| 1 |
mlosch |
1.5 |
% $Header: /u/gcmpack/manual/s_phys_pkgs/text/shelfice.tex,v 1.4 2010/08/30 23:09:22 jmc Exp $ |
| 2 |
mlosch |
1.1 |
% $Name: $ |
| 3 |
|
|
|
| 4 |
|
|
\subsection{SHELFICE Package} |
| 5 |
|
|
\label{sec:pkg:shelfice} |
| 6 |
|
|
\begin{rawhtml} |
| 7 |
|
|
<!-- CMIREDIR:package_shelfice: --> |
| 8 |
|
|
\end{rawhtml} |
| 9 |
|
|
|
| 10 |
|
|
Authors: Martin Losch, Jean-Michel Campin |
| 11 |
|
|
|
| 12 |
|
|
%---------------------------------------------------------------------- |
| 13 |
|
|
\subsubsection{Introduction |
| 14 |
jmc |
1.4 |
\label{sec:pkg:shelfice:intro}} |
| 15 |
mlosch |
1.1 |
|
| 16 |
|
|
|
| 17 |
|
|
Package ``shelfice'' provides a thermodynamic model for basal melting |
| 18 |
|
|
underneath floating ice shelves. |
| 19 |
|
|
|
| 20 |
|
|
CPP options enable or disable different aspects of the package |
| 21 |
|
|
(Section \ref{sec:pkg:shelfice:config}). |
| 22 |
|
|
Run-Time options, flags, filenames and field-related dates/times are |
| 23 |
mlosch |
1.2 |
set in \code{data.shelfice} |
| 24 |
mlosch |
1.1 |
(Section \ref{sec:pkg:shelfice:runtime}). |
| 25 |
|
|
A description of key subroutines is given in Section |
| 26 |
|
|
\ref{sec:pkg:shelfice:subroutines}. |
| 27 |
|
|
Input fields, units and sign conventions are summarized in |
| 28 |
|
|
Section \ref{sec:pkg:shelfice:fields_units}, and available diagnostics |
| 29 |
mlosch |
1.3 |
output is listed in Section \ref{sec:pkg:shelfice:diagnostics}. |
| 30 |
mlosch |
1.1 |
|
| 31 |
|
|
%---------------------------------------------------------------------- |
| 32 |
|
|
|
| 33 |
|
|
\subsubsection{SHELFICE configuration, compiling \& running} |
| 34 |
|
|
|
| 35 |
|
|
\paragraph{Compile-time options |
| 36 |
|
|
\label{sec:pkg:shelfice:config}} |
| 37 |
|
|
~ |
| 38 |
|
|
|
| 39 |
|
|
As with all MITgcm packages, SHELFICE can be turned on or off at compile time |
| 40 |
|
|
% |
| 41 |
|
|
\begin{itemize} |
| 42 |
|
|
% |
| 43 |
|
|
\item |
| 44 |
mlosch |
1.2 |
using the \code{packages.conf} file by adding \code{shelfice} to it, |
| 45 |
mlosch |
1.1 |
% |
| 46 |
|
|
\item |
| 47 |
mlosch |
1.2 |
or using \code{genmake2} adding |
| 48 |
|
|
\code{-enable=shelfice} or \code{-disable=shelfice} switches |
| 49 |
mlosch |
1.1 |
% |
| 50 |
|
|
\item |
| 51 |
|
|
\textit{required packages and CPP options}: \\ |
| 52 |
|
|
SHELFICE does not require any additional packages, but it will only |
| 53 |
|
|
work with conventional vertical $z$-coordinates (pressure coordinates |
| 54 |
|
|
are not implemented, yet). If you use it together with vertical mixing |
| 55 |
|
|
schemes, be aware, that non-local parameterizations have been turned |
| 56 |
|
|
off, e.g.\ for KPP (\ref{sec:pkg:kpp}). |
| 57 |
|
|
% |
| 58 |
|
|
\end{itemize} |
| 59 |
jmc |
1.4 |
(see Section \ref{sec:buildingCode}). |
| 60 |
mlosch |
1.1 |
|
| 61 |
|
|
Parts of the SHELFICE code can be enabled or disabled at compile time |
| 62 |
|
|
via CPP preprocessor flags. These options are set |
| 63 |
mlosch |
1.2 |
\code{SHELFICE\_OPTIONS.h}. |
| 64 |
mlosch |
1.1 |
Table \ref{tab:pkg:shelfice:cpp} summarizes these options. |
| 65 |
|
|
|
| 66 |
jmc |
1.4 |
\begin{table}[!ht] |
| 67 |
mlosch |
1.1 |
\centering |
| 68 |
|
|
\label{tab:pkg:shelfice:cpp} |
| 69 |
|
|
{\footnotesize |
| 70 |
|
|
\begin{tabular}{|l|l|} |
| 71 |
|
|
\hline |
| 72 |
|
|
\textbf{CPP option} & \textbf{Description} \\ |
| 73 |
|
|
\hline \hline |
| 74 |
mlosch |
1.2 |
\code{ALLOW\_SHELFICE\_DEBUG} & |
| 75 |
mlosch |
1.1 |
Include code for enhanged diagnosis \\ |
| 76 |
mlosch |
1.2 |
\code{ALLOW\_ISOMIP\_TD} & |
| 77 |
mlosch |
1.1 |
Include code for simplifed ISOMIP thermodynamics \\ |
| 78 |
|
|
\hline |
| 79 |
|
|
\end{tabular} |
| 80 |
|
|
} |
| 81 |
mlosch |
1.2 |
\caption{Available CPP-flags to be set in \code{SHELFICE\_OPTIONS.h}} |
| 82 |
mlosch |
1.1 |
\end{table} |
| 83 |
|
|
|
| 84 |
|
|
%---------------------------------------------------------------------- |
| 85 |
|
|
|
| 86 |
|
|
\subsubsection{Run-time parameters |
| 87 |
|
|
\label{sec:pkg:shelfice:runtime}} |
| 88 |
|
|
|
| 89 |
|
|
Run-time parameters are set in files |
| 90 |
mlosch |
1.2 |
\code{data.pkg} (read in \code{packages\_readparms.F}), |
| 91 |
|
|
and \code{data.shelfice} (read in \code{shelfice\_readparms.F}). |
| 92 |
mlosch |
1.1 |
|
| 93 |
|
|
\paragraph{Enabling the package} |
| 94 |
|
|
~ \\ |
| 95 |
|
|
% |
| 96 |
|
|
A package is switched on/off at run-time by setting |
| 97 |
mlosch |
1.5 |
(e.g.\ for SHELFICE) \code{useSHELFICE = .TRUE.} in \code{data.pkg}. |
| 98 |
mlosch |
1.1 |
|
| 99 |
|
|
\paragraph{General flags and parameters} |
| 100 |
|
|
~ \\ |
| 101 |
|
|
% |
| 102 |
|
|
Table~\ref{tab:pkg:shelfice:runtimeparms} lists all run-time parameters. |
| 103 |
jmc |
1.4 |
\begin{table}[!ht] |
| 104 |
mlosch |
1.1 |
\caption{Run-time parameters and default values |
| 105 |
|
|
\label{tab:pkg:shelfice:runtimeparms}} |
| 106 |
|
|
{\footnotesize |
| 107 |
|
|
% \hspace*{-1.5in} |
| 108 |
|
|
\begin{tabular}{|lp{4cm}p{4cm}c|} |
| 109 |
|
|
\hline |
| 110 |
|
|
& & & \\ |
| 111 |
|
|
\textbf{Name} & \textbf{Default value} |
| 112 |
|
|
& \textbf{Description} & \textbf{Reference} \\ |
| 113 |
|
|
& & & \\ |
| 114 |
|
|
\hline \hline |
| 115 |
|
|
useISOMIPTD & F |
| 116 |
|
|
& use simplified ISOMIP thermodynamics instead of default |
| 117 |
|
|
& %---ref--- |
| 118 |
|
|
\\ |
| 119 |
|
|
SHELFICEconserve & F |
| 120 |
|
|
& use conservative form of temperature boundary conditions |
| 121 |
|
|
& %---ref--- |
| 122 |
|
|
\\ |
| 123 |
|
|
SHELFICEboundaryLayer & F |
| 124 |
|
|
& use simple boundary layer mixing parameterization |
| 125 |
|
|
& %---ref--- |
| 126 |
|
|
\\ |
| 127 |
|
|
SHELFICEloadAnomalyFile & UNSET |
| 128 |
|
|
& inital geopotential anomaly |
| 129 |
|
|
& %---ref--- |
| 130 |
|
|
\\ |
| 131 |
|
|
SHELFICEtopoFile & UNSET |
| 132 |
mlosch |
1.3 |
& under-ice topography of ice shelves |
| 133 |
mlosch |
1.1 |
& %---ref--- |
| 134 |
|
|
\\ |
| 135 |
|
|
SHELFICElatentHeat & 334.0E+03 |
| 136 |
|
|
& latent heat of fusion ($L$) |
| 137 |
|
|
& %---ref--- |
| 138 |
|
|
\\ |
| 139 |
|
|
SHELFICEHeatCapacity\_Cp & 2000.0E+00 |
| 140 |
mlosch |
1.5 |
& specific heat capacity of ice ($c_{p,I}$) |
| 141 |
mlosch |
1.1 |
& %---ref--- |
| 142 |
|
|
\\ |
| 143 |
|
|
rhoShelfIce & 917.0E+00 |
| 144 |
|
|
& (constant) mean density of ice shelf ($\rho_{I}$) |
| 145 |
|
|
& %---ref--- |
| 146 |
|
|
\\ |
| 147 |
|
|
SHELFICEheatTransCoeff & 1.0E-04 |
| 148 |
|
|
& transfer coefficient (exchange velocity) for temperature |
| 149 |
|
|
($\gamma_T$) |
| 150 |
|
|
& %---ref--- |
| 151 |
|
|
\\ |
| 152 |
|
|
SHELFICEsaltTransCoeff & 5.05E-03 $\times$~SHELFICEheatTransCoeff |
| 153 |
|
|
& transfer coefficient (exchange velocity) for salinity |
| 154 |
|
|
($\gamma_S$) |
| 155 |
|
|
& %---ref--- |
| 156 |
|
|
\\ |
| 157 |
|
|
SHELFICEkappa & 1.54E-06 |
| 158 |
|
|
& temperature diffusion coefficient of the ice shelf ($kappa$) |
| 159 |
|
|
& %---ref--- |
| 160 |
|
|
\\ |
| 161 |
|
|
SHELFICEthetaSurface & -20.0E+00 |
| 162 |
|
|
& (constant) surface temperature above the ice shelf ($T_{S}$) |
| 163 |
|
|
& %---ref--- |
| 164 |
|
|
\\ |
| 165 |
|
|
no\_slip\_shelfice & no\_slip\_bottom (data) |
| 166 |
|
|
& flag for slip along bottom of ice shelf |
| 167 |
|
|
& %---ref--- |
| 168 |
|
|
\\ |
| 169 |
|
|
SHELFICEDragLinear & bottomDragLinear (data) |
| 170 |
|
|
& linear drag coefficient at bottom ice shelf |
| 171 |
|
|
& %---ref--- |
| 172 |
|
|
\\ |
| 173 |
|
|
SHELFICEDragQuadratic & bottomDragQuadratic (data) |
| 174 |
|
|
& quadratic drag coefficient at bottom ice shelf |
| 175 |
|
|
& %---ref--- |
| 176 |
|
|
\\ |
| 177 |
|
|
SHELFICEwriteState & F |
| 178 |
|
|
& write ice shelf state to file |
| 179 |
|
|
& %---ref--- |
| 180 |
|
|
\\ |
| 181 |
|
|
SHELFICE\_dumpFreq & dumpFreq (data) |
| 182 |
|
|
& dump frequency |
| 183 |
|
|
& %---ref--- |
| 184 |
|
|
\\ |
| 185 |
|
|
SHELFICE\_taveFreq & taveFreq (data) |
| 186 |
|
|
& time-averaging frequency |
| 187 |
|
|
& %---ref--- |
| 188 |
|
|
\\ |
| 189 |
|
|
SHELFICE\_tave\_mnc & timeave\_mnc (data.mnc) |
| 190 |
|
|
& write snap-shot using MNC |
| 191 |
|
|
& %---ref--- |
| 192 |
|
|
\\ |
| 193 |
|
|
SHELFICE\_dump\_mnc & snapshot\_mnc (data.mnc) |
| 194 |
|
|
& write TimeAverage using MNC |
| 195 |
|
|
& %---ref--- |
| 196 |
|
|
\\ |
| 197 |
|
|
\hline |
| 198 |
|
|
\end{tabular} |
| 199 |
|
|
} |
| 200 |
|
|
\end{table} |
| 201 |
|
|
|
| 202 |
mlosch |
1.3 |
\paragraph{Input fields and units\label{sec:pkg:shelfice:fields_units}} |
| 203 |
mlosch |
1.1 |
|
| 204 |
mlosch |
1.3 |
\begin{description} |
| 205 |
|
|
\item[\code{SHEFLICEtopoFile}:] under-ice topography of ice shelves in |
| 206 |
|
|
meters; upwards is positive, that as for the bathymetry files, |
| 207 |
|
|
negative values are required for topography below the sea-level; |
| 208 |
|
|
\item[\code{SHEFLICEloadAnomalyFile}:] pressure load anomaly at the bottom of |
| 209 |
|
|
the ice shelves in pressure units (Pa); this field is absolutely |
| 210 |
|
|
required to avoid large excursions of the free surface during |
| 211 |
|
|
initial adjustment processes; obtained by integrating an approximate |
| 212 |
|
|
density from the surface at $z=0$ down to the bottom of the last |
| 213 |
|
|
fully dry cell within the ice shelf, see |
| 214 |
|
|
Eq.~(\ref{eq:surfacepressure}); however, the file |
| 215 |
|
|
\code{SHEFLICEloadAnomalyFile} must not be $p_{top}$, but |
| 216 |
|
|
$p_{top}-g\sum_{k'=1}^{n-1}\rho_{0}\Delta{z}_{k'}$, with |
| 217 |
|
|
$\rho_{0}=$~\code{rhoConst}, so that in the absenses of a $\rho^{*}$ |
| 218 |
|
|
that is different from $\rho_{0}$, the anomaly is zero. |
| 219 |
|
|
\end{description} |
| 220 |
mlosch |
1.1 |
|
| 221 |
|
|
%---------------------------------------------------------------------- |
| 222 |
|
|
\subsubsection{Description |
| 223 |
|
|
\label{sec:pkg:shelfice:descr}} |
| 224 |
|
|
|
| 225 |
|
|
In the light of isomorphic equations for pressure and height |
| 226 |
|
|
coordinates, the ice shelf topography on top of the water column has a |
| 227 |
|
|
similar role as (and in the language of \citet{marshall:04} is |
| 228 |
|
|
isomorphic to) the orography and the pressure boundary conditions at |
| 229 |
|
|
the bottom of the fluid for atmospheric and oceanic models in pressure |
| 230 |
|
|
coordinates. |
| 231 |
|
|
% |
| 232 |
|
|
|
| 233 |
|
|
The total pressure $p_{tot}$ in the ocean can be divided into the |
| 234 |
|
|
pressure at the top of the water column $p_{top}$, the hydrostatic |
| 235 |
|
|
pressure and the non-hydrostatic pressure contribution $p_{NH}$: |
| 236 |
|
|
\begin{equation} |
| 237 |
|
|
\label{eq:pressureocean} |
| 238 |
|
|
p_{tot} = p_{top} + \int_z^{\eta-h} g\,\rho\,dz + p_{NH}, |
| 239 |
|
|
\end{equation} |
| 240 |
|
|
with the gravitational acceleration $g$, the density $\rho$, the |
| 241 |
|
|
vertical coordinate $z$ (positive upwards), and the dynamic |
| 242 |
|
|
sea-surface height $\eta$. For the open ocean, $p_{top}=p_{a}$ |
| 243 |
|
|
(atmospheric pressure) and $h=0$. Underneath an ice-shelf that is |
| 244 |
|
|
assumed to be floating in isostatic equilibrium, $p_{top}$ at the top |
| 245 |
|
|
of the water column is the atmospheric pressure $p_{a}$ plus the |
| 246 |
|
|
weight of the ice-shelf. It is this weight of the ice-shelf that has |
| 247 |
|
|
to be provided as a boundary condition at the top of the water column |
| 248 |
mlosch |
1.2 |
(in run-time parameter \code{SHELFICEloadAnomalyFile}). |
| 249 |
mlosch |
1.1 |
The weight is conveniently computed by integrating a density profile |
| 250 |
|
|
$\rho^*$, that is constant in time and corresponds to the sea-water |
| 251 |
|
|
replaced by ice, from $z=0$ to a ``reference'' ice-shelf draft at |
| 252 |
|
|
$z=-h$ \citep{beckmann99}, so that |
| 253 |
|
|
\begin{equation} |
| 254 |
|
|
\label{eq:ptop} |
| 255 |
|
|
p_{top} = p_{a} + \int_{-h}^{0}g\,\rho^{*}\,dz. |
| 256 |
|
|
\end{equation} |
| 257 |
|
|
Underneath the ice shelf, the ``sea-surface height'' $\eta$ is the |
| 258 |
|
|
deviation from the ``reference'' ice-shelf draft $h$. During a model |
| 259 |
|
|
integration, $\eta$ adjusts so that the isostatic equilibrium is |
| 260 |
|
|
maintained for sufficiently slow and large scale motion. |
| 261 |
|
|
|
| 262 |
|
|
In the MITgcm, the total pressure anomaly $p'_{tot}$ which is used for |
| 263 |
|
|
pressure gradient computations is defined by substracting a purely |
| 264 |
|
|
depth dependent contribution $-g\rho_{0}z$ with a constant reference |
| 265 |
|
|
density $\rho_{0}$ from $p_{tot}$. Eq.~(\ref{eq:pressureocean}) becomes |
| 266 |
|
|
\begin{alignat}{2} |
| 267 |
|
|
\label{eq:pressure} |
| 268 |
|
|
p_{tot} =& \,p_{top} - g\,\rho_0\,(z+h) &+ g\,\rho_0\,\eta + \int_z^{\eta-h} |
| 269 |
|
|
g\,(\rho-\rho_0)\,dz + p_{NH}, \\ |
| 270 |
|
|
\intertext{and after rearranging} |
| 271 |
|
|
p'_{tot} =& \,p'_{top} |
| 272 |
|
|
&+ g\,\rho_0\,\eta + \int_z^{\eta-h}g\,(\rho-\rho_0)\,dz + p_{NH}, |
| 273 |
|
|
\end{alignat} |
| 274 |
|
|
with $p'_{tot} = p_{tot} + g\,\rho_0\,z$ and $p'_{top} = p_{top} - |
| 275 |
|
|
g\,\rho_0\,h$. The non-hydrostatic pressure contribution $p_{NH}$ is |
| 276 |
|
|
neglected in the following. |
| 277 |
|
|
|
| 278 |
|
|
In practice, the ice shelf contribution to $p_{top}$ is computed by |
| 279 |
|
|
integrating Eq.~(\ref{eq:ptop}) from $z=0$ to the bottom of the last |
| 280 |
|
|
fully dry cell within the ice shelf: |
| 281 |
|
|
\begin{equation} |
| 282 |
|
|
\label{eq:surfacepressure} |
| 283 |
|
|
p_{top} = g\,\sum_{k'=1}^{n-1}\rho_{k'}^{*}\Delta{z_{k'}} + p_{a} |
| 284 |
|
|
\end{equation} |
| 285 |
|
|
where $n$ is the vertical index of the first (at least partially) |
| 286 |
|
|
``wet'' cell and $\Delta{z_{k'}}$ is the thickness of the $k'$-th |
| 287 |
|
|
layer (counting downwards). The pressure anomaly for evaluating the pressure |
| 288 |
|
|
gradient is computed in the center of the ``wet'' cell $k$ as |
| 289 |
|
|
\begin{equation} |
| 290 |
|
|
\label{eq:discretizedpressure} |
| 291 |
|
|
p'_{k} = p'_{top} + g\rho_{n}\eta + |
| 292 |
|
|
g\,\sum_{k'=n}^{k}\left((\rho_{k'}-\rho_{0})\Delta{z_{k'}} |
| 293 |
|
|
\frac{1+H(k'-k)}{2}\right) |
| 294 |
|
|
\end{equation} |
| 295 |
|
|
where $H(k'-k)=1$ for $k'<k$ and $0$ otherwise. |
| 296 |
|
|
|
| 297 |
mlosch |
1.2 |
Setting \code{SHELFICEboundaryLayer=.true.} introduces a simple |
| 298 |
mlosch |
1.1 |
boundary layer that reduces the potential noise problem at the cost of |
| 299 |
|
|
increased vertical mixing. For this purpose the water temperature at |
| 300 |
|
|
the $k$-th layer abutting ice shelf topography for use in the heat |
| 301 |
|
|
flux parameterizations is computed as a mean temperature |
| 302 |
|
|
$\overline{\theta}_{k}$ over a boundary layer of the same thickness as |
| 303 |
|
|
the layer thickness $\Delta{z}_{k}$: |
| 304 |
|
|
\begin{equation} |
| 305 |
|
|
\label{eq:thetabl} |
| 306 |
|
|
\overline{\theta}_{k} = \theta_{k} h_{k} + \theta_{k+1} (1-h_{k}) |
| 307 |
|
|
\end{equation} |
| 308 |
|
|
where $h_{k}\in(0,1]$ is the fractional layer thickness of the $k$-th |
| 309 |
|
|
layer. The original contributions due to ice shelf-ocean interaction |
| 310 |
|
|
$g_{\theta}$ to the total tendency terms $G_{\theta}$ in the |
| 311 |
|
|
time-stepping equation |
| 312 |
|
|
%$\theta^{n+1} = \theta^{n} + \Delta{t}\, g_{\theta}^{n}$ |
| 313 |
|
|
$\theta^{n+1} = f(\theta^{n},\Delta{t},G_{\theta}^{n})$ |
| 314 |
|
|
% |
| 315 |
|
|
are |
| 316 |
|
|
\begin{equation} |
| 317 |
|
|
\label{eq:orgtendency} |
| 318 |
|
|
g_{\theta,k} = \frac{Q}{\rho_{0} c_{p} h_{k} \Delta{z}_{k}} |
| 319 |
|
|
\text{ and } g_{\theta,k+1} = 0 |
| 320 |
|
|
\end{equation} |
| 321 |
|
|
for layers $k$ and $k+1$ ($c_{p}$ is the heat capacity). Averaging |
| 322 |
|
|
these terms over a layer thickness $\Delta{z_{k}}$ (e.g., extending |
| 323 |
|
|
from the ice shelf base down to the dashed line in cell C) and |
| 324 |
|
|
applying the averaged tendency to cell A (in layer $k$) and to the |
| 325 |
|
|
appropriate fraction of cells C (in layer $k+1$) yields |
| 326 |
|
|
\begin{align} |
| 327 |
|
|
\label{eq:tendencyk} |
| 328 |
|
|
g_{\theta,k}^* &= \frac{Q}{\rho_{0} c_{p} \Delta{z}_{k}} \\ |
| 329 |
|
|
\label{eq:tendencykp1} |
| 330 |
|
|
g_{\theta,k+1}^* |
| 331 |
|
|
&= \frac{Q}{\rho_{0} c_{p} \Delta{z}_{k}} |
| 332 |
|
|
\frac{ \Delta{z}_{k} ( 1- h_{k} )}{\Delta{z}_{k+1}}. |
| 333 |
|
|
\end{align} |
| 334 |
|
|
Eq.~(\ref{eq:tendencykp1}) describes averaging over the part of the |
| 335 |
|
|
grid cell $k+1$ that is part of the boundary layer with tendency |
| 336 |
|
|
$g_{\theta,k}^*$ and the part with no tendency. Salinity is treated in |
| 337 |
|
|
the same way. The momentum equations are not modified. |
| 338 |
|
|
|
| 339 |
|
|
\paragraph{Three-Equations-Thermodynamics} |
| 340 |
|
|
\label{sec:pkg:shelfice:thermodynamics} |
| 341 |
|
|
|
| 342 |
|
|
Freezing and melting form a boundary layer between ice shelf and |
| 343 |
|
|
ocean. % |
| 344 |
|
|
Phase transitions at the boundary between saline water and ice imply |
| 345 |
|
|
the following fluxes across the boundary: the freshwater mass flux |
| 346 |
|
|
$q$ ($<0$ for melting); the heat flux that consists of the diffusive |
| 347 |
|
|
flux through the ice, the latent heat flux due to melting and freezing |
| 348 |
|
|
and the heat that is carried by the mass flux; and the salinity that |
| 349 |
|
|
is carried by the mass flux, if the ice has a non-zero salinity $S_I$. |
| 350 |
|
|
Further, the position of the interface between ice and ocean changes |
| 351 |
|
|
because of $q$, so that, say, in the case of melting the volume of sea |
| 352 |
|
|
water increases. As a consequence salinity and temperature are |
| 353 |
|
|
modified. |
| 354 |
|
|
|
| 355 |
|
|
The turbulent exchange terms for tracers at the ice-ocean interface |
| 356 |
|
|
are generally expressed as diffusive fluxes. Following |
| 357 |
|
|
\citet{jenkins01}, the boundary conditions for a tracer take |
| 358 |
|
|
into account that this boundary is not a material surface. |
| 359 |
|
|
%The position of this surface changes when ice is melted or water freezes. % |
| 360 |
|
|
The implied upward freshwater flux $q$ (in mass units, negative for |
| 361 |
|
|
melting) is included in the boundary conditions for the temperature |
| 362 |
|
|
and salinity equation as an advective flux: |
| 363 |
|
|
\begin{equation} |
| 364 |
|
|
\label{eq:jenkinsbc} |
| 365 |
|
|
{\rho}K\frac{\partial{X}}{\partial{z}}\biggl|_{b} |
| 366 |
|
|
= (\rho\gamma_{X}-q) ( X_{b} - X ) |
| 367 |
|
|
\end{equation} |
| 368 |
|
|
where tracer $X$ stands for either temperature $T$ or salinity $S$. |
| 369 |
|
|
$X_b$ is the tracer at the interface (taken to be at freezing), $X$ is |
| 370 |
|
|
the tracer at the first interior grid point, $\rho$ is the density of |
| 371 |
|
|
seawater, and $\gamma_X$ is the turbulent exchange coefficient (in |
| 372 |
|
|
units of an exchange velocity). The left hand side of |
| 373 |
|
|
Eq.~(\ref{eq:jenkinsbc}) is shorthand for the (downward) flux of tracer $X$ |
| 374 |
|
|
across the boundary. $T_b$, $S_b$ and the freshwater flux $q$ are |
| 375 |
|
|
obtained from solving a system of three equations that is derived from |
| 376 |
|
|
the heat and freshwater balance at the ice ocean interface. |
| 377 |
|
|
|
| 378 |
|
|
In this so-called three-equation-model \citep[e.g.,][]{hellmer89, |
| 379 |
|
|
jenkins01} the heat balance at the ice-ocean interface is expressed |
| 380 |
|
|
as |
| 381 |
|
|
|
| 382 |
|
|
\begin{equation} |
| 383 |
|
|
\label{eq:hellmerheatbalance} |
| 384 |
|
|
c_{p} \rho \gamma_T (T - T_{b}) |
| 385 |
|
|
+\rho_{I} c_{p,I} \kappa \frac{(T_{S} - T_{b})}{h} |
| 386 |
|
|
= -Lq |
| 387 |
|
|
\end{equation} |
| 388 |
|
|
where % |
| 389 |
|
|
$\rho$ is the density of sea-water, % |
| 390 |
|
|
$c_{p} = 3974\text{\,J\,kg$^{-1}$\,K$^{-1}$}$ is the specific heat |
| 391 |
|
|
capacity of water and % |
| 392 |
|
|
$\gamma_T$ the turbulent exchange coefficient of temperature. % |
| 393 |
|
|
The value of $\gamma_T$ is discussed in \citet{holland99}. $L = |
| 394 |
|
|
334000\text{\,J\,kg$^{-1}$}$ is the latent heat of fusion. $\rho_{I} = |
| 395 |
|
|
920\text{\,kg\,m$^{-3}$}$, $c_{p,I} = |
| 396 |
|
|
2000\text{\,J\,kg$^{-1}$\,K$^{-1}$}$, and $T_{S}$ are the density, |
| 397 |
|
|
heat capacity and the surface temperature of the ice shelf; |
| 398 |
|
|
$\kappa=1.54\times10^{-6}\text{\,m$^2$\,s$^{-1}$}$ is the heat |
| 399 |
|
|
diffusivity through the ice-shelf and $h$ is the ice-shelf draft. The |
| 400 |
|
|
second term on the right hand side describes the heat flux through the |
| 401 |
|
|
ice shelf. A constant surface temperature $T_S=-20^{\circ}$ is |
| 402 |
|
|
imposed. $T$ is the temperature of the model cell adjacent to the |
| 403 |
|
|
ice-water interface. The temperature at the interface $T_{b}$ is |
| 404 |
|
|
assumed to be the in-situ freezing point temperature of sea-water |
| 405 |
|
|
$T_{f}$ which is computed from a linear equation of state |
| 406 |
|
|
|
| 407 |
|
|
\begin{equation} |
| 408 |
|
|
\label{eq:helmerfreeze} |
| 409 |
|
|
T_{f} = (0.0901 - 0.0575\ S_{b})^{\circ} |
| 410 |
mlosch |
1.5 |
- 7.61 \times 10^{-4}\frac{\text{K}}{\text{dBar}}\ p_{b} |
| 411 |
mlosch |
1.1 |
\end{equation} |
| 412 |
|
|
with the salinity $S_{b}$ and the pressure $p_{b}$ (in dBar) in the |
| 413 |
|
|
cell at the ice-water interface. From the salt budget, the salt flux |
| 414 |
|
|
across the shelf ice-ocean interface is equal to the salt flux due to |
| 415 |
|
|
melting and freezing: |
| 416 |
|
|
\begin{equation} |
| 417 |
|
|
\label{eq:hellmersaltbalance} |
| 418 |
|
|
\rho \gamma_{S} (S - S_{b}) = - q\,(S_{b}-S_{I}), |
| 419 |
|
|
\end{equation} |
| 420 |
|
|
where $\gamma_S = 5.05\times10^{-3}\gamma_T$ is the turbulent salinity |
| 421 |
|
|
exchange coefficient, and $S$ and $S_{b}$ are defined in analogy to |
| 422 |
|
|
temperature as the salinity of the model cell adjacent to the |
| 423 |
|
|
ice-water interface and at the interface, respectively. Note, that the |
| 424 |
|
|
salinity of the ice shelf is generally neglected ($S_{I}=0$). |
| 425 |
|
|
Equations~(\ref{eq:hellmerheatbalance}) to (\ref{eq:hellmersaltbalance}) can |
| 426 |
|
|
be solved for $S_{b}$, $T_{b}$, and the freshwater flux $q$ due to |
| 427 |
|
|
melting. These values are substituted into expression~(\ref{eq:jenkinsbc}) |
| 428 |
|
|
to obtain the boundary conditions for the temperature and salinity |
| 429 |
|
|
equations of the ocean model. |
| 430 |
|
|
% Then upward heat and (virtual) salt fluxes out of the ocean |
| 431 |
|
|
%are computed following \citet[their equations 6, 7, 25, 28, and 29, note |
| 432 |
|
|
%that $q = -\text{their melt rate $m$}\times\text{density of |
| 433 |
|
|
% freshwater}$, and that salinity within the ice is assumed to be |
| 434 |
|
|
%zero]{jenkins01} |
| 435 |
|
|
%\begin{align} |
| 436 |
|
|
% \label{eq:hellmerthetaflux} |
| 437 |
|
|
% K\frac{\partial{T}}{\partial{z}}\biggl|_{b} =& |
| 438 |
|
|
% (\rho\gamma_{T}-q) ( T_{b} - T ) \\\notag |
| 439 |
|
|
% =& - q \left[ \frac{L}{c_{p}} + (T - T_{b}) \right] |
| 440 |
|
|
% - \frac{\rho_{I} c_{p,I} \kappa}{c_{p}} \frac{(T_{S} - T_{b})}{h} \\ |
| 441 |
|
|
% \label{eq:hellmersaltflux} |
| 442 |
|
|
% K\frac{\partial{S}}{\partial{z}}\bigg|_{b} =& |
| 443 |
|
|
% (\rho\gamma_{S}-q)(S_{b} - S) \\\notag |
| 444 |
|
|
% =& q\,S \\ |
| 445 |
|
|
% \label{eq:hellmerheatflux} |
| 446 |
|
|
%% Q =& qc_{p} (T - T_{b}) - qL - \rho_{I} c_{p,I} \kappa |
| 447 |
|
|
%% \frac{(T_{S} - T_{b})}{h} \\ |
| 448 |
|
|
% Q =& - c_{p} (\rho\gamma_{T}-q) ( T_{b} - T ) \\\notag |
| 449 |
|
|
% =& - q \left[ L + c_{p} (T - T_{b}) \right] |
| 450 |
|
|
% - \rho_{I} c_{p,I} \kappa \frac{(T_{S} - T_{b})}{h} \\ |
| 451 |
|
|
% \label{eq:hellmerfwflux} |
| 452 |
|
|
% Q_{S} =& (\rho\gamma_{S}-q)(S_{b} - S) \\\notag |
| 453 |
|
|
% =& q\,S |
| 454 |
|
|
%\end{align} |
| 455 |
|
|
|
| 456 |
|
|
This formulation tends to yield smaller melt rates than the simpler |
| 457 |
|
|
formulation of the ISOMIP protocol because the freshwater flux due to |
| 458 |
|
|
melting decreases the salinity which raises the freezing point |
| 459 |
|
|
temperature and thus leads to less melting at the interface. For a |
| 460 |
|
|
simpler thermodynamics model where $S_b$ is not computed explicitly, |
| 461 |
|
|
for example as in the ISOMIP protocol, equation~(\ref{eq:jenkinsbc}) cannot |
| 462 |
|
|
be applied directly. In this case equation~(\ref{eq:hellmersaltbalance}) |
| 463 |
|
|
can be used with Eq.~(\ref{eq:jenkinsbc}) to obtain: |
| 464 |
|
|
\begin{equation} |
| 465 |
|
|
\rho{K}\frac{\partial{S}}{\partial{z}}\biggl|_{b} = q\,(S-S_I). |
| 466 |
|
|
\end{equation} |
| 467 |
|
|
This formulation can be used for all cases for which |
| 468 |
|
|
equation~(\ref{eq:hellmersaltbalance}) is valid. Further, in this |
| 469 |
|
|
formulation it is obvious that melting ($q<0$) leads to a reduction of |
| 470 |
|
|
salinity. |
| 471 |
|
|
|
| 472 |
mlosch |
1.2 |
The default value of \code{SHELFICEconserve=.false.} removes the |
| 473 |
mlosch |
1.1 |
contribution $q ( X_{b}-X )$ from Eq.~(\ref{eq:jenkinsbc}), making the |
| 474 |
|
|
boundary conditions for temperature non-conservative. |
| 475 |
|
|
|
| 476 |
|
|
\paragraph{ISOMIP-Thermodynamics} |
| 477 |
|
|
\label{sec:pkg:shelfice:isomip} |
| 478 |
|
|
|
| 479 |
|
|
A simpler formulation follows the ISOMIP protocol |
| 480 |
|
|
(\url{http://efdl.cims.nyu.edu/project_oisi/isomip/overview.html}). The |
| 481 |
|
|
freezing and melting in the boundary layer between ice shelf and ocean |
| 482 |
|
|
is parameterized following \citet{grosfeld97}. In this formulation |
| 483 |
|
|
Eq.~(\ref{eq:hellmerheatbalance}) reduces to |
| 484 |
|
|
\begin{equation} |
| 485 |
|
|
\label{eq:isomipheatbalance} |
| 486 |
|
|
c_{p} \rho \gamma_T (T - T_{b}) = -Lq |
| 487 |
|
|
\end{equation} |
| 488 |
|
|
and the fresh water flux $q$ is computed from |
| 489 |
|
|
\begin{equation} |
| 490 |
|
|
\label{eq:isomipfwflx} |
| 491 |
|
|
q = - \frac{c_{p} \rho \gamma_T (T - T_{b})}{L}. |
| 492 |
|
|
\end{equation} |
| 493 |
|
|
In order to use this formulation, set run-time parameter |
| 494 |
mlosch |
1.2 |
\code{useISOMIPTD=.true.} in data.shelfice. |
| 495 |
mlosch |
1.1 |
|
| 496 |
|
|
\paragraph{Remark} The shelfice package and experiments demonstrating |
| 497 |
|
|
its strenghts and weaknesses are also described in |
| 498 |
|
|
\citet{losch08}. However, note that unfortunately the description of |
| 499 |
|
|
the thermodynamics in the appendix of \citet{losch08} is wrong. |
| 500 |
|
|
|
| 501 |
|
|
|
| 502 |
|
|
%---------------------------------------------------------------------- |
| 503 |
|
|
|
| 504 |
|
|
\subsubsection{Key subroutines |
| 505 |
|
|
\label{sec:pkg:shelfice:subroutines}} |
| 506 |
|
|
|
| 507 |
mlosch |
1.2 |
Top-level routine: \code{shelfice\_model.F} |
| 508 |
mlosch |
1.1 |
|
| 509 |
|
|
{\footnotesize |
| 510 |
|
|
\begin{verbatim} |
| 511 |
|
|
C !CALLING SEQUENCE: |
| 512 |
|
|
C ... |
| 513 |
|
|
C |-FORWARD_STEP :: Step forward a time-step ( AT LAST !!! ) |
| 514 |
|
|
C ... |
| 515 |
|
|
C | |-DO_OCEANIC_PHY :: Control oceanic physics and parameterization |
| 516 |
|
|
C ... |
| 517 |
|
|
C | | |-SHELFICE_THERMODYNAMICS :: main routine for thermodynamics |
| 518 |
|
|
C with diagnostics |
| 519 |
|
|
C ... |
| 520 |
|
|
C | |-THERMODYNAMICS :: theta, salt + tracer equations driver. |
| 521 |
|
|
C ... |
| 522 |
|
|
C | | |-EXTERNAL_FORCING_T :: Problem specific forcing for temperature. |
| 523 |
|
|
C | | |-SHELFICE_FORCING_T :: apply heat fluxes from ice shelf model |
| 524 |
|
|
C ... |
| 525 |
mlosch |
1.5 |
C | | |-EXTERNAL_FORCING_S :: Problem specific forcing for salinity. |
| 526 |
mlosch |
1.1 |
C | | |-SHELFICE_FORCING_S :: apply fresh water fluxes from ice shelf model |
| 527 |
|
|
C ... |
| 528 |
|
|
C | |-DYNAMICS :: Momentum equations driver. |
| 529 |
|
|
C ... |
| 530 |
|
|
C | | |-MOM_FLUXFORM :: Flux form mom eqn. package ( see |
| 531 |
|
|
C ... |
| 532 |
|
|
C | | | |-SHELFICE_U_DRAG :: apply drag along ice shelf to u-equation |
| 533 |
|
|
C with diagnostics |
| 534 |
|
|
C ... |
| 535 |
|
|
C | | |-MOM_VECINV :: Vector invariant form mom eqn. package ( see |
| 536 |
|
|
C ... |
| 537 |
|
|
C | | | |-SHELFICE_V_DRAG :: apply drag along ice shelf to v-equation |
| 538 |
|
|
C with diagnostics |
| 539 |
|
|
C ... |
| 540 |
|
|
C o |
| 541 |
|
|
\end{verbatim} |
| 542 |
|
|
} |
| 543 |
|
|
|
| 544 |
|
|
|
| 545 |
|
|
%---------------------------------------------------------------------- |
| 546 |
|
|
|
| 547 |
|
|
\subsubsection{SHELFICE diagnostics |
| 548 |
|
|
\label{sec:pkg:shelfice:diagnostics}} |
| 549 |
|
|
|
| 550 |
|
|
Diagnostics output is available via the diagnostics package |
| 551 |
|
|
(see Section \ref{sec:pkg:diagnostics}). |
| 552 |
|
|
Available output fields are summarized in |
| 553 |
|
|
Table \ref{tab:pkg:shelfice:diagnostics}. |
| 554 |
|
|
|
| 555 |
jmc |
1.4 |
\begin{table}[!ht] |
| 556 |
mlosch |
1.1 |
\centering |
| 557 |
|
|
\label{tab:pkg:shelfice:diagnostics} |
| 558 |
|
|
{\footnotesize |
| 559 |
|
|
\begin{verbatim} |
| 560 |
|
|
---------+----+----+----------------+----------------- |
| 561 |
|
|
<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c) |
| 562 |
|
|
---------+----+----+----------------+----------------- |
| 563 |
|
|
SHIfwFlx| 1 |SM |kg/m^2/s |Ice shelf fresh water flux (positive upward) |
| 564 |
|
|
SHIhtFlx| 1 |SM |W/m^2 |Ice shelf heat flux (positive upward) |
| 565 |
|
|
SHIUDrag| 30 |UU |m/s^2 |U momentum tendency from ice shelf drag |
| 566 |
|
|
SHIVDrag| 30 |VV |m/s^2 |V momentum tendency from ice shelf drag |
| 567 |
|
|
SHIForcT| 1 |SM |W/m^2 |Ice shelf forcing for theta, >0 increases theta |
| 568 |
|
|
SHIForcS| 1 |SM |g/m^2/s |Ice shelf forcing for salt, >0 increases salt |
| 569 |
|
|
\end{verbatim} |
| 570 |
|
|
} |
| 571 |
|
|
\caption{Available diagnostics of the shelfice-package} |
| 572 |
|
|
\end{table} |
| 573 |
|
|
|
| 574 |
|
|
|
| 575 |
|
|
%\subsubsection{Package Reference} |
| 576 |
|
|
|
| 577 |
|
|
\subsubsection{Experiments and tutorials that use shelfice} |
| 578 |
|
|
\label{sec:pkg:shelfice:experiments} |
| 579 |
|
|
|
| 580 |
|
|
\begin{itemize} |
| 581 |
|
|
\item{ISOMIP, Experiment 1 |
| 582 |
|
|
(\url{http://efdl.cims.nyu.edu/project_oisi/isomip/overview.html}) |
| 583 |
|
|
in isomip verification directory.} |
| 584 |
|
|
\end{itemize} |
| 585 |
|
|
|
| 586 |
|
|
|
| 587 |
|
|
%%% Local Variables: |
| 588 |
|
|
%%% mode: latex |
| 589 |
mlosch |
1.5 |
%%% TeX-master: "../../manual" |
| 590 |
mlosch |
1.1 |
%%% End: |