/[MITgcm]/manual/s_phys_pkgs/text/seaice.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/text/seaice.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.9 - (show annotations) (download) (as text)
Thu May 14 15:35:17 2009 UTC (16 years, 2 months ago) by mlosch
Branch: MAIN
Changes since 1.8: +59 -60 lines
File MIME type: application/x-tex
small changes: numbering etc.

1 % $Header: /u/gcmpack/manual/part6/seaice.tex,v 1.8 2009/05/13 12:54:45 mlosch Exp $
2 % $Name: $
3
4 %%EH3 Copied from "MITgcm/pkg/seaice/seaice_description.tex"
5 %%EH3 which was written by Dimitris M.
6
7
8 \subsection{SEAICE Package}
9 \label{sec:pkg:seaice}
10 \begin{rawhtml}
11 <!-- CMIREDIR:package_seaice: -->
12 \end{rawhtml}
13
14 Authors: Martin Losch, Dimitris Menemenlis, An Nguyen, Jean-Michel Campin,
15 Patrick Heimbach, Chris Hill and Jinlun Zhang
16
17 %----------------------------------------------------------------------
18 \subsubsection{Introduction
19 \label{sec:pkg:exf:intro}}
20
21
22 Package ``seaice'' provides a dynamic and thermodynamic interactive
23 sea-ice model.
24
25 CPP options enable or disable different aspects of the package
26 (Section \ref{sec:pkg:seaice:config}).
27 Run-Time options, flags, filenames and field-related dates/times are
28 set in \code{data.seaice}
29 (Section \ref{sec:pkg:seaice:runtime}).
30 A description of key subroutines is given in Section
31 \ref{sec:pkg:seaice:subroutines}.
32 Input fields, units and sign conventions are summarized in
33 Section \ref{sec:pkg:seaice:fields_units}, and available diagnostics
34 output is listed in Section \ref{sec:pkg:seaice:fields_diagnostics}.
35
36 %----------------------------------------------------------------------
37
38 \subsubsection{SEAICE configuration, compiling \& running}
39
40 \paragraph{Compile-time options
41 \label{sec:pkg:seaice:config}}
42 ~
43
44 As with all MITgcm packages, SEAICE can be turned on or off at compile time
45 %
46 \begin{itemize}
47 %
48 \item
49 using the \code{packages.conf} file by adding \code{seaice} to it,
50 %
51 \item
52 or using \code{genmake2} adding
53 \code{-enable=seaice} or \code{-disable=seaice} switches
54 %
55 \item
56 \textit{required packages and CPP options}: \\
57 SEAICE requires the external forcing package \code{exf} to be enabled;
58 no additional CPP options are required.
59 %
60 \end{itemize}
61 (see Section \ref{sect:buildingCode}).
62
63 Parts of the SEAICE code can be enabled or disabled at compile time
64 via CPP preprocessor flags. These options are set in either
65 \code{SEAICE\_OPTIONS.h} or in \code{ECCO\_CPPOPTIONS.h}.
66 Table \ref{tab:pkg:seaice:cpp} summarizes these options.
67
68 \begin{table}[h!]
69 \centering
70 \label{tab:pkg:seaice:cpp}
71 {\footnotesize
72 \begin{tabular}{|l|p{10cm}|}
73 \hline
74 \textbf{CPP option} & \textbf{Description} \\
75 \hline \hline
76 \code{SEAICE\_DEBUG} &
77 Enhance STDOUT for debugging \\
78 \code{SEAICE\_ALLOW\_DYNAMICS} &
79 sea-ice dynamics code \\
80 \code{SEAICE\_CGRID} &
81 LSR solver on C-grid (rather than original B-grid) \\
82 \code{SEAICE\_ALLOW\_EVP} &
83 use EVP rather than LSR rheology solver \\
84 \code{SEAICE\_EXTERNAL\_FLUXES} &
85 use EXF-computed fluxes as starting point \\
86 \code{SEAICE\_MULTICATEGORY} &
87 enable 8-category thermodynamics (by default undefined)\\
88 \code{SEAICE\_VARIABLE\_FREEZING\_POINT} &
89 enable linear dependence of the freezing point on salinity
90 (by default undefined)\\
91 \code{ALLOW\_SEAICE\_FLOODING} &
92 enable snow to ice conversion for submerged sea-ice \\
93 \code{SEAICE\_SALINITY} &
94 enable "salty" sea-ice (by default undefined) \\
95 \code{SEAICE\_AGE} &
96 enable "age tracer" sea-ice (by default undefined) \\
97 \code{SEAICE\_CAP\_HEFF} &
98 enable capping of sea-ice thickness to MAX\_HEFF \\ \hline
99 \code{SEAICE\_BICE\_STRESS} &
100 B-grid only for backward compatiblity: turn on ice-stress on
101 ocean\\
102 \code{EXPLICIT\_SSH\_SLOPE} &
103 B-grid only for backward compatiblity: use ETAN for tilt
104 computations rather than geostrophic velocities \\
105 \hline
106 \end{tabular}
107 }
108 \caption{~}
109 \end{table}
110
111 %----------------------------------------------------------------------
112
113 \subsubsection{Run-time parameters
114 \label{sec:pkg:seaice:runtime}}
115
116 Run-time parameters are set in files
117 \code{data.pkg} (read in \code{packages\_readparms.F}),
118 and \code{data.seaice} (read in \code{seaice\_readparms.F}).
119
120 \paragraph{Enabling the package}
121 ~ \\
122 %
123 A package is switched on/off at run-time by setting
124 (e.g. for SEAICE) \code{useSEAICE = .TRUE.} in \code{data.pkg}.
125
126 \paragraph{General flags and parameters}
127 ~ \\
128 %
129 Table~\ref{tab:pkg:seaice:runtimeparms} lists most run-time parameters.
130 \input{part6/seaice-parms.tex}
131
132
133
134 %----------------------------------------------------------------------
135 \subsubsection{Description
136 \label{sec:pkg:seaice:descr}}
137
138 [TO BE CONTINUED/MODIFIED]
139
140 % Sea-ice model thermodynamics are based on Hibler
141 % \cite{hib80}, that is, a 2-category model that simulates ice thickness
142 % and concentration. Snow is simulated as per Zhang et al.
143 % \cite{zha98a}. Although recent years have seen an increased use of
144 % multi-category thickness distribution sea-ice models for climate
145 % studies, the Hibler 2-category ice model is still the most widely used
146 % model and has resulted in realistic simulation of sea-ice variability
147 % on regional and global scales. Being less complicated, compared to
148 % multi-category models, the 2-category model permits easier application
149 % of adjoint model optimization methods.
150
151 % Note, however, that the Hibler 2-category model and its variants use a
152 % so-called zero-layer thermodynamic model to estimate ice growth and
153 % decay. The zero-layer thermodynamic model assumes that ice does not
154 % store heat and, therefore, tends to exaggerate the seasonal
155 % variability in ice thickness. This exaggeration can be significantly
156 % reduced by using Semtner's \cite{sem76} three-layer thermodynamic
157 % model that permits heat storage in ice. Recently, the three-layer
158 % thermodynamic model has been reformulated by Winton \cite{win00}. The
159 % reformulation improves model physics by representing the brine content
160 % of the upper ice with a variable heat capacity. It also improves
161 % model numerics and consumes less computer time and memory. The Winton
162 % sea-ice thermodynamics have been ported to the MIT GCM; they currently
163 % reside under pkg/thsice. The package pkg/thsice is fully
164 % compatible with pkg/seaice and with pkg/exf. When turned on togeter
165 % with pkg/seaice, the zero-layer thermodynamics are replaced by the by
166 % Winton thermodynamics
167
168 The MITgcm sea ice model (MITgcm/sim) is based on a variant of the
169 viscous-plastic (VP) dynamic-thermodynamic sea ice model \citep{zhang97}
170 first introduced by \citet{hib79, hib80}. In order to adapt this model
171 to the requirements of coupled ice-ocean state estimation, many
172 important aspects of the original code have been modified and
173 improved:
174 \begin{itemize}
175 \item the code has been rewritten for an Arakawa C-grid, both B- and
176 C-grid variants are available; the C-grid code allows for no-slip
177 and free-slip lateral boundary conditions;
178 \item two different solution methods for solving the nonlinear
179 momentum equations have been adopted: LSOR \citep{zhang97}, and EVP
180 \citep{hun97};
181 \item ice-ocean stress can be formulated as in \citet{hibler87} or as in
182 \citet{cam08};
183 \item ice variables are advected by sophisticated, conservative
184 advection schemes with flux limiting;
185 \item growth and melt parameterizations have been refined and extended
186 in order to allow for more stable automatic differentiation of the code.
187 \end{itemize}
188 The sea ice model is tightly coupled to the ocean compontent of the
189 MITgcm. Heat, fresh water fluxes and surface stresses are computed
190 from the atmospheric state and -- by default -- modified by the ice
191 model at every time step.
192
193 The ice dynamics models that are most widely used for large-scale
194 climate studies are the viscous-plastic (VP) model \citep{hib79}, the
195 cavitating fluid (CF) model \citep{fla92}, and the
196 elastic-viscous-plastic (EVP) model \citep{hun97}. Compared to the VP
197 model, the CF model does not allow ice shear in calculating ice
198 motion, stress, and deformation. EVP models approximate VP by adding
199 an elastic term to the equations for easier adaptation to parallel
200 computers. Because of its higher accuracy in plastic solution and
201 relatively simpler formulation, compared to the EVP model, we decided
202 to use the VP model as the default dynamic component of our ice
203 model. To do this we extended the line successive over relaxation
204 (LSOR) method of \citet{zhang97} for use in a parallel
205 configuration.
206
207 Note, that by default the seaice-package includes the orginial
208 so-called zero-layer thermodynamics following \citet{hib80} with a
209 snow cover as in \citet{zha98a}. The zero-layer thermodynamic model
210 assumes that ice does not store heat and, therefore, tends to
211 exaggerate the seasonal variability in ice thickness. This
212 exaggeration can be significantly reduced by using
213 \citeauthor{sem76}'s~[\citeyear{sem76}] three-layer thermodynamic model
214 that permits heat storage in ice. Recently, the three-layer
215 thermodynamic model has been reformulated by \citet{win00}. The
216 reformulation improves model physics by representing the brine content
217 of the upper ice with a variable heat capacity. It also improves
218 model numerics and consumes less computer time and memory. The Winton
219 sea-ice thermodynamics have been ported to the MIT GCM; they currently
220 reside under pkg/thsice. The package pkg/thsice is fully compatible
221 with pkg/seaice and with pkg/exf. When turned on together with
222 pkg/seaice, the zero-layer thermodynamics are replaced by the Winton
223 thermodynamics.
224
225 The sea ice model requires the following input fields: 10-m winds, 2-m
226 air temperature and specific humidity, downward longwave and shortwave
227 radiations, precipitation, evaporation, and river and glacier runoff.
228 The sea ice model also requires surface temperature from the ocean
229 model and the top level horizontal velocity. Output fields are
230 surface wind stress, evaporation minus precipitation minus runoff, net
231 surface heat flux, and net shortwave flux. The sea-ice model is
232 global: in ice-free regions bulk formulae are used to estimate oceanic
233 forcing from the atmospheric fields.
234
235 \paragraph{Dynamics\label{sec:pkg:seaice:dynamics}}
236
237 \newcommand{\vek}[1]{\ensuremath{\vec{\mathbf{#1}}}}
238 \newcommand{\vtau}{\vek{\mathbf{\tau}}}
239 The momentum equation of the sea-ice model is
240 \begin{equation}
241 \label{eq:momseaice}
242 m \frac{D\vek{u}}{Dt} = -mf\vek{k}\times\vek{u} + \vtau_{air} +
243 \vtau_{ocean} - m \nabla{\phi(0)} + \vek{F},
244 \end{equation}
245 where $m=m_{i}+m_{s}$ is the ice and snow mass per unit area;
246 $\vek{u}=u\vek{i}+v\vek{j}$ is the ice velocity vector;
247 $\vek{i}$, $\vek{j}$, and $\vek{k}$ are unit vectors in the $x$, $y$, and $z$
248 directions, respectively;
249 $f$ is the Coriolis parameter;
250 $\vtau_{air}$ and $\vtau_{ocean}$ are the wind-ice and ocean-ice stresses,
251 respectively;
252 $g$ is the gravity accelation;
253 $\nabla\phi(0)$ is the gradient (or tilt) of the sea surface height;
254 $\phi(0) = g\eta + p_{a}/\rho_{0} + mg/\rho_{0}$ is the sea surface
255 height potential in response to ocean dynamics ($g\eta$), to
256 atmospheric pressure loading ($p_{a}/\rho_{0}$, where $\rho_{0}$ is a
257 reference density) and a term due to snow and ice loading \citep{cam08};
258 and $\vek{F}=\nabla\cdot\sigma$ is the divergence of the internal ice
259 stress tensor $\sigma_{ij}$. %
260 Advection of sea-ice momentum is neglected. The wind and ice-ocean stress
261 terms are given by
262 \begin{align*}
263 \vtau_{air} = & \rho_{air} C_{air} |\vek{U}_{air} -\vek{u}|
264 R_{air} (\vek{U}_{air} -\vek{u}), \\
265 \vtau_{ocean} = & \rho_{ocean}C_{ocean} |\vek{U}_{ocean}-\vek{u}|
266 R_{ocean}(\vek{U}_{ocean}-\vek{u}),
267 \end{align*}
268 where $\vek{U}_{air/ocean}$ are the surface winds of the atmosphere
269 and surface currents of the ocean, respectively; $C_{air/ocean}$ are
270 air and ocean drag coefficients; $\rho_{air/ocean}$ are reference
271 densities; and $R_{air/ocean}$ are rotation matrices that act on the
272 wind/current vectors.
273
274 For an isotropic system the stress tensor $\sigma_{ij}$ ($i,j=1,2$) can
275 be related to the ice strain rate and strength by a nonlinear
276 viscous-plastic (VP) constitutive law \citep{hib79, zhang97}:
277 \begin{equation}
278 \label{eq:vpequation}
279 \sigma_{ij}=2\eta(\dot{\epsilon}_{ij},P)\dot{\epsilon}_{ij}
280 + \left[\zeta(\dot{\epsilon}_{ij},P) -
281 \eta(\dot{\epsilon}_{ij},P)\right]\dot{\epsilon}_{kk}\delta_{ij}
282 - \frac{P}{2}\delta_{ij}.
283 \end{equation}
284 The ice strain rate is given by
285 \begin{equation*}
286 \dot{\epsilon}_{ij} = \frac{1}{2}\left(
287 \frac{\partial{u_{i}}}{\partial{x_{j}}} +
288 \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).
289 \end{equation*}
290 The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on
291 both thickness $h$ and compactness (concentration) $c$:
292 \begin{equation}
293 P_{\max} = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},
294 \label{eq:icestrength}
295 \end{equation}
296 with the constants $P^{*}$ (run-time parameter \code{SEAICE\_strength}) and
297 $C^{*}=20$. The nonlinear bulk and shear
298 viscosities $\eta$ and $\zeta$ are functions of ice strain rate
299 invariants and ice strength such that the principal components of the
300 stress lie on an elliptical yield curve with the ratio of major to
301 minor axis $e$ equal to $2$; they are given by:
302 \begin{align*}
303 \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})},
304 \zeta_{\max}\right) \\
305 \eta =& \frac{\zeta}{e^2} \\
306 \intertext{with the abbreviation}
307 \Delta = & \left[
308 \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)
309 (1+e^{-2}) + 4e^{-2}\dot{\epsilon}_{12}^2 +
310 2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})
311 \right]^{\frac{1}{2}}.
312 \end{align*}
313 The bulk viscosities are bounded above by imposing both a minimum
314 $\Delta_{\min}$ (for numerical reasons, run-time parameter
315 \code{SEAICE\_EPS} with a default value of
316 $10^{-10}\text{\,s}^{-1}$) and a maximum $\zeta_{\max} =
317 P_{\max}/\Delta^*$, where
318 $\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. (There is also
319 the option of bounding $\zeta$ from below by setting run-time
320 parameter \code{SEAICE\_zetaMin} $>0$, but this is generally not
321 recommended). For stress tensor computation the replacement pressure $P
322 = 2\,\Delta\zeta$ \citep{hibler95} is used so that the stress state
323 always lies on the elliptic yield curve by definition.
324
325 In the so-called truncated ellipse method the shear viscosity $\eta$
326 is capped to suppress any tensile stress \citep{hibler97, geiger98}:
327 \begin{equation}
328 \label{eq:etatem}
329 \eta = \min\left(\frac{\zeta}{e^2},
330 \frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})}
331 {\sqrt{(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})^2
332 +4\dot{\epsilon}_{12}^2}}\right).
333 \end{equation}
334 To enable this method, set \code{\#define SEAICE\_ALLOW\_TEM} in
335 \code{SEAICE\_OPTIONS.h} and turn it on with
336 \code{SEAICEuseTEM=.TRUE.} in \code{data.seaice}.
337
338 In the current implementation, the VP-model is integrated with the
339 semi-implicit line successive over relaxation (LSOR)-solver of
340 \citet{zhang97}, which allows for long time steps that, in our case,
341 are limited by the explicit treatment of the Coriolis term. The
342 explicit treatment of the Coriolis term does not represent a severe
343 limitation because it restricts the time step to approximately the
344 same length as in the ocean model where the Coriolis term is also
345 treated explicitly.
346
347 \citet{hun97}'s introduced an elastic contribution to the strain
348 rate in order to regularize Eq.~\ref{eq:vpequation} in such a way that
349 the resulting elastic-viscous-plastic (EVP) and VP models are
350 identical at steady state,
351 \begin{equation}
352 \label{eq:evpequation}
353 \frac{1}{E}\frac{\partial\sigma_{ij}}{\partial{t}} +
354 \frac{1}{2\eta}\sigma_{ij}
355 + \frac{\eta - \zeta}{4\zeta\eta}\sigma_{kk}\delta_{ij}
356 + \frac{P}{4\zeta}\delta_{ij}
357 = \dot{\epsilon}_{ij}.
358 \end{equation}
359 %In the EVP model, equations for the components of the stress tensor
360 %$\sigma_{ij}$ are solved explicitly. Both model formulations will be
361 %used and compared the present sea-ice model study.
362 The EVP-model uses an explicit time stepping scheme with a short
363 timestep. According to the recommendation of \citet{hun97}, the
364 EVP-model is stepped forward in time 120 times within the physical
365 ocean model time step (although this parameter is under debate), to
366 allow for elastic waves to disappear. Because the scheme does not
367 require a matrix inversion it is fast in spite of the small internal
368 timestep and simple to implement on parallel computers
369 \citep{hun97}. For completeness, we repeat the equations for the
370 components of the stress tensor $\sigma_{1} =
371 \sigma_{11}+\sigma_{22}$, $\sigma_{2}= \sigma_{11}-\sigma_{22}$, and
372 $\sigma_{12}$. Introducing the divergence $D_D =
373 \dot{\epsilon}_{11}+\dot{\epsilon}_{22}$, and the horizontal tension
374 and shearing strain rates, $D_T =
375 \dot{\epsilon}_{11}-\dot{\epsilon}_{22}$ and $D_S =
376 2\dot{\epsilon}_{12}$, respectively, and using the above
377 abbreviations, the equations~\ref{eq:evpequation} can be written as:
378 \begin{align}
379 \label{eq:evpstresstensor1}
380 \frac{\partial\sigma_{1}}{\partial{t}} + \frac{\sigma_{1}}{2T} +
381 \frac{P}{2T} &= \frac{P}{2T\Delta} D_D \\
382 \label{eq:evpstresstensor2}
383 \frac{\partial\sigma_{2}}{\partial{t}} + \frac{\sigma_{2} e^{2}}{2T}
384 &= \frac{P}{2T\Delta} D_T \\
385 \label{eq:evpstresstensor12}
386 \frac{\partial\sigma_{12}}{\partial{t}} + \frac{\sigma_{12} e^{2}}{2T}
387 &= \frac{P}{4T\Delta} D_S
388 \end{align}
389 Here, the elastic parameter $E$ is redefined in terms of a damping timescale
390 $T$ for elastic waves \[E=\frac{\zeta}{T}.\]
391 $T=E_{0}\Delta{t}$ with the tunable parameter $E_0<1$ and
392 the external (long) timestep $\Delta{t}$. \citet{hun97} recommend
393 $E_{0} = \frac{1}{3}$ (which is the default value in the code).
394
395 To use the EVP solver, make sure that both \code{SEAICE\_CGRID} and
396 \code{SEAICE\_ALLOW\_EVP} are defined in \code{SEAICE\_OPTIONS.h}
397 (default). The solver is turned on by setting the sub-cycling time
398 step \code{SEAICE\_deltaTevp} to a value larger than zero. The
399 choice of this time step is under debate. \citet{hun97} recommend
400 order(120) time steps for the EVP solver within one model time step
401 $\Delta{t}$ (\code{deltaTmom}). One can also choose order(120) time
402 steps within the forcing time scale, but then we recommend adjusting
403 the damping time scale $T$ accordingly, by setting either
404 \code{SEAICE\_elasticParm} ($E_{0}$), so that
405 $E_{0}\Delta{t}=\mbox{forcing time scale}$, or directly
406 \code{SEAICE\_evpTauRelax} ($T$) to the forcing time scale.
407
408 Moving sea ice exerts a stress on the ocean which is the opposite of
409 the stress $\vtau_{ocean}$ in Eq.~\ref{eq:momseaice}. This stess is
410 applied directly to the surface layer of the ocean model. An
411 alternative ocean stress formulation is given by \citet{hibler87}.
412 Rather than applying $\vtau_{ocean}$ directly, the stress is derived
413 from integrating over the ice thickness to the bottom of the oceanic
414 surface layer. In the resulting equation for the \emph{combined}
415 ocean-ice momentum, the interfacial stress cancels and the total
416 stress appears as the sum of windstress and divergence of internal ice
417 stresses: $\delta(z) (\vtau_{air} + \vek{F})/\rho_0$, \citep[see also
418 Eq.\,2 of][]{hibler87}. The disadvantage of this formulation is that
419 now the velocity in the surface layer of the ocean that is used to
420 advect tracers, is really an average over the ocean surface
421 velocity and the ice velocity leading to an inconsistency as the ice
422 temperature and salinity are different from the oceanic variables.
423 To turn on the stress formulation of \citet{hibler87}, set
424 \code{useHB87StressCoupling=.TRUE.} in \code{data.seaice}.
425
426
427 % Our discretization differs from \citet{zhang97, zhang03} in the
428 % underlying grid, namely the Arakawa C-grid, but is otherwise
429 % straightforward. The EVP model, in particular, is discretized
430 % naturally on the C-grid with $\sigma_{1}$ and $\sigma_{2}$ on the
431 % center points and $\sigma_{12}$ on the corner (or vorticity) points of
432 % the grid. With this choice all derivatives are discretized as central
433 % differences and averaging is only involved in computing $\Delta$ and
434 % $P$ at vorticity points.
435
436 \paragraph{Finite-volume discretization of the stress tensor
437 divergence\label{sec:pkg:seaice:discretization}}
438 On an Arakawa C~grid, ice thickness and concentration and thus ice
439 strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are
440 naturally defined a C-points in the center of the grid
441 cell. Discretization requires only averaging of $\zeta$ and $\eta$ to
442 vorticity or Z-points (or $\zeta$-points, but here we use Z in order
443 avoid confusion with the bulk viscosity) at the bottom left corner of
444 the cell to give $\overline{\zeta}^{Z}$ and $\overline{\eta}^{Z}$. In
445 the following, the superscripts indicate location at Z or C points,
446 distance across the cell (F), along the cell edge (G), between
447 $u$-points (U), $v$-points (V), and C-points (C). The control volumes
448 of the $u$- and $v$-equations in the grid cell at indices $(i,j)$ are
449 $A_{i,j}^{w}$ and $A_{i,j}^{s}$, respectively. With these definitions
450 (which follow the model code documentation except that $\zeta$-points
451 have been renamed to Z-points), the strain rates are discretized as:
452 \begin{align}
453 \dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag
454 => (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}}
455 + k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\
456 \dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag
457 => (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}}
458 + k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\
459 \dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl(
460 \partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1}
461 \biggr) \\ \notag
462 => (\epsilon_{12})_{i,j}^Z &= \frac{1}{2}
463 \biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V}
464 + \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag
465 &\phantom{=\frac{1}{2}\biggl(}
466 - k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
467 - k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
468 \biggr),
469 \end{align}
470 so that the diagonal terms of the strain rate tensor are naturally
471 defined at C-points and the symmetric off-diagonal term at
472 Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and
473 $v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via
474 ``ghost-points''; for free slip boundary conditions
475 $(\epsilon_{12})^Z=0$ on boundaries.
476
477 For a spherical polar grid, the coefficients of the metric terms are
478 $k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and
479 the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi
480 \Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a
481 general orthogonal curvilinear grid, $k_{1}$ and
482 $k_{2}$ can be approximated by finite differences of the cell widths:
483 \begin{align}
484 k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}}
485 \frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\
486 k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}}
487 \frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\
488 k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}}
489 \frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\
490 k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}}
491 \frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}}
492 \end{align}
493
494 The stress tensor is given by the constitutive viscous-plastic
495 relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} +
496 [(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2
497 ]\delta_{\alpha\beta}$ \citep{hib79}. The stress tensor divergence
498 $(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is
499 discretized in finite volumes. This conveniently avoids dealing with
500 further metric terms, as these are ``hidden'' in the differential cell
501 widths. For the $u$-equation ($\alpha=1$) we have:
502 \begin{align}
503 (\nabla\sigma)_{1}: \phantom{=}&
504 \frac{1}{A_{i,j}^w}
505 \int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2
506 \\\notag
507 =& \frac{1}{A_{i,j}^w} \biggl\{
508 \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
509 + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
510 \biggr\} \\ \notag
511 \approx& \frac{1}{A_{i,j}^w} \biggl\{
512 \Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
513 + \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
514 \biggr\} \\ \notag
515 =& \frac{1}{A_{i,j}^w} \biggl\{
516 (\Delta{x}_2\sigma_{11})_{i,j}^C -
517 (\Delta{x}_2\sigma_{11})_{i-1,j}^C
518 \\\notag
519 \phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{}
520 + (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z
521 \biggr\}
522 \intertext{with}
523 (\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+}
524 \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
525 \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
526 &+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
527 k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
528 \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
529 \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
530 \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
531 k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
532 \phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\
533 (\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+}
534 \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
535 \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag
536 & + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
537 \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
538 & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
539 k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
540 & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
541 k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
542 \end{align}
543
544 Similarly, we have for the $v$-equation ($\alpha=2$):
545 \begin{align}
546 (\nabla\sigma)_{2}: \phantom{=}&
547 \frac{1}{A_{i,j}^s}
548 \int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2
549 \\\notag
550 =& \frac{1}{A_{i,j}^s} \biggl\{
551 \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
552 + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
553 \biggr\} \\ \notag
554 \approx& \frac{1}{A_{i,j}^s} \biggl\{
555 \Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
556 + \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
557 \biggr\} \\ \notag
558 =& \frac{1}{A_{i,j}^s} \biggl\{
559 (\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z
560 \\ \notag
561 \phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{}
562 + (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C
563 \biggr\}
564 \intertext{with}
565 (\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+}
566 \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
567 \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}}
568 \\\notag &
569 + \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
570 \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\\notag
571 &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
572 k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
573 \\\notag &
574 - \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
575 k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag
576 (\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+}
577 \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
578 \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
579 &+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
580 k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
581 & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
582 \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
583 & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
584 k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
585 & -\Delta{x}_{i,j}^{F} \frac{P}{2}
586 \end{align}
587
588 Again, no slip boundary conditions are realized via ghost points and
589 $u_{i,j-1}+u_{i,j}=0$ and $v_{i-1,j}+v_{i,j}=0$ across boundaries. For
590 free slip boundary conditions the lateral stress is set to zeros. In
591 analogy to $(\epsilon_{12})^Z=0$ on boundaries, we set
592 $\sigma_{21}^{Z}=0$, or equivalently $\eta_{i,j}^{Z}=0$, on boundaries.
593
594 \paragraph{Thermodynamics\label{sec:pkg:seaice:thermodynamics}}
595
596 In its original formulation the sea ice model \citep{menemenlis05}
597 uses simple thermodynamics following the appendix of
598 \citet{sem76}. This formulation does not allow storage of heat,
599 that is, the heat capacity of ice is zero. Upward conductive heat flux
600 is parameterized assuming a linear temperature profile and together
601 with a constant ice conductivity. It is expressed as
602 $(K/h)(T_{w}-T_{0})$, where $K$ is the ice conductivity, $h$ the ice
603 thickness, and $T_{w}-T_{0}$ the difference between water and ice
604 surface temperatures. This type of model is often refered to as a
605 ``zero-layer'' model. The surface heat flux is computed in a similar
606 way to that of \citet{parkinson79} and \citet{manabe79}.
607
608 The conductive heat flux depends strongly on the ice thickness $h$.
609 However, the ice thickness in the model represents a mean over a
610 potentially very heterogeneous thickness distribution. In order to
611 parameterize a sub-grid scale distribution for heat flux
612 computations, the mean ice thickness $h$ is split into seven thickness
613 categories $H_{n}$ that are equally distributed between $2h$ and a
614 minimum imposed ice thickness of $5\text{\,cm}$ by $H_n=
615 \frac{2n-1}{7}\,h$ for $n\in[1,7]$. The heat fluxes computed for each
616 thickness category is area-averaged to give the total heat flux
617 \citep{hibler84}. To use this thickness category parameterization set
618 \code{\#define SEAICE\_MULTICATEGORY}; note that this requires
619 different restart files and switching this flag on in the middle of an
620 integration is not possible.
621
622 The atmospheric heat flux is balanced by an oceanic heat flux from
623 below. The oceanic flux is proportional to
624 $\rho\,c_{p}\left(T_{w}-T_{fr}\right)$ where $\rho$ and $c_{p}$ are
625 the density and heat capacity of sea water and $T_{fr}$ is the local
626 freezing point temperature that is a function of salinity. This flux
627 is not assumed to instantaneously melt or create ice, but a time scale
628 of three days (run-time parameter \code{SEAICE\_gamma\_t}) is used
629 to relax $T_{w}$ to the freezing point.
630 %
631 The parameterization of lateral and vertical growth of sea ice follows
632 that of \citet{hib79, hib80}; the so-called lead closing parameter
633 $h_{0}$ (run-time parameter \code{HO}) has a default value of
634 0.5~meters.
635
636 On top of the ice there is a layer of snow that modifies the heat flux
637 and the albedo \citep{zha98a}. Snow modifies the effective
638 conductivity according to
639 \[\frac{K}{h} \rightarrow \frac{1}{\frac{h_{s}}{K_{s}}+\frac{h}{K}},\]
640 where $K_s$ is the conductivity of snow and $h_s$ the snow thickness.
641 If enough snow accumulates so that its weight submerges the ice and
642 the snow is flooded, a simple mass conserving parameterization of
643 snowice formation (a flood-freeze algorithm following Archimedes'
644 principle) turns snow into ice until the ice surface is back at $z=0$
645 \citep{leppaeranta83}. The flood-freeze algorithm is enabled with the CPP-flag
646 \code{SEAICE\_ALLOW\_FLOODING} and turned on with run-time parameter
647 \code{SEAICEuseFlooding=.true.}.
648
649 Effective ice thickness (ice volume per unit area,
650 $c\cdot{h}$), concentration $c$ and effective snow thickness
651 ($c\cdot{h}_{s}$) are advected by ice velocities:
652 \begin{equation}
653 \label{eq:advection}
654 \frac{\partial{X}}{\partial{t}} = - \nabla\cdot\left(\vek{u}\,X\right) +
655 \Gamma_{X} + D_{X}
656 \end{equation}
657 where $\Gamma_X$ are the thermodynamic source terms and $D_{X}$ the
658 diffusive terms for quantities $X=(c\cdot{h}), c, (c\cdot{h}_{s})$.
659 %
660 From the various advection scheme that are available in the MITgcm, we
661 choose flux-limited schemes \citep[multidimensional 2nd and 3rd-order
662 advection scheme with flux limiter][]{roe:85, hundsdorfer94} to
663 preserve sharp gradients and edges that are typical of sea ice
664 distributions and to rule out unphysical over- and undershoots
665 (negative thickness or concentration). These scheme conserve volume
666 and horizontal area and are unconditionally stable, so that we can set
667 $D_{X}=0$. Run-timeflags: \code{SEAICEadvScheme} (default=2),
668 \code{DIFF1} (default=0.004).
669
670 There is considerable doubt about the reliability of a ``zero-layer''
671 thermodynamic model --- \citet{semtner84} found significant errors in
672 phase (one month lead) and amplitude ($\approx$50\%\,overestimate) in
673 such models --- so that today many sea ice models employ more complex
674 thermodynamics. The MITgcm sea ice model provides the option to use
675 the thermodynamics model of \citet{win00}, which in turn is based
676 on the 3-layer model of \citet{sem76} and which treats brine
677 content by means of enthalpy conservation. This scheme requires
678 additional state variables, namely the enthalpy of the two ice layers
679 (instead of effective ice salinity), to be advected by ice velocities.
680 %
681 The internal sea ice temperature is inferred from ice enthalpy. To
682 avoid unphysical (negative) values for ice thickness and
683 concentration, a positive 2nd-order advection scheme with a SuperBee
684 flux limiter \citep{roe:85} is used in this study to advect all
685 sea-ice-related quantities of the \citet{win00} thermodynamic
686 model. Because of the non-linearity of the advection scheme, care
687 must be taken in advecting these quantities: when simply using ice
688 velocity to advect enthalpy, the total energy (i.e., the volume
689 integral of enthalpy) is not conserved. Alternatively, one can advect
690 the energy content (i.e., product of ice-volume and enthalpy) but then
691 false enthalpy extrema can occur, which then leads to unrealistic ice
692 temperature. In the currently implemented solution, the sea-ice mass
693 flux is used to advect the enthalpy in order to ensure conservation of
694 enthalpy and to prevent false enthalpy extrema.
695
696 %----------------------------------------------------------------------
697
698 \subsubsection{Key subroutines
699 \label{sec:pkg:seaice:subroutines}}
700
701 Top-level routine: \code{seaice\_model.F}
702
703 {\footnotesize
704 \begin{verbatim}
705
706 C !CALLING SEQUENCE:
707 c ...
708 c seaice_model (TOP LEVEL ROUTINE)
709 c |
710 c |-- #ifdef SEAICE_CGRID
711 c | SEAICE_DYNSOLVER
712 c | |
713 c | |-- < compute proxy for geostrophic velocity >
714 c | |
715 c | |-- < set up mass per unit area and Coriolis terms >
716 c | |
717 c | |-- < dynamic masking of areas with no ice >
718 c | |
719 c | |
720
721 c | #ELSE
722 c | DYNSOLVER
723 c | #ENDIF
724 c |
725 c |-- if ( useOBCS )
726 c | OBCS_APPLY_UVICE
727 c |
728 c |-- if ( SEAICEadvHeff .OR. SEAICEadvArea .OR. SEAICEadvSnow .OR. SEAICEadvSalt )
729 c | SEAICE_ADVDIFF
730 c |
731 c |-- if ( usePW79thermodynamics )
732 c | SEAICE_GROWTH
733 c |
734 c |-- if ( useOBCS )
735 c | if ( SEAICEadvHeff ) OBCS_APPLY_HEFF
736 c | if ( SEAICEadvArea ) OBCS_APPLY_AREA
737 c | if ( SEAICEadvSALT ) OBCS_APPLY_HSALT
738 c | if ( SEAICEadvSNOW ) OBCS_APPLY_HSNOW
739 c |
740 c |-- < do various exchanges >
741 c |
742 c |-- < do additional diagnostics >
743 c |
744 c o
745
746 \end{verbatim}
747 }
748
749
750 %----------------------------------------------------------------------
751
752 \subsubsection{SEAICE diagnostics
753 \label{sec:pkg:seaice:diagnostics}}
754
755 Diagnostics output is available via the diagnostics package
756 (see Section \ref{sec:pkg:diagnostics}).
757 Available output fields are summarized in
758 Table \ref{tab:pkg:seaice:diagnostics}.
759
760 \begin{table}[h!]
761 \centering
762 \label{tab:pkg:seaice:diagnostics}
763 {\footnotesize
764 \begin{verbatim}
765 ---------+----+----+----------------+-----------------
766 <-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)
767 ---------+----+----+----------------+-----------------
768 SIarea | 1 |SM |m^2/m^2 |SEAICE fractional ice-covered area [0 to 1]
769 SIheff | 1 |SM |m |SEAICE effective ice thickness
770 SIuice | 1 |UU |m/s |SEAICE zonal ice velocity, >0 from West to East
771 SIvice | 1 |VV |m/s |SEAICE merid. ice velocity, >0 from South to North
772 SIhsnow | 1 |SM |m |SEAICE snow thickness
773 SIhsalt | 1 |SM |g/m^2 |SEAICE effective salinity
774 SIatmFW | 1 |SM |kg/m^2/s |Net freshwater flux from the atmosphere (+=down)
775 SIuwind | 1 |SM |m/s |SEAICE zonal 10-m wind speed, >0 increases uVel
776 SIvwind | 1 |SM |m/s |SEAICE meridional 10-m wind speed, >0 increases uVel
777 SIfu | 1 |UU |N/m^2 |SEAICE zonal surface wind stress, >0 increases uVel
778 SIfv | 1 |VV |N/m^2 |SEAICE merid. surface wind stress, >0 increases vVel
779 SIempmr | 1 |SM |kg/m^2/s |SEAICE upward freshwater flux, > 0 increases salt
780 SIqnet | 1 |SM |W/m^2 |SEAICE upward heatflux, turb+rad, >0 decreases theta
781 SIqsw | 1 |SM |W/m^2 |SEAICE upward shortwave radiat., >0 decreases theta
782 SIpress | 1 |SM |m^2/s^2 |SEAICE strength (with upper and lower limit)
783 SIzeta | 1 |SM |m^2/s |SEAICE nonlinear bulk viscosity
784 SIeta | 1 |SM |m^2/s |SEAICE nonlinear shear viscosity
785 SIsigI | 1 |SM |no units |SEAICE normalized principle stress, component one
786 SIsigII | 1 |SM |no units |SEAICE normalized principle stress, component two
787 SIthdgrh| 1 |SM |m/s |SEAICE thermodynamic growth rate of effective ice thickness
788 SIsnwice| 1 |SM |m/s |SEAICE ice formation rate due to flooding
789 SIuheff | 1 |UU |m^2/s |Zonal Transport of effective ice thickness
790 SIvheff | 1 |VV |m^2/s |Meridional Transport of effective ice thickness
791 ADVxHEFF| 1 |UU |m.m^2/s |Zonal Advective Flux of eff ice thickn
792 ADVyHEFF| 1 |VV |m.m^2/s |Meridional Advective Flux of eff ice thickn
793 DFxEHEFF| 1 |UU |m.m^2/s |Zonal Diffusive Flux of eff ice thickn
794 DFyEHEFF| 1 |VV |m.m^2/s |Meridional Diffusive Flux of eff ice thickn
795 ADVxAREA| 1 |UU |m^2/m^2.m^2/s |Zonal Advective Flux of fract area
796 ADVyAREA| 1 |VV |m^2/m^2.m^2/s |Meridional Advective Flux of fract area
797 DFxEAREA| 1 |UU |m^2/m^2.m^2/s |Zonal Diffusive Flux of fract area
798 DFyEAREA| 1 |VV |m^2/m^2.m^2/s |Meridional Diffusive Flux of fract area
799 ADVxSNOW| 1 |UU |m.m^2/s |Zonal Advective Flux of eff snow thickn
800 ADVySNOW| 1 |VV |m.m^2/s |Meridional Advective Flux of eff snow thickn
801 DFxESNOW| 1 |UU |m.m^2/s |Zonal Diffusive Flux of eff snow thickn
802 DFyESNOW| 1 |VV |m.m^2/s |Meridional Diffusive Flux of eff snow thickn
803 ADVxSSLT| 1 |UU |psu.m^2/s |Zonal Advective Flux of seaice salinity
804 ADVySSLT| 1 |VV |psu.m^2/s |Meridional Advective Flux of seaice salinity
805 DFxESSLT| 1 |UU |psu.m^2/s |Zonal Diffusive Flux of seaice salinity
806 DFyESSLT| 1 |VV |psu.m^2/s |Meridional Diffusive Flux of seaice salinity
807 \end{verbatim}
808 }
809 \caption{Available diagnostics of the seaice-package}
810 \end{table}
811
812
813 %\subsubsection{Package Reference}
814
815 \subsubsection{Experiments and tutorials that use seaice}
816 \label{sec:pkg:seaice:experiments}
817
818 \begin{itemize}
819 \item{Labrador Sea experiment in lab\_sea verification directory. }
820 \end{itemize}
821
822
823 %%% Local Variables:
824 %%% mode: latex
825 %%% TeX-master: "../manual"
826 %%% End:

  ViewVC Help
Powered by ViewVC 1.1.22