1 |
edhill |
1.37 |
% $Header: /u/gcmpack/manual/part6/part6.tex,v 1.36 2005/08/11 23:58:07 heimbach Exp $ |
2 |
adcroft |
1.2 |
% $Name: $ |
3 |
adcroft |
1.1 |
|
4 |
molod |
1.33 |
\chapter{Physical Parameterizations - Packages I} |
5 |
edhill |
1.37 |
\label{chap:packagesI} |
6 |
|
|
|
7 |
edhill |
1.30 |
\begin{rawhtml} |
8 |
|
|
<!-- CMIREDIR:packages: --> |
9 |
|
|
\end{rawhtml} |
10 |
cnh |
1.4 |
|
11 |
cnh |
1.34 |
In this chapter and in the following chapter, the MITgcm ``packages'' are |
12 |
|
|
described. While you can carry out many experiments with MITgcm by starting |
13 |
|
|
from case studies in section \ref{sect:tutorials}, configuring |
14 |
|
|
a brand new experiment or making major changes to an experimental configuration |
15 |
|
|
requires some knowledge of the {\it packages} |
16 |
|
|
that make up the full MITgcm code. Packages are used in MITgcm to |
17 |
|
|
help organize and layer various code building blocks that are assembled |
18 |
|
|
and selected to perform a specific experiment. Each of the specific experiments |
19 |
|
|
described in section \ref{sect:tutorials} uses a particular combination |
20 |
|
|
of packages. |
21 |
|
|
Figure \ref{fig:package_organigramme} shows the full set of packages that |
22 |
|
|
are available. As shown in the figure packages are classified into different |
23 |
|
|
groupings that layer on top of each other. The top layer packages are |
24 |
|
|
generally specialized to specific simulation types. In this layer there are |
25 |
|
|
packages that deal with biogeochemical processes, ocean interior |
26 |
|
|
and boundary layer processes, atmospheric processes, sea-ice, coupled |
27 |
|
|
simulations and state estimation. |
28 |
|
|
Below this layer are a set of general purpose |
29 |
|
|
numerical and computational packages. The general purpose numerical packages |
30 |
|
|
provide code for kernel numerical alogorithms |
31 |
|
|
that apply to |
32 |
|
|
many different simulation types. Similarly, the general purpose computational |
33 |
|
|
packages implement non-numerical alogorithms that provide parallelism, |
34 |
|
|
I/O and time-keeping functions that are used in many different scenarios. |
35 |
|
|
|
36 |
|
|
|
37 |
|
|
\begin{figure} |
38 |
|
|
\begin{minipage}{12cm} |
39 |
|
|
\marginsize{0cm}{0cm}{0cm}{0cm} |
40 |
|
|
%% \scalefig{0.6} |
41 |
|
|
%% \epsfbox{part6/organigramme_mitgcm_pkg.eps} |
42 |
|
|
\epsfig{file=part6/organigramme_mitgcm_pkg.eps, angle=-90, scale=0.85, width=17cm} |
43 |
|
|
\end{minipage} |
44 |
|
|
\label{fig:package_organigramme} |
45 |
|
|
\caption{ Hierarchy of code layers that are assembled to make up an MITgcm |
46 |
|
|
simulation. Conceptually (and in terms of code organization) MITgcm consists |
47 |
|
|
of several layers. At the base is a layer of core software that provides a |
48 |
|
|
basic numerical and computational foundation for MITgcm simulations. This |
49 |
|
|
layer is shown marked {\bf Foundation Code} at the bottom of the figure |
50 |
|
|
and corresponds to code in the italicised subdirectories on the figure. |
51 |
|
|
This layer is not organized into packages. All code above the foundation layer |
52 |
|
|
is organized as packages. Much of the code in MITgcm is contained in packages |
53 |
|
|
which serve as a useful way of organizing and layering the different levels of |
54 |
|
|
functionality that make up the full MITgcm software distribution. |
55 |
|
|
The figure shows the different packages in MITgcm as boxes containing bold |
56 |
|
|
face upper case names. Directly above the foundation layer are two layers of |
57 |
|
|
general purpose infrastructure software that consist of computational and |
58 |
|
|
numerical packages. These general purpose packages can be applied to both |
59 |
|
|
online and offline simulations and are used in many different physical |
60 |
|
|
simulation types. Above these layers are more specialized packages. } |
61 |
|
|
\end{figure} |
62 |
|
|
|
63 |
|
|
The following sections describe the packages shown in |
64 |
cnh |
1.35 |
figure \ref{fig:package_organiigramme}. Section \ref{sec:pkg:using} |
65 |
|
|
describes the general procedure for using any package in MITgcm. |
66 |
|
|
Following that sections \ref{}-\ref{} |
67 |
|
|
layout the algorithms implemented in specific packages |
68 |
|
|
and describe how to use the individual packages. A brief synopsis of the |
69 |
|
|
function of each package is given in table \ref{tab:package_summary_tab}. |
70 |
cnh |
1.34 |
Organizationally package code is assigned a |
71 |
|
|
separate subdirectory in the MITgcm code distribution |
72 |
|
|
(within the source code directory \texttt{pkg}). |
73 |
|
|
The name of this subdirectory is used as the package name in |
74 |
|
|
table \ref{tab:package_summary_tab}. |
75 |
edhill |
1.25 |
|
76 |
|
|
%% In this chapter the schemes for parameterizing processes that are not |
77 |
|
|
%% represented explicitly in MITgcm are described. Some of these |
78 |
|
|
%% processes are sub-grid scale (SGS) phenomena, other processes, such as |
79 |
|
|
%% open-boundaries, are external to the simulation. |
80 |
|
|
|
81 |
molod |
1.33 |
% Overview |
82 |
edhill |
1.25 |
\newpage |
83 |
|
|
\input{part6/packages.tex} |
84 |
cnh |
1.4 |
|
85 |
molod |
1.33 |
% Packages Related to Hydrodynamical Kernel |
86 |
edhill |
1.19 |
\newpage |
87 |
molod |
1.33 |
\section{Packages Related to Hydrodynamical Kernel} |
88 |
|
|
\input{part6/generic_advdiff.tex} |
89 |
edhill |
1.27 |
|
90 |
|
|
\newpage |
91 |
molod |
1.33 |
\input{part6/zonal_filt.tex} |
92 |
edhill |
1.19 |
|
93 |
|
|
\newpage |
94 |
molod |
1.33 |
\input{part6/exch2.tex} |
95 |
edhill |
1.19 |
|
96 |
|
|
\newpage |
97 |
molod |
1.33 |
\input{part6/gridalt.tex} |
98 |
|
|
|
99 |
|
|
% Some Mention of Packages that are part of the main model document |
100 |
edhill |
1.19 |
|
101 |
molod |
1.33 |
% Ocean Packages |
102 |
edhill |
1.19 |
\newpage |
103 |
molod |
1.33 |
\section{Ocean Packages} |
104 |
|
|
\input{part6/gmredi.tex} |
105 |
edhill |
1.29 |
|
106 |
|
|
\newpage |
107 |
molod |
1.33 |
\input{part6/kpp.tex} |
108 |
edhill |
1.24 |
|
109 |
|
|
\newpage |
110 |
molod |
1.33 |
\input{part6/bulk_force.tex} |
111 |
heimbach |
1.32 |
|
112 |
|
|
\newpage |
113 |
|
|
\input{part6/exf.tex} |
114 |
|
|
|
115 |
|
|
\newpage |
116 |
molod |
1.33 |
\input{part6/cal.tex} |
117 |
jmc |
1.20 |
|
118 |
heimbach |
1.36 |
\newpage |
119 |
|
|
\input{part6/obcs.tex} |
120 |
|
|
|
121 |
molod |
1.33 |
\section{Atmosphere Packages} |
122 |
jmc |
1.20 |
\newpage |
123 |
|
|
\input{part6/aim.tex} |
124 |
edhill |
1.19 |
|
125 |
|
|
\newpage |
126 |
|
|
\input{part6/land.tex} |
127 |
|
|
|
128 |
molod |
1.33 |
%% FIZHI is *** PRIVATE *** |
129 |
|
|
%\begin{versionprivate} |
130 |
|
|
\newpage |
131 |
|
|
\input{part6/fizhi.tex} |
132 |
|
|
%\end{versionprivate} |
133 |
edhill |
1.19 |
|
134 |
molod |
1.33 |
\section{Sea Ice Packages} |
135 |
edhill |
1.19 |
\newpage |
136 |
molod |
1.33 |
\input{part6/thsice.tex} |
137 |
edhill |
1.19 |
|
138 |
|
|
\newpage |
139 |
molod |
1.33 |
\input{part6/seaice.tex} |
140 |
edhill |
1.19 |
|
141 |
molod |
1.33 |
\section{Packages Related to Coupled Model} |
142 |
edhill |
1.19 |
\newpage |
143 |
molod |
1.33 |
\input{part6/aim_compon_interf.tex} |
144 |
edhill |
1.23 |
|
145 |
|
|
\newpage |
146 |
molod |
1.33 |
\input{part6/aim_ocn_coupler.tex} |
147 |
edhill |
1.19 |
|
148 |
|
|
\newpage |
149 |
molod |
1.33 |
\input{part6/component_communications.tex} |
150 |
edhill |
1.19 |
|
151 |
molod |
1.33 |
\section{Biogeochemistry Packages} |
152 |
edhill |
1.19 |
\newpage |
153 |
molod |
1.33 |
\input{part6/gchem.tex} |
154 |
cnh |
1.15 |
|
155 |
molod |
1.31 |
\newpage |
156 |
molod |
1.33 |
\input{part6/dic.tex} |