ъ@p0Ъ@p2Ъ@pЄЪ@pІЪ@GTimes New Roman5€Symbol3& Arial9Palatino;"HelveticaWTms RmnTimes New Roman;€Wingdings"qŒаhИ{&g›І,›ІXэ1—8‘_8!ЅРДД€>0d]ўEѓџџDISCRETE FORMULATIONPhysical OceanographyPhysical OceanographyџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџьЅСG ПTebjbjŽйŽй `ьГьГ%Yqƒ:џџџџџџ]––"ИА А А tŒіlіlіlШОmФ‚p, …Рls"Ž‹Ќ:Œ:tŒœŒi‘Р)Њ$MБ”Š Œ Œ Œ Œ Œ Œ $Eє9ІА еА сДuєi‘сДсДА љк< < tŒœŒй*sBљкљкљксДр< RtŒ(А œŒŠ $
8525 4X 4д44< < сДŠ љк†љкпвИtŽ "А Š œŒЎr|РєQv­ Н VZіlСЩ8, ^ 
8526     !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefgjџџџџџџџџklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰ўџџџ‹§џџџ§џџџЕ §џџџўџџџ§џџџ§џџџ”ўџџџ“§џџџ,§џџџщтмзбЫЧŸПЛДЃЋЄІ›—“Њ‹†‚§џџџЎzѕjfД]YTИMIEМ>:6Р/+&Ф Чз§џџџ№Ю§јвёэшжтойгМЭЯоШФсИу‘ЋІЂш™ы…§џџџюs]oiє %WSљMID§9Root EntryџџџџџџџџL РFрpW:ф НРєQv­ НФ-Data
8527 џџџџOџџџџЏEWordDocumentKџџџџџџџџŠ`ObjectPoolNџџџџu їГЊЅ Н …СЅ Н‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›љџџџџџџџџŸ ЁЂЃЄЅІЇЈЉЊЋЌ­ћџџџџАБВГДЕЖЗИЙКЛМGџџџџ§џџџ§џџџџџџџџџџџџџџџпХШџџџџГ ЩЫџџџџЭЌ ЮбџџџџВ вгджџџџџзкџџџџЋ лмрџџџџА ћсуџџџџхЏ цчщџџџџъьџџџџю­ ёџџџџЊ ђєџџџџіЉ їљџџџџќџџџџџЄ џџџџSummaryInformation(MџџџџЂЬDocumentSummaryInformation8џџџџџџџџџџџџЊиCompObjџџџџџџџџџџџџВj0Tableџџџџџџџџџџџџ§п 
8528     !"#$%&'()*+ўџџџ.e0123456789:;<=>?@ABCDEFGHIўџџџKLMNOPQRSTUVWXYZ[\]^_`abcdўџџџ•џџџџџџџџijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œўџџџџџџџџџџџџџџџЂЃЄЅІЇЈЉЊЋЌ­ЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯабвгдежзийклмнопрстуфхцчшщъыьэюя№ёђѓєѕіїјўџџџњžќўџџџўџf0@№АЅ Н@%w“ Н@њ_­ Н8э1—ўџеЭеœ.“—+,љЎDеЭеœ.“—+,љЎ@ќ hp|„Œ” œЄЌД М нфMIT_‘]Г  DISCRETE FORMULATION Title˜ 6>
8529 _PID_GUIDфAN{CC1DC881-755C-11D1-96E4-0060971BA06B}ўџ
8530 џџџџ РFMicrosoft Word Document
8531 MSWordDocWord.Document.8є9Вq71EF40-9ACF-11D0-9BAA-00A024186100}ўџр…ŸђљOhЋ‘+'Гй0œ˜ИФф№ $0
8532 L X d p|„Œ”фDISCRETE FORMULATION8ISCPhysical Oceanography8hys Normal.dotePhysical Oceanography819sMicrosoft Word 8.0h@џџџџџџџџ
8533  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€Equation Native џџџџџџџџџџџџŠ$_919678608џџџџџџџџEd›OЯ†ъЊЙ)ш@…IСЅ Н­RСЅ НOle
8534 џџџџџџџџџџџџ‹PRINTBDџџџџ§d]џџџџƒ­„‡џџџџЌˆŠџџџџЋЇџџџџ’џџџџ”Љ–џџџџ˜ЈšџџџџœЇžŸЁџџџџЂЅџџџџЅІЈРЊџџџџЌЄЎџџџџЏАБГџџџџЕЂЖЗИКџџџџМЁНСџџџџ нТФџџџџХШџџџџžЩЬџџџџЭЮаџџџџвœгджџџџџи›йлџџџџоšіпсџџџџу™фхцшџџџџъныэџџџџяџџџџёВђєџџџџїH ўџџџјњџџџџ-џџџџџџџџўџEquation Native џџџџџџџџџџџџ7|_897308167џџџџџџџџ#РFfЬРЅ НfЬРЅ НOle
8535 џџџџџџџџџџџџ=PIC
8536 "%џџџџ>LEquation Native џџџџџџџџџџџџ \_897308168!РF`uВРЅ НfЬРЅ НOle
8537 џџџџџџџџџџџџPIC
8538 џџџџLOle10NativeџџџџїФEquation Native џџџџџџџџџџџџћМ_897308169џџџџџџџџРF` šРЅ Н`uВРЅ НOle
8539 џџџџџџџџџџџџўOle10Native џџџџкФEquation Native џџџџџџџџџџџџоМ_897308170 РF yxРЅ Н` šРЅ НOle
8540 џџџџџџџџџџџџсOle10NativeџџџџџМфEquation Native џџџџџџџџџџџџРм_897308171џџџџџџџџРF yxРЅ Н yxРЅ НOle
8541 џџџџџџџџџџџџФObjInfoџџџџљџџџџЃEquation Native џџџџџџџџџџџџЄ<_897308172ДьќРF `РЅ Н€иpРЅ НOle
8542 џџџџџџџџџџџџЅCompObjяёџџџџ’ZObjInfoџџџџђџџџџ”Equation Native џџџџџџџџџџџџ•\_897308173џџџџџџџџѕРFFРЅ Н `РЅ Н_897308174ѓхюРFЕ-РЅ НFРЅ НOle
8543 џџџџџџџџџџџџ†PIC
8544 э№џџџџ‡LMETA џџџџџџџџџџџџ‰(Equation Native џџџџџџџџџџџџt<_897308175џџџџџџџџчРF`ZћПЅ НЕ-РЅ НOle
8545 џџџџџџџџџџџџuPIC
8546 цщџџџџvLObjInfoџџџџнџџџџ_Equation Native џџџџџџџџџџџџ`М_897308176(oрРF`ZћПЅ Н`ZћПЅ НOle
8547 џџџџџџџџџџџџgCompObjгеџџџџ2ZObjInfoџџџџжџџџџ4Equation Native џџџџџџџџџџџџ5<_897308177џџџџџџџџйРFРiсПЅ Н`ZћПЅ Н_897308178зЩвРFиППЅ НРiсПЅ НOle
8548 џџџџџџџџџџџџPIC
8549 бдџџџџLMETA џџџџџџџџџџџџhEquation Native џџџџџџџџџџџџМ_897308179џџџџџџџџЫРFр6ИПЅ НиППЅ НOle
8550 џџџџџџџџџџџџPIC
8551 ЪЭџџџџLObjInfoПСџџџџьEquation Native џџџџџџџџџџџџэ\_897308180аЕФРF`}ПЅ Нр6ИПЅ НOle
8552 џџџџџџџџџџџџя_897308181џџџџџџџџОРF`}ПЅ Н`}ПЅ НOle
8553 џџџџџџџџџџџџрPIC
8554 НРџџџџсLMETA џџџџџџџџџџџџуEquation Native џџџџџџџџџџџџИ<_897308183МЎЗРF`uПЅ Н`}ПЅ НOle
8555 џџџџџџџџџџџџЙPIC
8556 ЖЙџџџџКLObjInfoџџџџ­џџџџЈEquation Native џџџџџџџџџџџџЉ\_897308184џџџџџџџџАРFрYJПЅ Н`uПЅ НOle
8557 џџџџџџџџџџџџЋCompObjЃЅџџџџ–ZObjInfoџџџџІџџџџ˜Equation Native џџџџџџџџџџџџ™м_897308185Т‹ЉРFРИBПЅ НРИBПЅ Н_897308186џџџџџџџџЂРF'!ПЅ НРИBПЅ НOle
8558 џџџџџџџџџџџџ…PIC
8559 ЁЄџџџџ†LMETA џџџџџџџџџџџџˆhEquation Native џџџџџџџџџџџџt|_897308187 ’›РF@џПЅ Н'!ПЅ НOle
8560 џџџџџџџџџџџџvPIC
8561 šџџџџwLObjInfoџџџџ‘џџџџbEquation Native џџџџџџџџџџџџc\_897308188џџџџџџџџ”РF€mіОЅ Н@џПЅ НOle
8562 џџџџџџџџџџџџeCompObj‡‰џџџџPZObjInfoџџџџŠџџџџREquation Native џџџџџџџџџџџџS<_897308189™}РF`ЬюОЅ Н€mіОЅ НџџџџџџџџЯџџџџ џџџџЪ '  џџџџЩџџџџШџџџџџџџџЦ!џџџџХ#џџџџ$(џџџџУF),џџџџТ-0џџџџС13џџџџ5џџџџ7П8;џџџџО<?џџџџН@BџџџџDџџџџGЛdJџџџџКKNџџџџЙOQџџџџRUџџџџЗVXџџџџZЖ\џџџџ^Е_aџџџџbeџџџџŒgГiџџџџuБlmnopqrstўџџџwџџџџxy{А|~џџџџџџџџ_897308190џџџџџџџџ†РF :ЭОЅ Н`ЬюОЅ НOle
8563 џџџџџџџџџџџџFPIC
8564 …ˆџџџџGLMETA џџџџџџџџџџџџIˆEquation Native џџџџџџџџџџџџ_897308191„vРFрФОЅ Н :ЭОЅ НOle
8565 џџџџџџџџџџџџ.PIC
8566 ~џџџџ/LEquation Native џџџџџџџџџџџџnМ_897308253џџџџџџџџ7РF РўРЅ Н`R СЅ НOle
8567 џџџџџџџџџџџџqPIC
8568 69џџџџrLObjInfoџџџџuџџџџEquation Native џџџџџџџџџџџџ\_897308192џџџџџџџџxРFJГОЅ НрФОЅ НOle
8569 џџџџџџџџџџџџCompObjkmџџџџќZObjInfoџџџџnџџџџўEquation Native џџџџџџџџџџџџџМ_897308193Ї7qРF`я€ОЅ НJГОЅ Н_897308194џџџџџџџџjРF`я€ОЅ Н`я€ОЅ НOle
8570 џџџџџџџџџџџџыPIC
8571 ilџџџџьLMETA џџџџџџџџџџџџюHEquation Native џџџџџџџџџџџџи\_897308195hZcРF@ф`ОЅ Н@NyОЅ НOle
8572 џџџџџџџџџџџџкPIC
8573 beџџџџлLObjInfoџџџџYџџџџЦEquation Native џџџџџџџџџџџџЧМ_897308196џџџџџџџџ\РF€МWОЅ Н€МWОЅ НOle
8574 џџџџџџџџџџџџЪCompObjOQџџџџБZObjInfoџџџџRџџџџГEquation Native џџџџџџџџџџџџД<_897308197aEUРF ‰.ОЅ Н€МWОЅ Н_897308198џџџџџџџџNРFрa%ОЅ Нрa%ОЅ НOle
8575 џџџџџџџџџџџџЇPIC
8576 MPџџџџЈLMETA џџџџџџџџџџџџЊЈEquation Native џџџџџџџџџџџџ”<_897308199L>GРF/ќНЅ Нрa%ОЅ НOle
8577 џџџџџџџџџџџџ•PIC
8578 FIџџџџ–LObjInfoџџџџ=џџџџ…Equation Native џџџџџџџџџџџџ†<_897308200џџџџџџџџ@РF@ѓНЅ Н@ѓНЅ НOle
8579 џџџџџџџџџџџџ‡CompObj35џџџџufObjInfoџџџџ6џџџџwEquation Native џџџџџџџџџџџџx<_897308201Sџ9РF€uбНЅ Н@ѓНЅ Н_897471911џџџџџџџџ2РF€uбНЅ Н€uбНЅ НOle
8580 џџџџџџџџџџџџkPIC
8581 14џџџџlLMETA џџџџџџџџџџџџnˆEquation Native џџџџџџџџџџџџ\<_897471904"0+РF BЈНЅ Н`дЩНЅ НOle
8582 џџџџџџџџџџџџ]PIC
8583 *-џџџџ^LObjInfoџџџџ!џџџџLEquation Native џџџџџџџџџџџџM\_897471894џџџџџџџџ$РFрŸНЅ Н BЈНЅ НOle
8584 џџџџџџџџџџџџOCompObjџџџџ8fObjInfoџџџџџџџџ:Equation Native џџџџџџџџџџџџ;<_897308205џџџџџџџџРF ‰}НЅ НрŸНЅ Н_897471881.‚РF ‰}НЅ Н ‰}НЅ НOle
8585 џџџџџџџџџџџџ.PIC
8586 џџџџ/LMETA џџџџџџџџџџџџ1ˆEquation Native џџџџџџџџџџџџ\_897308207РF`ї[НЅ НшuНЅ НOle
8587 џџџџџџџџџџџџPIC
8588 џџџџLObjInfoџџџџџџџџ Equation Native џџџџџџџџџџџџ <_897308209џџџџџџџџРF@VTНЅ Н`ї[НЅ НOle
8589 џџџџџџџџџџџџCompObjћ§џџџџћZObjInfoџџџџўџџџџ§Equation Native џџџџџџџџџџџџў\_897308210 ђРF e:НЅ Н@VTНЅ Н_897308212џџџџџџџџњРF ћ!НЅ Н e:НЅ НOle
8590 џџџџџџџџџџџџ№PIC
8591 љќџџџџёLMETA џџџџџџџџџџџџѓшObjInfoџџџџёџџџџсEquation Native џџџџџџџџџџџџт\_897308214јыєРF@yцМЅ Н ћ!НЅ НOle
8592 џџџџџџџџџџџџфCompObjчщџџџџЯZObjInfoџџџџъџџџџбEquation Native џџџџџџџџџџџџв\_897308215џџџџџџџџэРF иоМЅ Н@yцМЅ Н_897308216оnцРF иоМЅ Н иоМЅ НOle
8593 џџџџџџџџџџџџФPIC
8594 хшџџџџХLMETA џџџџџџџџџџџџЧШEquation Native џџџџџџџџџџџџВ<_897308217џџџџџџџџпРF ДМЅ Н`АеМЅ НOle
8595 џџџџџџџџџџџџГPIC
8596 осџџџџДLObjInfoџџџџеџџџџEquation Native џџџџџџџџџџџџžМ_897308218нЯиРF€}ЌМЅ Н ДМЅ НOle
8597 џџџџџџџџџџџџЅEquation Native џџџџџџџџџџџџЇ<_943714523џџџџџџџџwЮРFр”mЛЅ Н &ЛЅ НOle
8598 џџџџџџџџџџџџЈPIC
8599 vyџџџџЉLџџџџэƒ†џџџџь‡‰џџџџŠŒџџџџŽх“џџџџъЌ”•–˜џџџџšщ›œž џџџџЃџџџџчЄЇџџџџцЈЊџџџџ­фЫЎЏАБВДџџџџЕЗџџџџЙмКНџџџџтОПСџџџџУџџџџХрЧџџџџЩпЬџџџџъЮџџџџалвџџџџдЫжџџџџикйлџџџџмпџџџџируџџџџзфцџџџџщџџџџеы
8600 юџџџџдяђџџџџгѓѕџџџџїџџџџљбњќџџџџўаџObjInfo+-џџџџWEquation Native џџџџџџџџџџџџX<_897308254(0РF РўРЅ Н РўРЅ НOle
8601 џџџџџџџџџџџџYCompObjЫЭџџџџtfObjInfoџџџџЮџџџџvEquation Native џџџџџџџџџџџџw<_897308219џџџџџџџџбРF ћpМЅ Н€}ЌМЅ Н_897308220жКЪРFZiМЅ Н ћpМЅ НOle
8602 џџџџџџџџџџџџjPIC
8603 ЩЬџџџџkLMETA џџџџџџџџџџџџmˆEquation Native џџџџџџџџџџџџZ|_897308221џџџџџџџџУРFZiМЅ НZiМЅ НOle
8604 џџџџџџџџџџџџ\PIC
8605 ТХџџџџ]LObjInfoџџџџЙџџџџEEquation Native џџџџџџџџџџџџFœ_897308222СГМРF '@МЅ НZiМЅ НOle
8606 џџџџџџџџџџџџICompObjЏБџџџџ.ZObjInfoџџџџВџџџџ0Equation Native џџџџџџџџџџџџ1<_897308223џџџџџџџџЕРF '@МЅ Н '@МЅ Н_897308224ШЎРF mМЅ Н '@МЅ НOle
8607 џџџџџџџџџџџџ$PIC
8608 ­Аџџџџ%LMETA џџџџџџџџџџџџ'ˆEquation Native џџџџџџџџџџџџ<_897308225џџџџџџџџЇРF€Ь МЅ Н mМЅ НOle
8609 џџџџџџџџџџџџPIC
8610 ІЉџџџџLObjInfoџџџџџџџџEquation Native џџџџџџџџџџџџ<_897308226Ѕ— РF §ЛЅ Н€Ь МЅ НOle
8611 џџџџџџџџџџџџCompObj“•џџџџѓZObjInfoџџџџ–џџџџѕEquation Native џџџџџџџџџџџџі<_897308227џџџџџџџџ™РF@СЛЅ Н §ЛЅ Н_897308229žƒ’РF@СЛЅ Н@СЛЅ НOle
8612 џџџџџџџџџџџџъPIC
8613 ‘”џџџџыLMETA џџџџџџџџџџџџэhObjInfoџџџџ‰џџџџмEquation Native џџџџџџџџџџџџн<_897308230џџџџџџџџŒРF рЙЛЅ Н рЙЛЅ НOle
8614 џџџџџџџџџџџџоCompObjџџџџЪfObjInfoџџџџ‚џџџџЬEquation Native џџџџџџџџџџџџЭМ_897308231Š|…РF`N˜ЛЅ Н рЙЛЅ Н_897308232џџџџџџџџ~РF &ЛЅ Н`N˜ЛЅ НOle
8615 џџџџџџџџџџџџКPIC
8616 }€џџџџЛLMETA џџџџџџџџџџџџНObjInfoџџџџmџџџџ˜Equation Native џџџџџџџџџџџџ™<_897308234Ќ1pРFРѓeЛЅ Нр”mЛЅ НOle
8617 џџџџџџџџџџџџšObjInfoџџџџEџџџџ:Equation Native џџџџџџџџџџџџ;\_943714341џџџџuHЮРF…жКЅ Н€>ЛЅ НOle
8618 џџџџџџџџџџџџ=_897308255џџџџџџџџ*РF дРЅ Н РўРЅ НOle
8619 џџџџџџџџџџџџMPIC
8620 ),џџџџNLMETA џџџџџџџџџџџџPЈCompObjceџџџџˆZObjInfoџџџџfџџџџŠEquation Native џџџџџџџџџџџџ‹<_897308236џџџџџџџџiРFbDЛЅ НРѓeЛЅ Н_897308237gZbРF@:;ЛЅ Н@:;ЛЅ НOle
8621 џџџџџџџџџџџџ~PIC
8622 adџџџџLMETA џџџџџџџџџџџџˆObjInfoџџџџYџџџџnEquation Native џџџџџџџџџџџџo<_897308238џџџџџџџџ\РF пЛЅ Н@:;ЛЅ НOle
8623 џџџџџџџџџџџџpMETA џџџџџџџџџџџџYЈObjInfoPRџџџџ`Equation Native џџџџџџџџџџџџa<_897308241`?UРF€>ЛЅ Н пЛЅ НEquation Native џџџџџџџџџџџџRд_897308242џџџџџџџџOРF€>ЛЅ Н€>ЛЅ НOle
8624 џџџџџџџџџџџџVPIC
8625 NQџџџџWLCompObj;=џџџџ'ZObjInfoџџџџ>џџџџ)Equation Native џџџџџџџџџџџџ*œ_897308244M8AРFруЮКЅ Н…жКЅ Н_897308245џџџџџџџџ:РF@ѓДКЅ НруЮКЅ НOle
8626 џџџџџџџџџџџџPIC
8627 9<џџџџLMETA џџџџџџџџџџџџhObjInfoџџџџ џџџџbEquation Native џџџџџџџџџџџџc<_943714007хFЮРF 'КЅ Нд7КЅ НOle
8628 џџџџџџџџџџџџdEquation Native џџџџџџџџџџџџр|_897308246S3РF@‰œКЅ Н R­КЅ НOle
8629 џџџџџџџџџџџџтPIC
8630 25џџџџуLObjInfoџџџџ)џџџџЪEquation Native џџџџџџџџџџџџЫ<_897308247џџџџџџџџ,РF ˜‚КЅ Н€a“КЅ НOle
8631 џџџџџџџџџџџџЬCompObj!џџџџЛZObjInfoџџџџ"џџџџНEquation Native џџџџџџџџџџџџО<_897308248*%РF .jКЅ Н€їzКЅ Н_897308249џџџџџџџџРF u?КЅ Н .jКЅ НOle
8632 џџџџџџџџџџџџДPIC
8633  џџџџЕLMETA џџџџџџџџџџџџЗШEquation Native џџџџџџџџџџџџ†X_897308250#РF u?КЅ Н u?КЅ НOle
8634 џџџџџџџџџџџџŒPIC
8635 џџџџLCompObjџџџџOfObjInfoџџџџџџџџQEquation Native џџџџџџџџџџџџRќ_897308252џџџџ5 РF`yКЅ Н 'КЅ Н_898191594џџџџџџџџРF`yКЅ Н`yКЅ НOle
8636 џџџџџџџџџџџџ9PIC
8637 џџџџ:LMETA џџџџџџџџџџџџ<ˆEquation Native џџџџџџџџџџџџ+<_863379009џџџџџџџџћРF чуЙЅ Н`yКЅ НOle
8638 џџџџџџџџџџџџ,PIC
8639 њ§џџџџ-LCompObjяёџџџџfObjInfoџџџџђџџџџEquation Native џџџџџџџџџџџџp_866381503оЈѕРF€FмЙЅ Н чуЙЅ Нџџџџџџџџ џџџџ
8640 џџџџ џџџџ
8641 )џџџџ џџџџ џџџџ џџџџ"ї#&џџџџ '*џџџџE,і.џџџџ0џџџџ2 36џџџџџ7:џџџџў;<=>@џџџџACџџџџFќ^HџџџџJћLџџџџNњPџџџџRџџџџTјVџџџџXђYZ\џџџџ_ѕz`abceџџџџfhџџџџjѓklnџџџџpёqtџџџџ№uvwyџџџџ{’|}џџџџ‚_944035454џџџџџџџџюЮРF }ЫЙЅ Н€FмЙЅ НOle
8642 џџџџџџџџџџџџј PIC
8643 э№џџџџљ LMETA џџџџџџџџџџџџћ ШEquation Native џџџџџџџџџџџџв <_943713166џџџџџџџџчЮРFРДКЙЅ Н }ЫЙЅ НOle
8644 џџџџџџџџџџџџг PIC
8645 цщџџџџд LEquation Native џџџџџџџџџџџџ] _943712942QЫЮРF@‘wЙЅ Н ZˆЙЅ НOle
8646 џџџџџџџџџџџџb PIC
8647 ЪЭџџџџc LObjInfoџџџџнџџџџО Equation Native џџџџџџџџџџџџП _863378325џџџџљрРF Ф ЙЅ НРДКЙЅ НOle
8648 џџџџџџџџџџџџФ CompObjгеџџџџŸ fObjInfoџџџџжџџџџЁ Equation Native џџџџџџџџџџџџЂ |_862739333џџџџџџџџйРF#™ЙЅ Н Ф ЙЅ Н_862941207џџџџџџџџвРF ZˆЙЅ Н#™ЙЅ НOle
8649 џџџџџџџџџџџџŽ PIC
8650 бдџџџџ LMETA џџџџџџџџџџџџ‘ h_919627191џџџџџџџџ~ЮРF Ь{ИЅ Нр]ИЅ НOle
8651 џџџџџџџџџџџџ PIC
8652 }€џџџџ LMETA џџџџџџџџџџџџ’ hObjInfoџџџџmџџџџi Equation Native џџџџџџџџџџџџj <_9196271616|pЮРF`:ZИЅ Н Ь{ИЅ НOle
8653 џџџџџџџџџџџџk ObjInfoџџџџСџџџџ> Equation Native џџџџџџџџџџџџ? <_862939603заФРF  ]ЙЅ Н@‘wЙЅ НOle
8654 џџџџџџџџџџџџ@ CompObjЗЙџџџџ/ fObjInfoџџџџКџџџџ1 Equation Native џџџџџџџџџџџџ2 <_897303845џџџџџџџџНРFРзLЙЅ Н  ]ЙЅ Н_897303894Л
8655 ЖРF@Д ЙЅ НРзLЙЅ НOle
8656 џџџџџџџџџџџџ& PIC
8657 ЕИџџџџ' LMETA џџџџџџџџџџџџ) hEquation Native џџџџџџџџџџџџ <_897303768ЏњЏРF@Д ЙЅ Н@Д ЙЅ НOle
8658 џџџџџџџџџџџџ PIC
8659 ЎБџџџџ LObjInfoџџџџЅџџџџ Equation Native џџџџџџџџџџџџ <_862647725Ÿ/ЈРF ЙЅ Н ЙЅ НOle
8660 џџџџџџџџџџџџ CompObj›џџџџє fObjInfoџџџџžџџџџі Equation Native џџџџџџџџџџџџї \_862647698џџџџџџџџЁРF@JёИЅ Н ЙЅ Н_862738748ƒТšРF€ИЯИЅ Н@JёИЅ НOle
8661 џџџџџџџџџџџџч PIC
8662 ™œџџџџш LMETA џџџџџџџџџџџџъ HEquation Native џџџџџџџџџџџџК <_862641048џџџџџџџџ“РFРЦИЅ НРЦИЅ НOle
8663 џџџџџџџџџџџџЛ PIC
8664 ’•џџџџМ L§џџџ51+!§џџџё   § ыˆ§џџџC?84 - & §џџџїџ" ёь% тмд) ЮЪЦ- . / О1 2 3 З5 6 7 Ў9 : ; І= > ? žA B C –E F —ŽˆJ §џџџzuO khR `\XV RLGZ ?;7^ .*#b e  i §џџџњшуѓp эn o йд{ ЭШy ПК} ГObjInfoџџџџ‰џџџџЊ Equation Native џџџџџџџџџџџџЋ \_862044144чRŒРFџЄИЅ НРЦИЅ НOle
8665 џџџџџџџџџџџџ­ CompObjџџџџ˜ fObjInfoџџџџ‚џџџџš Equation Native џџџџџџџџџџџџ› 8_862738378џџџџџџџџ…РFџЄИЅ НџЄИЅ НEquation Native џџџџџџџџџџџџ x_869568245џџџџџџџџwРF Ь{ИЅ Н Ь{ИЅ НOle
8666 џџџџџџџџџџџџ PIC
8667 vyџџџџ‚ LCompObjceџџџџU fObjInfoџџџџfџџџџW Equation Native џџџџџџџџџџџџX \_863378057˜ѓiРF QИЅ Н`:ZИЅ НObjInfoџџџџ5џџџџЮ Equation Native џџџџџџџџџџџџЯ |_919627117џџџџџџџџ8ЮРF€*УЗЅ Н@RЬЗЅ НOle
8668 џџџџџџџџџџџџб ‚ƒ„…†h‰ Š‹Œщ‘’“”•–—˜™š›œžŸ ЁЂЃЄЅІЇЈЉЊЋЌ­ЎЏАўџџџџџџџГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯабвгдежзийклмнопрстуфхцчшўџџџъь эю№џџџџѓ єѕїџџџџјљњќџџџџў џEquation Native џџџџџџџџџџџџt м_943712126џџџџџџџџ#ЮРFР.‰ЗЅ Н ї™ЗЅ НOle
8669 џџџџџџџџџџџџx PIC
8670 "%џџџџy L_862641134‘ІbРFРI@ИЅ Н QИЅ НOle
8671 џџџџџџџџџџџџ2 PIC
8672 adџџџџ3 LMETA џџџџџџџџџџџџ5 шEquation Native џџџџџџџџџџџџ! \_869568084Du[РFИИЅ НРI@ИЅ НOle
8673 џџџџџџџџџџџџ# PIC
8674 Z]џџџџ$ LObjInfoџџџџQџџџџ Equation Native џџџџџџџџџџџџ |_862044148џџџџџџџџTРFИИЅ НИИЅ НOle
8675 џџџџџџџџџџџџ CompObjGIџџџџљ fObjInfoџџџџJџџџџћ Equation Native џџџџџџџџџџџџќ <_862044151Š=MРF …ѕЗЅ НрИЅ Н_869567943џџџџџџџџFРF`]ьЗЅ Н …ѕЗЅ НOle
8676 џџџџџџџџџџџџя PIC
8677 EHџџџџ№ LMETA џџџџџџџџџџџџђ ЈEquation Native џџџџџџџџџџџџн 8_862044153џџџџџџџџ?РF@RЬЗЅ Н`]ьЗЅ НOle
8678 џџџџџџџџџџџџо PIC
8679 >Aџџџџп LCompObj+-џџџџД fObjInfoџџџџ.џџџџЖ Equation Native џџџџџџџџџџџџЗ <_862737564џџџџџџџџ1РF aВЗЅ Н€*УЗЅ Н_862737565Ф­*РF ї™ЗЅ Н aВЗЅ НOle
8680 џџџџџџџџџџџџ“ PIC
8681 ),џџџџ” LMETA џџџџџџџџџџџџ– HPowerPoint Document(џџџџџџџџВЋlDocumentSummaryInformation8џџџџџџџџџџџџP _862639879K`РF€ЗЅ Н€ЗЅ НOle
8682 џџџџџџџџџџџџY Equation Native џџџџџџџџџџџџ <_919669514џџџџџџџџd›OЯ†ъЊЙ)ш`ЌMЗЅ НgЗЅ НOle
8683 џџџџџџџџџџџџ CompObjџџџџ! uџџџџџџџџ  џџџџ  џџџџџџџџ џџџџ = !"$џџџџ%' )џџџџ*,џџџџ. /013џџџџ5 7џџџџ9 ;џџџџ>џџџџђ@ BџџџџD ‡џџџџџџџџHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€ObjInfoџџџџ џџџџ Equation Native џџџџџџџџџџџџ <_919626630џџџџџџџџ ЮРF@ FЗЅ Н@ FЗЅ НOle
8684 џџџџџџџџџџџџ CompObjџџџџџў
8685 fObjInfoџџџџџџџџ Equation Native џџџџџџџџџџџџ <_919626635юЮРF€y$ЗЅ Н@ FЗЅ НObjInfoџџџџбџџџџ]
8686 Equation Native џџџџџџџџџџџџ^
8687 \_917417677ќџџџџдЮРF`ћЎЖЅ Н@ФПЖЅ НOle
8688 џџџџџџџџџџџџd
8689 Equation Native џџџџџџџџџџџџх
8690 @_919240309џџџџ
8691 їЮРFРчЗЅ НРQЗЅ НOle
8692 џџџџџџџџџџџџц
8693 PIC
8694 іљџџџџч
8695 LObjInfoџџџџэџџџџг
8696 Equation Native џџџџџџџџџџџџд
8697 _919240264вѕ№ЮРFРчЗЅ НРчЗЅ НOle
8698 џџџџџџџџџџџџй
8699 _898276524џџџџџџџџўРF€y$ЗЅ Н€y$ЗЅ НOle
8700 џџџџџџџџџџџџѓ
8701 PIC
8702 §џџџџє
8703 LMETA џџџџџџџџџџџџі
8704 ШCompObjухџџџџЎ
8705 fObjInfoџџџџцџџџџА
8706 Equation Native џџџџџџџџџџџџБ
8707 М_861779220џџџџџџџџщРF@.иЖЅ НРљЖЅ Н_861778238џџџџџџџџтРF@.иЖЅ Н@.иЖЅ НOle
8708 џџџџџџџџџџџџ™
8709 PIC
8710 сфџџџџš
8711 LMETA џџџџџџџџџџџџœ
8712 hEquation Native џџџџџџџџџџџџˆ
8713 €_861778241рЫлРF@ФПЖЅ Н@.иЖЅ НOle
8714 џџџџџџџџџџџџŽ
8715 PIC
8716 кнџџџџ
8717 LCompObjЧЩџџџџ6
8718 fObjInfoџџџџЪџџџџ8
8719 Equation Native џџџџџџџџџџџџ9
8720 _861778242џџџџџџџџЭРFрA„ЖЅ Н`ћЎЖЅ Н_861778243ŒЦРFР |ЖЅ НрA„ЖЅ НOle
8721 џџџџџџџџџџџџ
8722 PIC
8723 ХШџџџџ
8724 LMETA џџџџџџџџџџџџ
8725 HEquation Native џџџџџџџџџџџџў м_870157938YЖПРFрзkЖЅ НР |ЖЅ НOle
8726 џџџџџџџџџџџџ
8727 PIC
8728 ОСџџџџ
8729 LObjInfoџџџџЕџџџџр Equation Native џџџџџџџџџџџџс м_870157940џџџџџџџџИРF FJЖЅ Н АbЖЅ НOle
8730 џџџџџџџџџџџџх џџџџK „џџџџ…‡џџџџŠI А‹ŒџџџџG ’џџџџ”џџџџ—џџџџD ™џџџџџџџџџџџџџџџџŸ@ ЂџџџџџџџџЅџџџџџџџџЇ< Њџџџџџџџџ­џџџџџџџџБ8 џџџџжДџџџџџџџџЖџџџџЙ4 џџџџМџџџџџџџџПџџџџ0 СџџџџФџџџџџџџџЧџџџџ, ШЫџџџџ+ ЭџџџџЯ* авџџџџеџџџџ( зюийлџџџџн' опсџџџџу& фхчџџџџшщыџџџџэ$ я
8731 ђџџџџ! ѓєѕјџџџџ# љћџџџџќўџџџџ Equation Native џџџџџџџџџџџџЁ м_943703546V!ЃЮРFРYіЕЅ Н€ыЖЅ НOle
8732 џџџџџџџџџџџџЅ PIC
8733 ЂЅџџџџІ LCompObjЋ­џџџџХ ZObjInfoџџџџЎџџџџЧ Equation Native џџџџџџџџџџџџШ \_868766814gНБРF ŒЖЅ Н FJЖЅ Н_868766702џџџџџџџџЊРF ŒЖЅ Н ŒЖЅ НOle
8734 џџџџџџџџџџџџЖ PIC
8735 ЉЌџџџџЗ LMETA џџџџџџџџџџџџЙ ШObjInfoџџџџ™џџџџ Equation Native џџџџџџџџџџџџ‚ <_861708164“йœРFРYіЕЅ НРYіЕЅ НOle
8736 џџџџџџџџџџџџƒ CompObj‘џџџџp fObjInfoџџџџ’џџџџr Equation Native џџџџџџџџџџџџs ќ_861707464џџџџџџџџ•РF iмЕЅ Н2эЕЅ Н_861705209~šŽРF •ЋЕЅ Н iмЕЅ НOle
8737 џџџџџџџџџџџџT PIC
8738 џџџџU LMETA џџџџџџџџџџџџW Equation Native џџџџџџџџџџџџ5 м_861705027џџџџџџџџ‡РF •ЋЕЅ Н •ЋЕЅ НOle
8739 џџџџџџџџџџџџ9 PIC
8740 †‰џџџџ: LObjInfoџџџџ}џџџџ Equation Native џџџџџџџџџџџџ _861704814w…€РF@ЬšЕЅ Н •ЋЕЅ НOle
8741 џџџџџџџџџџџџ CompObjsuџџџџѓZObjInfoџџџџvџџџџѕEquation Native џџџџџџџџџџџџі\_861704528џџџџџџџџyРF€:yЕЅ Н@ЬšЕЅ Н_898096612џџџџџџџџrРF€:yЕЅ Н€:yЕЅ НOle
8742 џџџџџџџџџџџџщPIC
8743 qtџџџџъLMETA џџџџџџџџџџџџьˆEquation Native џџџџџџџџџџџџи\_898096613pbkРFРЈWЕЅ НРpЕЅ НOle
8744 џџџџџџџџџџџџкPIC
8745 jmџџџџлLObjInfoџџџџaџџџџЩEquation Native џџџџџџџџџџџџЪ<_898096614џџџџџџџџdРFРЈWЕЅ НРЈWЕЅ НOle
8746 џџџџџџџџџџџџЫCompObjWYџџџџКfObjInfoџџџџZџџџџМEquation Native џџџџџџџџџџџџН8_898096615i ]РF`&ЕЅ НРЈWЕЅ НObjInfoџџџџUџџџџЗEquation Native џџџџџџџџџџџџИ8_943435996џџџџџџџџXЮРF€] ЕЅ Н€] ЕЅ НOle
8747 џџџџџџџџџџџџЙEquation Native џџџџџџџџџџџџБЌ_943435965GЁSЮРF ”њДЅ Н`МЕЅ НOle
8748 џџџџџџџџџџџџДCompObjRTџџџџЕf_943435782џџџџџџџџNЮРF ”њДЅ Н ”њДЅ НOle
8749 џџџџџџџџџџџџ­CompObjMOџџџџЎfObjInfoџџџџPџџџџАCompObjCEџџџџЄfObjInfoџџџџFџџџџІEquation Native џџџџџџџџџџџџЇ0_943435589BLIЮРFРaбДЅ Н€ѓђДЅ НObjInfoџџџџAџџџџŸEquation Native џџџџџџџџџџџџ Р_943435527џџџџџџџџDЮРF ”њДЅ Н ”њДЅ НOle
8750 џџџџџџџџџџџџЃEquation Native џџџџџџџџџџџџ›8_943435301ќЩ?ЮРF qЗДЅ НРaбДЅ НOle
8751 џџџџџџџџџџџџœCompObj>@џџџџf_944035653џџџџџџџџ:ЮРF@>ŽДЅ Н qЗДЅ НOle
8752 џџџџџџџџџџџџ—CompObj9;џџџџ˜fObjInfoџџџџ<џџџџšCompObj/1џџџџŽfObjInfoџџџџ2џџџџEquation Native џџџџџџџџџџџџ‘8_944035636џџџџ85ЮРF@>ŽДЅ Н@>ŽДЅ НObjInfoџџџџ-џџџџˆEquation Native џџџџџџџџџџџџ‰ф_944035624)30ЮРF MtДЅ Н@>ŽДЅ НOle
8753 џџџџџџџџџџџџEquation Native џџџџџџџџџџџџ„8_944035580ьџџџџ+ЮРF у[ДЅ Н MtДЅ НOle
8754 џџџџџџџџџџџџ…CompObj*,џџџџ†f_943433349џџџџџџџџ&ЮРF РДЅ Н у[ДЅ НOle
8755 џџџџџџџџџџџџ€CompObj%'џџџџfObjInfoџџџџ(џџџџƒCompObjџџџџvfObjInfoџџџџџџџџxEquation Native џџџџџџџџџџџџyd_943433324$!ЮРF@їДЅ Н@їДЅ НObjInfoџџџџџџџџrEquation Native џџџџџџџџџџџџsd_943433264џџџџџџџџЮРF€ЯўГЅ Н€ЯўГЅ НOle
8756 џџџџџџџџџџџџuEquation Native џџџџџџџџџџџџn@_943433200 ЮРF€ЯўГЅ Н€ЯўГЅ НOle
8757 џџџџџџџџџџџџoCompObjџџџџpf_943432534џџџџџџџџЮРF`.їГЅ Н€ЯўГЅ НOle
8758 џџџџџџџџџџџџjCompObjџџџџkfObjInfoџџџџџџџџmCompObj џџџџ_fObjInfoџџџџ
8759 џџџџaEquation Native џџџџџџџџџџџџbT_943432363 ЮРFЌЛГЅ Н`.їГЅ НObjInfoџџџџџџџџ\Equation Native џџџџџџџџџџџџ]8_944035342о.ЮРFЌЛГЅ НЌЛГЅ НOle
8760 џџџџџџџџџџџџ^Equation Native џџџџџџџџџџџџWT_943431931џџџџџџџџЮРFр
8761 ДГЅ НЌЛГЅ НOle
8762 џџџџџџџџџџџџYCompObjџџџџZf_943431855ˆўЮРFр
8763 ДГЅ Нр
8764 ДГЅ НOle
8765 џџџџџџџџџџџџSCompObj§џџџџџTfObjInfoџџџџџџџџVCompObjѓѕџџџџHfObjInfoџџџџіџџџџJEquation Native џџџџџџџџџџџџK_943431474џџџџџџџџљЮРF@АГЅ Нр
8766 ДГЅ НObjInfoџџџџёџџџџEEquation Native џџџџџџџџџџџџF8_944035329џџџџџџџџєЮРF`чpГЅ Н`чpГЅ НOle
8767 џџџџџџџџџџџџGEquation Native џџџџџџџџџџџџA8_943430851џџџџџџџџяЮРF€`ГЅ Н@FiГЅ НOle
8768 џџџџџџџџџџџџBCompObjю№џџџџCf_943430818йэъЮРF€`ГЅ Н€`ГЅ НOle
8769 џџџџџџџџџџџџ=CompObjщыџџџџ>fObjInfoџџџџьџџџџ@CompObjпсџџџџ1fObjInfoџџџџтџџџџ3Equation Native џџџџџџџџџџџџ4Œ_943431059шїхЮРFћГЅ Н`}XГЅ НObjInfoџџџџнџџџџ-Equation Native џџџџџџџџџџџџ.D_944035311ђрЮРFћГЅ НћГЅ НOle
8770 џџџџџџџџџџџџ0Equation Native џџџџџџџџџџџџ'œ_943430162<џџџџлЮРFрYГЅ НћГЅ НOle
8771 џџџџџџџџџџџџ*CompObjкмџџџџ+f_943430073џџџџџџџџ>ЮРF`R СЅ Н`R СЅ НOle
8772 џџџџџџџџџџџџ†CompObj=?џџџџ‡fObjInfoџџџџ@џџџџ‰ObjInfoџџџџбџџџџEquation Native џџџџџџџџџџџџ|_898097440ЫдРF` ъВЅ НрYГЅ НOle
8773 џџџџџџџџџџџџCompObjЧЩџџџџјZObjInfoџџџџЪџџџџњEquation Native џџџџџџџџџџџџћМ_898097441џџџџџџџџЭРF` ъВЅ Н` ъВЅ Н_898097442ЃЈЦРF`6вВЅ Н` ъВЅ НOle
8774 џџџџџџџџџџџџуPIC
8775 ХШџџџџфLMETA џџџџџџџџџџџџцHEquation Native џџџџџџџџџџџџеМ_898097443џџџџџџџџПРFр|ЇВЅ Н`6вВЅ НOle
8776 џџџџџџџџџџџџиPIC
8777 ОСџџџџйLџџџџj џџџџџџџџh  џџџџg џџџџf џџџџџџџџd 1џџџџc  џџџџ"џџџџ$a %&')џџџџ+` ,/џџџџ_ 02N4џџџџ58џџџџ] 9<џџџџ\ =@џџџџ[ ACџџџџDFџџџџHY IJMџџџџX OlQџџџџSW UџџџџVYџџџџU Z]џџџџT ^aџџџџS bdџџџџegџџџџiQ mџџџџP ‰noqџџџџrtџџџџvN wx{џџџџL |}џџџџ‚ObjInfoџџџџЕџџџџКEquation Native џџџџџџџџџџџџЛМ_898097444НЏИРFр|ЇВЅ Нр|ЇВЅ НOle
8778 џџџџџџџџџџџџОCompObjЋ­џџџџŸZObjInfoџџџџЎџџџџЁEquation Native џџџџџџџџџџџџЂœ_898097445џџџџџџџџБРF ы…ВЅ Нр|ЇВЅ Н_898097446Ж›ЊРFJ~ВЅ НJ~ВЅ НOle
8779 џџџџџџџџџџџџŒPIC
8780 ЉЌџџџџLMETA џџџџџџџџџџџџШEquation Native џџџџџџџџџџџџt<_898097447џџџџџџџџЃРF€SВЅ НJ~ВЅ НOle
8781 џџџџџџџџџџџџuPIC
8782 ЂЅџџџџvLCompObj—™џџџџeZObjInfoџџџџšџџџџgEquation Native џџџџџџџџџџџџh|_898097448Ё”РF`яKВЅ Н€SВЅ Н_898097449џџџџџџџџ–РFРў1ВЅ Н`яKВЅ НOle
8783 џџџџџџџџџџџџXPIC
8784 •˜џџџџYLMETA џџџџџџџџџџџџ[HEquation Native џџџџџџџџџџџџB<_898097450ФqРFр5!ВЅ НРў1ВЅ НOle
8785 џџџџџџџџџџџџCPIC
8786 Ž‘џџџџDLObjInfoџџџџ…џџџџ2Equation Native џџџџџџџџџџџџ3<_898097451џџџџџџџџˆРFрЫВЅ Нр5!ВЅ НOle
8787 џџџџџџџџџџџџ4CompObj{}џџџџ"ZObjInfoџџџџ~џџџџ$Equation Native џџџџџџџџџџџџ%<_898097452†xРF€IЭБЅ НрЫВЅ Н_898097453џџџџџџџџzРF €МБЅ Н €МБЅ НOle
8788 џџџџџџџџџџџџPIC
8789 y|џџџџLMETA џџџџџџџџџџџџˆEquation Native џџџџџџџџџџџџ\_898097454csРF €МБЅ Н €МБЅ НOle
8790 џџџџџџџџџџџџ
8791 PIC
8792 ruџџџџ LObjInfoџџџџiџџџџѓEquation Native џџџџџџџџџџџџєМ_898097455џџџџџџџџlРFрюšБЅ Н€пДБЅ НOle
8793 џџџџџџџџџџџџїCompObj_aџџџџзZObjInfoџџџџbџџџџйEquation Native џџџџџџџџџџџџкм_898097457j\eРF ]yБЅ НрюšБЅ Н_898097458џџџџџџџџ^РF ]yБЅ Н ]yБЅ НOle
8794 џџџџџџџџџџџџФPIC
8795 ]`џџџџХLMETA џџџџџџџџџџџџЧШEquation Native џџџџџџџџџџџџГ<_8980974599WРF`ЫWБЅ НМqБЅ НOle
8796 џџџџџџџџџџџџДPIC
8797 VYџџџџЕLObjInfoџџџџMџџџџЄEquation Native џџџџџџџџџџџџЅ<_898097460џџџџџџџџPРF@*PБЅ Н@*PБЅ НOle
8798 џџџџџџџџџџџџІCompObjCEџџџџ“ZObjInfoџџџџFџџџџ•Equation Native џџџџџџџџџџџџ–|_898097461N@IРF€˜.БЅ Н@*PБЅ Н_898097462џџџџџџџџBРF`ї&БЅ Н€˜.БЅ НOle
8799 џџџџџџџџџџџџPIC
8800 ADџџџџ‚LMETA џџџџџџџџџџџџ„ˆEquation Native џџџџџџџџџџџџi<_898097463G+;РFр=ќАЅ Н`ї&БЅ НOle
8801 џџџџџџџџџџџџjPIC
8802 :=џџџџkLObjInfoџџџџ1џџџџVEquation Native џџџџџџџџџџџџW<_898097464џџџџџџџџ4РFр=ќАЅ Нр=ќАЅ НOle
8803 џџџџџџџџџџџџ\META џџџџџџџџџџџџ-ШObjInfo(*џџџџ5Equation Native џџџџџџџџџџџџ6\_8980974652%-РF гАЅ НРœєАЅ НEquation Native џџџџџџџџџџџџ%<_898097466џџџџџџџџ'РF гАЅ Н гАЅ НOle
8804 џџџџџџџџџџџџ*PIC
8805 &)џџџџ+LObjInfoџџџџџџџџEquation Native џџџџџџџџџџџџ<_898097467x РF`ЙАЅ Н гАЅ НOle
8806 џџџџџџџџџџџџCompObjџџџџіZObjInfoџџџџџџџџјEquation Native џџџџџџџџџџџџљ<_898097468џџџџџџџџРF ˆ—АЅ Н`ЙАЅ Н_898097469 РF€чАЅ Н ˆ—АЅ НOle
8807 џџџџџџџџџџџџьPIC
8808 џџџџэLMETA џџџџџџџџџџџџяˆEquation Native џџџџџџџџџџџџм\_898097470џџџџџџџџ РFРUnАЅ Н€чАЅ НOle
8809 џџџџџџџџџџџџоPIC
8810 
8811  џџџџпLObjInfoџџџџџџџџЫEquation Native џџџџџџџџџџџџЬ<_898097471єРFРUnАЅ НРUnАЅ НOle
8812 џџџџџџџџџџџџЭCompObjїљџџџџЛZObjInfoџџџџњџџџџНEquation Native џџџџџџџџџџџџО<_898097472џџџџџџџџ§РF`г2АЅ НРUnАЅ Н_898097473ћэіРF`г2АЅ Н`г2АЅ НOle
8813 џџџџџџџџџџџџБPIC
8814 ѕјџџџџВLMETA џџџџџџџџџџџџДˆEquation Native џџџџџџџџџџџџм_898097474џџџџџџџџяРF@2+АЅ Н@2+АЅ НOle
8815 џџџџџџџџџџџџЁPIC
8816 юёџџџџЂLџџџџ‚ƒ„…ˆџџџџЂ‰‹‡ Žџџџџ† ‘џџџџ”џџџџ„ •—џџџџ™| šœџџџџžƒ Ÿ ЃџџџџСЄЅЇџџџџЉ ЊЋЌЏџџџџ АВџџџџД~ ЕЗџџџџЙџџџџЛw НџџџџРџџџџz ТкФџџџџХЧџџџџЩx ЪЬџџџџЮv Яабгџџџџеu жиџџџџлt јмнпџџџџртџџџџхs џџџџчџџџџщr ыџџџџьюq яёџџџџєџџџџm ѕіљџџџџћk ќ§џџџџџObjInfoџџџџхџџџџ|Equation Native џџџџџџџџџџџџ}œ_898097475шРF зјЏЅ Н@2+АЅ НOle
8817 џџџџџџџџџџџџ€CompObjЧЩџџџџ0ZObjInfoџџџџЪџџџџ2Equation Native џџџџџџџџџџџџ3<_943340352ПeЭЮРF}ЦЏЅ Н}ЦЏЅ НCompObjЛНџџџџZObjInfoџџџџОџџџџEquation Native џџџџџџџџџџџџ|_943340070џџџџџџџџСЮРF@ыЄЏЅ Н@ыЄЏЅ НCompObjлнџџџџcZObjInfoџџџџоџџџџeEquation Native џџџџџџџџџџџџf<_898097477џџџџџџџџсРFрЏяЏЅ Н зјЏЅ Н_898097478пакРFрЏяЏЅ НрЏяЏЅ НOle
8818 џџџџџџџџџџџџYPIC
8819 ймџџџџZLMETA џџџџџџџџџџџџ\ˆ_898097480џџџџџџџџвРF ЮЏЅ НрЏяЏЅ НOle
8820 џџџџџџџџџџџџ9PIC
8821 бдџџџџ:LMETA џџџџџџџџџџџџ<Ј_898097196џџџџџџџџЦРF@ыЄЏЅ Н}ЦЏЅ НOle
8822 џџџџџџџџџџџџ&PIC
8823 ХШџџџџ'LMETA џџџџџџџџџџџџ)Ј_898097197ФџџџџКРF њŠЏЅ Н@ыЄЏЅ НOle
8824 џџџџџџџџџџџџ PIC
8825 ЙМџџџџ LMETA џџџџџџџџџџџџhEquation Native џџџџџџџџџџџџэ|_898097198ИЊГРFРЧaЏЅ Н€YƒЏЅ НOle
8826 џџџџџџџџџџџџяPIC
8827 ВЕџџџџ№LObjInfoџџџџЉџџџџдEquation Native џџџџџџџџџџџџеќ_898097199џџџџџџџџЌРF XЏЅ НРЧaЏЅ НOle
8828 џџџџџџџџџџџџй_943428542RуŠЮРF IьЎЅ Н IьЎЅ НOle
8829 џџџџџџџџџџџџnCompObj‰‹џџџџofObjInfoџџџџŒџџџџqObjInfoџџџџџџџџџџџџЏOle10Native ЂџџџџАФEquation Native џџџџџџџџџџџџДМ_898097200Б”ЅРF6@ЏЅ Н XЏЅ НCompObj—™џџџџ”ZObjInfoџџџџšџџџџ–Equation Native џџџџџџџџџџџџ—œ_898097201џџџџџџџџРF@7ЏЅ Н6@ЏЅ Н_898097202›в–РF`E&ЏЅ Н@7ЏЅ НOle
8830 џџџџџџџџџџџџPIC
8831 •˜џџџџ‚LMETA џџџџџџџџџџџџ„шEquation Native џџџџџџџџџџџџr8_898097203џџџџџџџџРF`qѕЎЅ Н`E&ЏЅ НOle
8832 џџџџџџџџџџџџsPIC
8833 Ž‘џџџџtLEquation Native џџџџџџџџџџџџЮ _943428331џџџџџџџџ[ЮРF ˜MЎЅ Н`”‡ЎЅ НOle
8834 џџџџџџџџџџџџбPIC
8835 Z]џџџџвLObjInfoџџџџ`Equation Native џџџџџџџџџџџџa<_898095924)|„РF IьЎЅ Н IьЎЅ НOle
8836 џџџџџџџџџџџџb_898095925џџџџџџџџ~РFрЗЪЎЅ Н€ЈфЎЅ НOle
8837 џџџџџџџџџџџџSPIC
8838 }€џџџџTLMETA џџџџџџџџџџџџVhEquation Native џџџџџџџџџџџџ?\_898095926фwРFРУЎЅ НрЗЪЎЅ НOle
8839 џџџџџџџџџџџџAPIC
8840 vyџџџџBL§џџџЎЈ‚ ˜“… §џџџugŠˆ r‹ _P‘ F™ ,[TJA;50' ! 
8841 Ѓ §Ї Ѕ ѕоа№эЎ фйБ ЬЧД џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџObjInfoџџџџmџџџџ*Equation Native џџџџџџџџџџџџ+м_898095927џџџџџџџџpРF…ЁЎЅ НРУЎЅ НOle
8842 џџџџџџџџџџџџ/CompObjceџџџџZObjInfoџџџџfџџџџ
8843 Equation Native џџџџџџџџџџџџ ќ_898095928nсiРF…ЁЎЅ Н…ЁЎЅ Н_898095959џџџџџџџџbРF`”‡ЎЅ Н…ЁЎЅ НOle
8844 џџџџџџџџџџџџьPIC
8845 adџџџџэLMETA џџџџџџџџџџџџяObjInfoџџџџQџџџџИEquation Native џџџџџџџџџџџџЙ _943428177KYTЮРF п"ЎЅ Н п"ЎЅ НOle
8846 џџџџџџџџџџџџМCompObjGIџџџџЃfObjInfoџџџџJџџџџЅEquation Native џџџџџџџџџџџџІ8_943428160џџџџџџџџMЮРF@Ќљ­Ѕ Н п"ЎЅ Н_943428113Ь=FЮРF@Ќљ­Ѕ Н@Ќљ­Ѕ НOle
8847 џџџџџџџџџџџџšPIC
8848 EHџџџџ›LMETA џџџџџџџџџџџџhEquation Native џџџџџџџџџџџџŒ<_943428088џџџџџџџџ?ЮРF€и­Ѕ Н@Ќљ­Ѕ НOle
8849 џџџџџџџџџџџџPIC
8850 >AџџџџŽLCompObj+-џџџџIZObjInfoџџџџ.џџџџKEquation Native џџџџџџџџџџџџL<_943427938!=1ЮРFa­­Ѕ НРђЮ­Ѕ НџџџџџџџџЂ  џџџџЈ џџџџџџџџЁ џџџџџџџџІ 8џџџџŸ  џџџџ"ž $џџџџ%(џџџџ• )+џџџџ-œ .1џџџџ› 24џџџџ6š 9џџџџV:<” >џџџџ@џџџџB“ CEџџџџG˜ IџџџџK’ MџџџџNQџџџџ— RUџџџџ– WoXZџџџџ\ ^џџџџ` acџџџџdfџџџџhŽ ijklmpџџџџ‡qsŠ vџџџџ wxyz{}џџџџџџџџŒ Equation Native џџџџџџџџџџџџ<_943427781џџџџџџџџ#ЮРF@Я‹­Ѕ Нa­­Ѕ НOle
8851 џџџџџџџџџџџџPIC
8852 "%џџџџLCompObjџџџџЧZObjInfoџџџџџџџџЩEquation Native џџџџџџџџџџџџЪ|_943427621j/ЮРF€=j­Ѕ Н .„­Ѕ НObjInfoџџџџ5џџџџwEquation Native џџџџџџџџџџџџxx_898095963’(8РFРђЮ­Ѕ НРђЮ­Ѕ НOle
8853 џџџџџџџџџџџџ‚_898095965џџџџџџџџ*РFa­­Ѕ Нa­­Ѕ НOle
8854 џџџџџџџџџџџџBPIC
8855 ),џџџџCLMETA џџџџџџџџџџџџEШObjInfoџџџџџџџџћEquation Native џџџџџџџџџџџџќ@_8980959676JРF .„­Ѕ Н@Я‹­Ѕ НOle
8856 џџџџџџџџџџџџ _898095969џџџџџџџџРF`œb­Ѕ Н€=j­Ѕ НOle
8857 џџџџџџџџџџџџЖPIC
8858  џџџџЗLMETA џџџџџџџџџџџџЙhEquation Native џџџџџџџџџџџџ<_898167540иXРF 
8859 A­Ѕ Н`œb­Ѕ НOle
8860 џџџџџџџџџџџџžPIC
8861  џџџџŸLCompObjыэџџџџafObjInfoџџџџюџџџџcEquation Native џџџџџџџџџџџџd\_943276570кЫёЮРF@эЌЅ Нрx­Ѕ Н_943276295џџџџџџџџъЮРF@эЌЅ Н@эЌЅ НOle
8862 џџџџџџџџџџџџUPIC
8863 щьџџџџVLMETA џџџџџџџџџџџџX(ObjInfoџџџџйџџџџ5Equation Native џџџџџџџџџџџџ6|_943276545џџџџџџџџмЮРF`ыУЌЅ Н }хЌЅ НOle
8864 џџџџџџџџџџџџ8_943276497^ЮЮРFРњЉЌЅ Н УКЌЅ НOle
8865 џџџџџџџџџџџџPIC
8866 ЭаџџџџLMETA џџџџџџџџџџџџ(ObjInfoџџџџ­џџџџШEquation Native џџџџџџџџџџџџЩ\_943276062AшАЮРF 6_ЌЅ Н@зfЌЅ НOle
8867 џџџџџџџџџџџџЫObjInfoџџџџ§џџџџŒEquation Native џџџџџџџџџџџџœ_898191138~CРFрт7­Ѕ Нрт7­Ѕ НOle
8868 џџџџџџџџџџџџObjInfoџџџџџџџџџџџџtOle10NativeєіџџџџudEquation Native џџџџџџџџџџџџw@_898191139џџџџљРFрx­Ѕ НРA0­Ѕ НEquation Native џџџџџџџџџџџџF<_898095940џџџџџџџџуРFрт7­Ѕ Нрт7­Ѕ НOle
8869 џџџџџџџџџџџџGPIC
8870 тхџџџџHLCompObjЯбџџџџfObjInfoџџџџвџџџџ!Equation Native џџџџџџџџџџџџ"@_898095942gМеРF`ыУЌЅ Н`ыУЌЅ Н_898095946џџџџџџџџЦРFр1™ЌЅ НРњЉЌЅ НOle
8871 џџџџџџџџџџџџџPIC
8872 ХШџџџџLMETA џџџџџџџџџџџџ(_898095947ФЕОРFрЧ€ЌЅ Нр1™ЌЅ НOle
8873 џџџџџџџџџџџџюPIC
8874 НРџџџџяLMETA џџџџџџџџџџџџёˆEquation Native џџџџџџџџџџџџк8_898095948џџџџџџџџЗРF@зfЌЅ НрЧ€ЌЅ НOle
8875 џџџџџџџџџџџџлPIC
8876 ЖЙџџџџмLCompObjЃЅџџџџДZObjInfoџџџџІџџџџЖEquation Native џџџџџџџџџџџџЗ<_898260246џџџџџџџџЉРF@mNЌЅ Н 6_ЌЅ Н_898260247ўЂРF |4ЌЅ Н@mNЌЅ НOle
8877 џџџџџџџџџџџџЈPIC
8878 ЁЄџџџџЉLMETA џџџџџџџџџџџџЋEquation Native џџџџџџџџџџџџ–|_898095949г5›РFръЌЅ Н |4ЌЅ НOle
8879 џџџџџџџџџџџџ˜PIC
8880 šџџџџ™LCompObj‡‰џџџџqfObjInfoџџџџŠџџџџsEquation Native џџџџџџџџџџџџt8_943427294џџџџџџџџЮРFРЯ<ЎЅ НРЯ<ЎЅ Н_943427274q‹†ЮРFр,ЎЅ НЈ3ЎЅ НOle
8881 џџџџџџџџџџџџgPIC
8882 …ˆџџџџhLMETA џџџџџџџџџџџџjЈEquation Native џџџџџџџџџџџџ9€_943427152џџџџџџџџsЮРF 5ЎЋЅ Н`]ЗЋЅ НOle
8883 џџџџџџџџџџџџ;PIC
8884 ruџџџџ<LObjInfoџџџџiџџџџ"Equation Native џџџџџџџџџџџџ#Ф_943427134я„lЮРF Ы•ЋЅ Н 5ЎЋЅ НOle
8885 џџџџџџџџџџџџ'Equation Native џџџџџџџџџџџџ@_943425990џџџџџџџџgЮРF Ы•ЋЅ Н Ы•ЋЅ НOle
8886 џџџџџџџџџџџџCompObjfhџџџџ fObjInfo[]џџџџџEquation Native џџџџџџџџџџџџ<_919671400Ў`ЮРFр9tЋЅ Н Ы•ЋЅ НOle
8887 џџџџџџџџџџџџObjInfoџџџџ‘џџџџEquation Native џџџџџџџџџџџџ‚8_898095958џџџџ`”РFРI ЌЅ НръЌЅ НOle
8888 џџџџџџџџџџџџƒObjInfo{}џџџџYEquation Native џџџџџџџџџџџџZ<_898169192џџџџџџџџ€РFр,ЎЅ Нр,ЎЅ НOle
8889 џџџџџџџџџџџџ[_898169173ц.zРF п"ЎЅ Нр,ЎЅ НOle
8890 џџџџџџџџџџџџOPIC
8891 y|џџџџPLMETA џџџџџџџџџџџџRЈ_898168058QџџџџZРFр9tЋЅ Нр9tЋЅ НOle
8892 џџџџџџџџџџџџѕPIC
8893 Y\џџџџіLMETA џџџџџџџџџџџџјЈEquation Native џџџџџџџџџџџџп\_898167944џџџџџџџџSРF@IZЋЅ Н kЋЅ НOle
8894 џџџџџџџџџџџџсPIC
8895 RUџџџџтLObjInfoџџџџ-џџџџyEquation Native џџџџџџџџџџџџz|_919671148 D0ЮРF”ѕЊЅ Н „ЋЅ НOle
8896 џџџџџџџџџџџџ|Equation Native џџџџџџџџџџџџ2<_919671330џџџџџџџџЮРF aЬЊЅ Н ЫфЊЅ НOle
8897 џџџџџџџџџџџџ3PIC
8898 џџџџ4LObjInfoџџџџIџџџџЭEquation Native џџџџџџџџџџџџЮ<_898095970 <LРF ю'ЋЅ Н ЈRЋЅ НOle
8899 џџџџџџџџџџџџЯCompObj?AџџџџНZObjInfoџџџџBџџџџПEquation Native џџџџџџџџџџџџР|_898259417їЇEРF ю'ЋЅ Н ю'ЋЅ Н_898095971џџџџџџџџ>РF€M ЋЅ Н€M ЋЅ НOle
8900 џџџџџџџџџџџџЉPIC
8901 =@џџџџЊLMETA џџџџџџџџџџџџЌEquation Native џџџџџџџџџџџџ€_898095972 7РF „ЋЅ Н€M ЋЅ НOle
8902 џџџџџџџџџџџџ‘PIC
8903 69џџџџ’LCompObj#%џџџџbZObjInfoџџџџ&џџџџdEquation Native џџџџџџџџџџџџe|_898095975џџџџџџџџ)РF”ѕЊЅ Н”ѕЊЅ Н_898095976'["РF ЫфЊЅ Н”ѕЊЅ НOle
8904 џџџџџџџџџџџџSPIC
8905 !$џџџџTLMETA џџџџџџџџџџџџVШObjInfoџџџџџџџџEquation Native џџџџџџџџџџџџ\_919663166nЮРF aЬЊЅ Н aЬЊЅ НOle
8906 џџџџџџџџџџџџ CompObj џџџџ ZObjInfoџџџџ
8907 џџџџ Equation Native џџџџџџџџџџџџ<_898096616џџџџџџџџ РF`9УЊЅ Н aЬЊЅ Н_898096617™UРF їГЊЅ Н їГЊЅ НOle
8908 џџџџџџџџџџџџPIC
8909 џџџџLMETA џџџџџџџџџџџџШ

  ViewVC Help
Powered by ViewVC 1.1.22