/[MITgcm]/manual/s_phys_pkgs/text/shelfice.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/text/shelfice.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (show annotations) (download) (as text)
Thu May 14 15:35:48 2009 UTC (16 years, 2 months ago) by mlosch
Branch: MAIN
Changes since 1.1: +17 -17 lines
File MIME type: application/x-tex
replace \texttt with \code

1 % $Header: /u/gcmpack/manual/part6/shelfice.tex,v 1.1 2009/05/14 10:19:12 mlosch Exp $
2 % $Name: $
3
4 \subsection{SHELFICE Package}
5 \label{sec:pkg:shelfice}
6 \begin{rawhtml}
7 <!-- CMIREDIR:package_shelfice: -->
8 \end{rawhtml}
9
10 Authors: Martin Losch, Jean-Michel Campin
11
12 %----------------------------------------------------------------------
13 \subsubsection{Introduction
14 \label{sec:pkg:exf:intro}}
15
16
17 Package ``shelfice'' provides a thermodynamic model for basal melting
18 underneath floating ice shelves.
19
20 CPP options enable or disable different aspects of the package
21 (Section \ref{sec:pkg:shelfice:config}).
22 Run-Time options, flags, filenames and field-related dates/times are
23 set in \code{data.shelfice}
24 (Section \ref{sec:pkg:shelfice:runtime}).
25 A description of key subroutines is given in Section
26 \ref{sec:pkg:shelfice:subroutines}.
27 Input fields, units and sign conventions are summarized in
28 Section \ref{sec:pkg:shelfice:fields_units}, and available diagnostics
29 output is listed in Section \ref{sec:pkg:shelfice:fields_diagnostics}.
30
31 %----------------------------------------------------------------------
32
33 \subsubsection{SHELFICE configuration, compiling \& running}
34
35 \paragraph{Compile-time options
36 \label{sec:pkg:shelfice:config}}
37 ~
38
39 As with all MITgcm packages, SHELFICE can be turned on or off at compile time
40 %
41 \begin{itemize}
42 %
43 \item
44 using the \code{packages.conf} file by adding \code{shelfice} to it,
45 %
46 \item
47 or using \code{genmake2} adding
48 \code{-enable=shelfice} or \code{-disable=shelfice} switches
49 %
50 \item
51 \textit{required packages and CPP options}: \\
52 SHELFICE does not require any additional packages, but it will only
53 work with conventional vertical $z$-coordinates (pressure coordinates
54 are not implemented, yet). If you use it together with vertical mixing
55 schemes, be aware, that non-local parameterizations have been turned
56 off, e.g.\ for KPP (\ref{sec:pkg:kpp}).
57 %
58 \end{itemize}
59 (see Section \ref{sect:buildingCode}).
60
61 Parts of the SHELFICE code can be enabled or disabled at compile time
62 via CPP preprocessor flags. These options are set
63 \code{SHELFICE\_OPTIONS.h}.
64 Table \ref{tab:pkg:shelfice:cpp} summarizes these options.
65
66 \begin{table}[h!]
67 \centering
68 \label{tab:pkg:shelfice:cpp}
69 {\footnotesize
70 \begin{tabular}{|l|l|}
71 \hline
72 \textbf{CPP option} & \textbf{Description} \\
73 \hline \hline
74 \code{ALLOW\_SHELFICE\_DEBUG} &
75 Include code for enhanged diagnosis \\
76 \code{ALLOW\_ISOMIP\_TD} &
77 Include code for simplifed ISOMIP thermodynamics \\
78 \hline
79 \end{tabular}
80 }
81 \caption{Available CPP-flags to be set in \code{SHELFICE\_OPTIONS.h}}
82 \end{table}
83
84 %----------------------------------------------------------------------
85
86 \subsubsection{Run-time parameters
87 \label{sec:pkg:shelfice:runtime}}
88
89 Run-time parameters are set in files
90 \code{data.pkg} (read in \code{packages\_readparms.F}),
91 and \code{data.shelfice} (read in \code{shelfice\_readparms.F}).
92
93 \paragraph{Enabling the package}
94 ~ \\
95 %
96 A package is switched on/off at run-time by setting
97 (e.g. for SHELFICE) \code{useSHELFICE = .TRUE.} in \code{data.pkg}.
98
99 \paragraph{General flags and parameters}
100 ~ \\
101 %
102 Table~\ref{tab:pkg:shelfice:runtimeparms} lists all run-time parameters.
103 \begin{table}[h!]
104 \caption{Run-time parameters and default values
105 \label{tab:pkg:shelfice:runtimeparms}}
106 {\footnotesize
107 % \hspace*{-1.5in}
108 \begin{tabular}{|lp{4cm}p{4cm}c|}
109 \hline
110 & & & \\
111 \textbf{Name} & \textbf{Default value}
112 & \textbf{Description} & \textbf{Reference} \\
113 & & & \\
114 \hline \hline
115 useISOMIPTD & F
116 & use simplified ISOMIP thermodynamics instead of default
117 & %---ref---
118 \\
119 SHELFICEconserve & F
120 & use conservative form of temperature boundary conditions
121 & %---ref---
122 \\
123 SHELFICEboundaryLayer & F
124 & use simple boundary layer mixing parameterization
125 & %---ref---
126 \\
127 SHELFICEloadAnomalyFile & UNSET
128 & inital geopotential anomaly
129 & %---ref---
130 \\
131 SHELFICEtopoFile & UNSET
132 & under-ice topography of ice shelfes
133 & %---ref---
134 \\
135 SHELFICElatentHeat & 334.0E+03
136 & latent heat of fusion ($L$)
137 & %---ref---
138 \\
139 SHELFICEHeatCapacity\_Cp & 2000.0E+00
140 & latent heat of fusion ($c_{p,I}$)
141 & %---ref---
142 \\
143 rhoShelfIce & 917.0E+00
144 & (constant) mean density of ice shelf ($\rho_{I}$)
145 & %---ref---
146 \\
147 SHELFICEheatTransCoeff & 1.0E-04
148 & transfer coefficient (exchange velocity) for temperature
149 ($\gamma_T$)
150 & %---ref---
151 \\
152 SHELFICEsaltTransCoeff & 5.05E-03 $\times$~SHELFICEheatTransCoeff
153 & transfer coefficient (exchange velocity) for salinity
154 ($\gamma_S$)
155 & %---ref---
156 \\
157 SHELFICEkappa & 1.54E-06
158 & temperature diffusion coefficient of the ice shelf ($kappa$)
159 & %---ref---
160 \\
161 SHELFICEthetaSurface & -20.0E+00
162 & (constant) surface temperature above the ice shelf ($T_{S}$)
163 & %---ref---
164 \\
165 no\_slip\_shelfice & no\_slip\_bottom (data)
166 & flag for slip along bottom of ice shelf
167 & %---ref---
168 \\
169 SHELFICEDragLinear & bottomDragLinear (data)
170 & linear drag coefficient at bottom ice shelf
171 & %---ref---
172 \\
173 SHELFICEDragQuadratic & bottomDragQuadratic (data)
174 & quadratic drag coefficient at bottom ice shelf
175 & %---ref---
176 \\
177 SHELFICEwriteState & F
178 & write ice shelf state to file
179 & %---ref---
180 \\
181 SHELFICE\_dumpFreq & dumpFreq (data)
182 & dump frequency
183 & %---ref---
184 \\
185 SHELFICE\_taveFreq & taveFreq (data)
186 & time-averaging frequency
187 & %---ref---
188 \\
189 SHELFICE\_tave\_mnc & timeave\_mnc (data.mnc)
190 & write snap-shot using MNC
191 & %---ref---
192 \\
193 SHELFICE\_dump\_mnc & snapshot\_mnc (data.mnc)
194 & write TimeAverage using MNC
195 & %---ref---
196 \\
197 \hline
198 \end{tabular}
199 }
200 \end{table}
201
202
203
204 %----------------------------------------------------------------------
205 \subsubsection{Description
206 \label{sec:pkg:shelfice:descr}}
207
208 In the light of isomorphic equations for pressure and height
209 coordinates, the ice shelf topography on top of the water column has a
210 similar role as (and in the language of \citet{marshall:04} is
211 isomorphic to) the orography and the pressure boundary conditions at
212 the bottom of the fluid for atmospheric and oceanic models in pressure
213 coordinates.
214 %
215
216 The total pressure $p_{tot}$ in the ocean can be divided into the
217 pressure at the top of the water column $p_{top}$, the hydrostatic
218 pressure and the non-hydrostatic pressure contribution $p_{NH}$:
219 \begin{equation}
220 \label{eq:pressureocean}
221 p_{tot} = p_{top} + \int_z^{\eta-h} g\,\rho\,dz + p_{NH},
222 \end{equation}
223 with the gravitational acceleration $g$, the density $\rho$, the
224 vertical coordinate $z$ (positive upwards), and the dynamic
225 sea-surface height $\eta$. For the open ocean, $p_{top}=p_{a}$
226 (atmospheric pressure) and $h=0$. Underneath an ice-shelf that is
227 assumed to be floating in isostatic equilibrium, $p_{top}$ at the top
228 of the water column is the atmospheric pressure $p_{a}$ plus the
229 weight of the ice-shelf. It is this weight of the ice-shelf that has
230 to be provided as a boundary condition at the top of the water column
231 (in run-time parameter \code{SHELFICEloadAnomalyFile}).
232 The weight is conveniently computed by integrating a density profile
233 $\rho^*$, that is constant in time and corresponds to the sea-water
234 replaced by ice, from $z=0$ to a ``reference'' ice-shelf draft at
235 $z=-h$ \citep{beckmann99}, so that
236 \begin{equation}
237 \label{eq:ptop}
238 p_{top} = p_{a} + \int_{-h}^{0}g\,\rho^{*}\,dz.
239 \end{equation}
240 Underneath the ice shelf, the ``sea-surface height'' $\eta$ is the
241 deviation from the ``reference'' ice-shelf draft $h$. During a model
242 integration, $\eta$ adjusts so that the isostatic equilibrium is
243 maintained for sufficiently slow and large scale motion.
244
245 In the MITgcm, the total pressure anomaly $p'_{tot}$ which is used for
246 pressure gradient computations is defined by substracting a purely
247 depth dependent contribution $-g\rho_{0}z$ with a constant reference
248 density $\rho_{0}$ from $p_{tot}$. Eq.~(\ref{eq:pressureocean}) becomes
249 \begin{alignat}{2}
250 \label{eq:pressure}
251 p_{tot} =& \,p_{top} - g\,\rho_0\,(z+h) &+ g\,\rho_0\,\eta + \int_z^{\eta-h}
252 g\,(\rho-\rho_0)\,dz + p_{NH}, \\
253 \intertext{and after rearranging}
254 p'_{tot} =& \,p'_{top}
255 &+ g\,\rho_0\,\eta + \int_z^{\eta-h}g\,(\rho-\rho_0)\,dz + p_{NH},
256 \end{alignat}
257 with $p'_{tot} = p_{tot} + g\,\rho_0\,z$ and $p'_{top} = p_{top} -
258 g\,\rho_0\,h$. The non-hydrostatic pressure contribution $p_{NH}$ is
259 neglected in the following.
260
261 In practice, the ice shelf contribution to $p_{top}$ is computed by
262 integrating Eq.~(\ref{eq:ptop}) from $z=0$ to the bottom of the last
263 fully dry cell within the ice shelf:
264 \begin{equation}
265 \label{eq:surfacepressure}
266 p_{top} = g\,\sum_{k'=1}^{n-1}\rho_{k'}^{*}\Delta{z_{k'}} + p_{a}
267 \end{equation}
268 where $n$ is the vertical index of the first (at least partially)
269 ``wet'' cell and $\Delta{z_{k'}}$ is the thickness of the $k'$-th
270 layer (counting downwards). The pressure anomaly for evaluating the pressure
271 gradient is computed in the center of the ``wet'' cell $k$ as
272 \begin{equation}
273 \label{eq:discretizedpressure}
274 p'_{k} = p'_{top} + g\rho_{n}\eta +
275 g\,\sum_{k'=n}^{k}\left((\rho_{k'}-\rho_{0})\Delta{z_{k'}}
276 \frac{1+H(k'-k)}{2}\right)
277 \end{equation}
278 where $H(k'-k)=1$ for $k'<k$ and $0$ otherwise.
279
280 Setting \code{SHELFICEboundaryLayer=.true.} introduces a simple
281 boundary layer that reduces the potential noise problem at the cost of
282 increased vertical mixing. For this purpose the water temperature at
283 the $k$-th layer abutting ice shelf topography for use in the heat
284 flux parameterizations is computed as a mean temperature
285 $\overline{\theta}_{k}$ over a boundary layer of the same thickness as
286 the layer thickness $\Delta{z}_{k}$:
287 \begin{equation}
288 \label{eq:thetabl}
289 \overline{\theta}_{k} = \theta_{k} h_{k} + \theta_{k+1} (1-h_{k})
290 \end{equation}
291 where $h_{k}\in(0,1]$ is the fractional layer thickness of the $k$-th
292 layer. The original contributions due to ice shelf-ocean interaction
293 $g_{\theta}$ to the total tendency terms $G_{\theta}$ in the
294 time-stepping equation
295 %$\theta^{n+1} = \theta^{n} + \Delta{t}\, g_{\theta}^{n}$
296 $\theta^{n+1} = f(\theta^{n},\Delta{t},G_{\theta}^{n})$
297 %
298 are
299 \begin{equation}
300 \label{eq:orgtendency}
301 g_{\theta,k} = \frac{Q}{\rho_{0} c_{p} h_{k} \Delta{z}_{k}}
302 \text{ and } g_{\theta,k+1} = 0
303 \end{equation}
304 for layers $k$ and $k+1$ ($c_{p}$ is the heat capacity). Averaging
305 these terms over a layer thickness $\Delta{z_{k}}$ (e.g., extending
306 from the ice shelf base down to the dashed line in cell C) and
307 applying the averaged tendency to cell A (in layer $k$) and to the
308 appropriate fraction of cells C (in layer $k+1$) yields
309 \begin{align}
310 \label{eq:tendencyk}
311 g_{\theta,k}^* &= \frac{Q}{\rho_{0} c_{p} \Delta{z}_{k}} \\
312 \label{eq:tendencykp1}
313 g_{\theta,k+1}^*
314 &= \frac{Q}{\rho_{0} c_{p} \Delta{z}_{k}}
315 \frac{ \Delta{z}_{k} ( 1- h_{k} )}{\Delta{z}_{k+1}}.
316 \end{align}
317 Eq.~(\ref{eq:tendencykp1}) describes averaging over the part of the
318 grid cell $k+1$ that is part of the boundary layer with tendency
319 $g_{\theta,k}^*$ and the part with no tendency. Salinity is treated in
320 the same way. The momentum equations are not modified.
321
322 \paragraph{Three-Equations-Thermodynamics}
323 \label{sec:pkg:shelfice:thermodynamics}
324
325 Freezing and melting form a boundary layer between ice shelf and
326 ocean. %
327 Phase transitions at the boundary between saline water and ice imply
328 the following fluxes across the boundary: the freshwater mass flux
329 $q$ ($<0$ for melting); the heat flux that consists of the diffusive
330 flux through the ice, the latent heat flux due to melting and freezing
331 and the heat that is carried by the mass flux; and the salinity that
332 is carried by the mass flux, if the ice has a non-zero salinity $S_I$.
333 Further, the position of the interface between ice and ocean changes
334 because of $q$, so that, say, in the case of melting the volume of sea
335 water increases. As a consequence salinity and temperature are
336 modified.
337
338 The turbulent exchange terms for tracers at the ice-ocean interface
339 are generally expressed as diffusive fluxes. Following
340 \citet{jenkins01}, the boundary conditions for a tracer take
341 into account that this boundary is not a material surface.
342 %The position of this surface changes when ice is melted or water freezes. %
343 The implied upward freshwater flux $q$ (in mass units, negative for
344 melting) is included in the boundary conditions for the temperature
345 and salinity equation as an advective flux:
346 \begin{equation}
347 \label{eq:jenkinsbc}
348 {\rho}K\frac{\partial{X}}{\partial{z}}\biggl|_{b}
349 = (\rho\gamma_{X}-q) ( X_{b} - X )
350 \end{equation}
351 where tracer $X$ stands for either temperature $T$ or salinity $S$.
352 $X_b$ is the tracer at the interface (taken to be at freezing), $X$ is
353 the tracer at the first interior grid point, $\rho$ is the density of
354 seawater, and $\gamma_X$ is the turbulent exchange coefficient (in
355 units of an exchange velocity). The left hand side of
356 Eq.~(\ref{eq:jenkinsbc}) is shorthand for the (downward) flux of tracer $X$
357 across the boundary. $T_b$, $S_b$ and the freshwater flux $q$ are
358 obtained from solving a system of three equations that is derived from
359 the heat and freshwater balance at the ice ocean interface.
360
361 In this so-called three-equation-model \citep[e.g.,][]{hellmer89,
362 jenkins01} the heat balance at the ice-ocean interface is expressed
363 as
364
365 \begin{equation}
366 \label{eq:hellmerheatbalance}
367 c_{p} \rho \gamma_T (T - T_{b})
368 +\rho_{I} c_{p,I} \kappa \frac{(T_{S} - T_{b})}{h}
369 = -Lq
370 \end{equation}
371 where %
372 $\rho$ is the density of sea-water, %
373 $c_{p} = 3974\text{\,J\,kg$^{-1}$\,K$^{-1}$}$ is the specific heat
374 capacity of water and %
375 $\gamma_T$ the turbulent exchange coefficient of temperature. %
376 The value of $\gamma_T$ is discussed in \citet{holland99}. $L =
377 334000\text{\,J\,kg$^{-1}$}$ is the latent heat of fusion. $\rho_{I} =
378 920\text{\,kg\,m$^{-3}$}$, $c_{p,I} =
379 2000\text{\,J\,kg$^{-1}$\,K$^{-1}$}$, and $T_{S}$ are the density,
380 heat capacity and the surface temperature of the ice shelf;
381 $\kappa=1.54\times10^{-6}\text{\,m$^2$\,s$^{-1}$}$ is the heat
382 diffusivity through the ice-shelf and $h$ is the ice-shelf draft. The
383 second term on the right hand side describes the heat flux through the
384 ice shelf. A constant surface temperature $T_S=-20^{\circ}$ is
385 imposed. $T$ is the temperature of the model cell adjacent to the
386 ice-water interface. The temperature at the interface $T_{b}$ is
387 assumed to be the in-situ freezing point temperature of sea-water
388 $T_{f}$ which is computed from a linear equation of state
389
390 \begin{equation}
391 \label{eq:helmerfreeze}
392 T_{f} = (0.0901 - 0.0575\ S_{b})^{\circ}
393 - 7.61 \times 10^{-4}\frac{^{\circ}}{\text{dBar}}\ p_{b}
394 \end{equation}
395 with the salinity $S_{b}$ and the pressure $p_{b}$ (in dBar) in the
396 cell at the ice-water interface. From the salt budget, the salt flux
397 across the shelf ice-ocean interface is equal to the salt flux due to
398 melting and freezing:
399 \begin{equation}
400 \label{eq:hellmersaltbalance}
401 \rho \gamma_{S} (S - S_{b}) = - q\,(S_{b}-S_{I}),
402 \end{equation}
403 where $\gamma_S = 5.05\times10^{-3}\gamma_T$ is the turbulent salinity
404 exchange coefficient, and $S$ and $S_{b}$ are defined in analogy to
405 temperature as the salinity of the model cell adjacent to the
406 ice-water interface and at the interface, respectively. Note, that the
407 salinity of the ice shelf is generally neglected ($S_{I}=0$).
408 Equations~(\ref{eq:hellmerheatbalance}) to (\ref{eq:hellmersaltbalance}) can
409 be solved for $S_{b}$, $T_{b}$, and the freshwater flux $q$ due to
410 melting. These values are substituted into expression~(\ref{eq:jenkinsbc})
411 to obtain the boundary conditions for the temperature and salinity
412 equations of the ocean model.
413 % Then upward heat and (virtual) salt fluxes out of the ocean
414 %are computed following \citet[their equations 6, 7, 25, 28, and 29, note
415 %that $q = -\text{their melt rate $m$}\times\text{density of
416 % freshwater}$, and that salinity within the ice is assumed to be
417 %zero]{jenkins01}
418 %\begin{align}
419 % \label{eq:hellmerthetaflux}
420 % K\frac{\partial{T}}{\partial{z}}\biggl|_{b} =&
421 % (\rho\gamma_{T}-q) ( T_{b} - T ) \\\notag
422 % =& - q \left[ \frac{L}{c_{p}} + (T - T_{b}) \right]
423 % - \frac{\rho_{I} c_{p,I} \kappa}{c_{p}} \frac{(T_{S} - T_{b})}{h} \\
424 % \label{eq:hellmersaltflux}
425 % K\frac{\partial{S}}{\partial{z}}\bigg|_{b} =&
426 % (\rho\gamma_{S}-q)(S_{b} - S) \\\notag
427 % =& q\,S \\
428 % \label{eq:hellmerheatflux}
429 %% Q =& qc_{p} (T - T_{b}) - qL - \rho_{I} c_{p,I} \kappa
430 %% \frac{(T_{S} - T_{b})}{h} \\
431 % Q =& - c_{p} (\rho\gamma_{T}-q) ( T_{b} - T ) \\\notag
432 % =& - q \left[ L + c_{p} (T - T_{b}) \right]
433 % - \rho_{I} c_{p,I} \kappa \frac{(T_{S} - T_{b})}{h} \\
434 % \label{eq:hellmerfwflux}
435 % Q_{S} =& (\rho\gamma_{S}-q)(S_{b} - S) \\\notag
436 % =& q\,S
437 %\end{align}
438
439 This formulation tends to yield smaller melt rates than the simpler
440 formulation of the ISOMIP protocol because the freshwater flux due to
441 melting decreases the salinity which raises the freezing point
442 temperature and thus leads to less melting at the interface. For a
443 simpler thermodynamics model where $S_b$ is not computed explicitly,
444 for example as in the ISOMIP protocol, equation~(\ref{eq:jenkinsbc}) cannot
445 be applied directly. In this case equation~(\ref{eq:hellmersaltbalance})
446 can be used with Eq.~(\ref{eq:jenkinsbc}) to obtain:
447 \begin{equation}
448 \rho{K}\frac{\partial{S}}{\partial{z}}\biggl|_{b} = q\,(S-S_I).
449 \end{equation}
450 This formulation can be used for all cases for which
451 equation~(\ref{eq:hellmersaltbalance}) is valid. Further, in this
452 formulation it is obvious that melting ($q<0$) leads to a reduction of
453 salinity.
454
455 The default value of \code{SHELFICEconserve=.false.} removes the
456 contribution $q ( X_{b}-X )$ from Eq.~(\ref{eq:jenkinsbc}), making the
457 boundary conditions for temperature non-conservative.
458
459 \paragraph{ISOMIP-Thermodynamics}
460 \label{sec:pkg:shelfice:isomip}
461
462 A simpler formulation follows the ISOMIP protocol
463 (\url{http://efdl.cims.nyu.edu/project_oisi/isomip/overview.html}). The
464 freezing and melting in the boundary layer between ice shelf and ocean
465 is parameterized following \citet{grosfeld97}. In this formulation
466 Eq.~(\ref{eq:hellmerheatbalance}) reduces to
467 \begin{equation}
468 \label{eq:isomipheatbalance}
469 c_{p} \rho \gamma_T (T - T_{b}) = -Lq
470 \end{equation}
471 and the fresh water flux $q$ is computed from
472 \begin{equation}
473 \label{eq:isomipfwflx}
474 q = - \frac{c_{p} \rho \gamma_T (T - T_{b})}{L}.
475 \end{equation}
476 In order to use this formulation, set run-time parameter
477 \code{useISOMIPTD=.true.} in data.shelfice.
478
479 \paragraph{Remark} The shelfice package and experiments demonstrating
480 its strenghts and weaknesses are also described in
481 \citet{losch08}. However, note that unfortunately the description of
482 the thermodynamics in the appendix of \citet{losch08} is wrong.
483
484
485 %----------------------------------------------------------------------
486
487 \subsubsection{Key subroutines
488 \label{sec:pkg:shelfice:subroutines}}
489
490 Top-level routine: \code{shelfice\_model.F}
491
492 {\footnotesize
493 \begin{verbatim}
494 C !CALLING SEQUENCE:
495 C ...
496 C |-FORWARD_STEP :: Step forward a time-step ( AT LAST !!! )
497 C ...
498 C | |-DO_OCEANIC_PHY :: Control oceanic physics and parameterization
499 C ...
500 C | | |-SHELFICE_THERMODYNAMICS :: main routine for thermodynamics
501 C with diagnostics
502 C ...
503 C | |-THERMODYNAMICS :: theta, salt + tracer equations driver.
504 C ...
505 C | | |-EXTERNAL_FORCING_T :: Problem specific forcing for temperature.
506 C | | |-SHELFICE_FORCING_T :: apply heat fluxes from ice shelf model
507 C ...
508 C | | |-EXTERNAL_FORCING_S :: Problem specific forcing for temperature.
509 C | | |-SHELFICE_FORCING_S :: apply fresh water fluxes from ice shelf model
510 C ...
511 C | |-DYNAMICS :: Momentum equations driver.
512 C ...
513 C | | |-MOM_FLUXFORM :: Flux form mom eqn. package ( see
514 C ...
515 C | | | |-SHELFICE_U_DRAG :: apply drag along ice shelf to u-equation
516 C with diagnostics
517 C ...
518 C | | |-MOM_VECINV :: Vector invariant form mom eqn. package ( see
519 C ...
520 C | | | |-SHELFICE_V_DRAG :: apply drag along ice shelf to v-equation
521 C with diagnostics
522 C ...
523 C o
524 \end{verbatim}
525 }
526
527
528 %----------------------------------------------------------------------
529
530 \subsubsection{SHELFICE diagnostics
531 \label{sec:pkg:shelfice:diagnostics}}
532
533 Diagnostics output is available via the diagnostics package
534 (see Section \ref{sec:pkg:diagnostics}).
535 Available output fields are summarized in
536 Table \ref{tab:pkg:shelfice:diagnostics}.
537
538 \begin{table}[h!]
539 \centering
540 \label{tab:pkg:shelfice:diagnostics}
541 {\footnotesize
542 \begin{verbatim}
543 ---------+----+----+----------------+-----------------
544 <-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)
545 ---------+----+----+----------------+-----------------
546 SHIfwFlx| 1 |SM |kg/m^2/s |Ice shelf fresh water flux (positive upward)
547 SHIhtFlx| 1 |SM |W/m^2 |Ice shelf heat flux (positive upward)
548 SHIUDrag| 30 |UU |m/s^2 |U momentum tendency from ice shelf drag
549 SHIVDrag| 30 |VV |m/s^2 |V momentum tendency from ice shelf drag
550 SHIForcT| 1 |SM |W/m^2 |Ice shelf forcing for theta, >0 increases theta
551 SHIForcS| 1 |SM |g/m^2/s |Ice shelf forcing for salt, >0 increases salt
552 \end{verbatim}
553 }
554 \caption{Available diagnostics of the shelfice-package}
555 \end{table}
556
557
558 %\subsubsection{Package Reference}
559
560 \subsubsection{Experiments and tutorials that use shelfice}
561 \label{sec:pkg:shelfice:experiments}
562
563 \begin{itemize}
564 \item{ISOMIP, Experiment 1
565 (\url{http://efdl.cims.nyu.edu/project_oisi/isomip/overview.html})
566 in isomip verification directory.}
567 \end{itemize}
568
569
570 %%% Local Variables:
571 %%% mode: latex
572 %%% TeX-master: "../manual"
573 %%% End:

  ViewVC Help
Powered by ViewVC 1.1.22