/[MITgcm]/manual/s_phys_pkgs/text/seaice.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/text/seaice.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.14 - (show annotations) (download) (as text)
Mon Feb 28 16:05:07 2011 UTC (14 years, 4 months ago) by mlosch
Branch: MAIN
Changes since 1.13: +8 -7 lines
File MIME type: application/x-tex
fix a typo and a some text

1 % $Header: /u/gcmpack/manual/s_phys_pkgs/text/seaice.tex,v 1.13 2011/02/28 15:59:49 mlosch Exp $
2 % $Name: $
3
4 %%EH3 Copied from "MITgcm/pkg/seaice/seaice_description.tex"
5 %%EH3 which was written by Dimitris M.
6
7
8 \subsection{SEAICE Package}
9 \label{sec:pkg:seaice}
10 \begin{rawhtml}
11 <!-- CMIREDIR:package_seaice: -->
12 \end{rawhtml}
13
14 Authors: Martin Losch, Dimitris Menemenlis, An Nguyen, Jean-Michel Campin,
15 Patrick Heimbach, Chris Hill and Jinlun Zhang
16
17 %----------------------------------------------------------------------
18 \subsubsection{Introduction
19 \label{sec:pkg:seaice:intro}}
20
21
22 Package ``seaice'' provides a dynamic and thermodynamic interactive
23 sea-ice model.
24
25 CPP options enable or disable different aspects of the package
26 (Section \ref{sec:pkg:seaice:config}).
27 Run-Time options, flags, filenames and field-related dates/times are
28 set in \code{data.seaice}
29 (Section \ref{sec:pkg:seaice:runtime}).
30 A description of key subroutines is given in Section
31 \ref{sec:pkg:seaice:subroutines}.
32 Input fields, units and sign conventions are summarized in
33 Section \ref{sec:pkg:seaice:fields_units}, and available diagnostics
34 output is listed in Section \ref{sec:pkg:seaice:diagnostics}.
35
36 %----------------------------------------------------------------------
37
38 \subsubsection{SEAICE configuration, compiling \& running}
39
40 \paragraph{Compile-time options
41 \label{sec:pkg:seaice:config}}
42 ~
43
44 As with all MITgcm packages, SEAICE can be turned on or off at compile time
45 %
46 \begin{itemize}
47 %
48 \item
49 using the \code{packages.conf} file by adding \code{seaice} to it,
50 %
51 \item
52 or using \code{genmake2} adding
53 \code{-enable=seaice} or \code{-disable=seaice} switches
54 %
55 \item
56 \textit{required packages and CPP options}: \\
57 SEAICE requires the external forcing package \code{exf} to be enabled;
58 no additional CPP options are required.
59 %
60 \end{itemize}
61 (see Section \ref{sec:buildingCode}).
62
63 Parts of the SEAICE code can be enabled or disabled at compile time
64 via CPP preprocessor flags. These options are set in either
65 \code{SEAICE\_OPTIONS.h} or in \code{ECCO\_CPPOPTIONS.h}.
66 Table \ref{tab:pkg:seaice:cpp} summarizes these options.
67
68 \begin{table}[!ht]
69 \centering
70 \label{tab:pkg:seaice:cpp}
71 {\footnotesize
72 \begin{tabular}{|l|p{10cm}|}
73 \hline
74 \textbf{CPP option} & \textbf{Description} \\
75 \hline \hline
76 \code{SEAICE\_DEBUG} &
77 Enhance STDOUT for debugging \\
78 \code{SEAICE\_ALLOW\_DYNAMICS} &
79 sea-ice dynamics code \\
80 \code{SEAICE\_CGRID} &
81 LSR solver on C-grid (rather than original B-grid) \\
82 \code{SEAICE\_ALLOW\_EVP} &
83 use EVP rather than LSR rheology solver \\
84 \code{SEAICE\_EXTERNAL\_FLUXES} &
85 use EXF-computed fluxes as starting point \\
86 \code{SEAICE\_MULTICATEGORY} &
87 enable 8-category thermodynamics (by default undefined)\\
88 \code{SEAICE\_VARIABLE\_FREEZING\_POINT} &
89 enable linear dependence of the freezing point on salinity
90 (by default undefined)\\
91 \code{ALLOW\_SEAICE\_FLOODING} &
92 enable snow to ice conversion for submerged sea-ice \\
93 \code{SEAICE\_SALINITY} &
94 enable "salty" sea-ice (by default undefined) \\
95 \code{SEAICE\_AGE} &
96 enable "age tracer" sea-ice (by default undefined) \\
97 \code{SEAICE\_CAP\_HEFF} &
98 enable capping of sea-ice thickness to MAX\_HEFF \\ \hline
99 \code{SEAICE\_BICE\_STRESS} &
100 B-grid only for backward compatiblity: turn on ice-stress on
101 ocean\\
102 \code{EXPLICIT\_SSH\_SLOPE} &
103 B-grid only for backward compatiblity: use ETAN for tilt
104 computations rather than geostrophic velocities \\
105 \hline
106 \end{tabular}
107 }
108 \caption{~}
109 \end{table}
110
111 %----------------------------------------------------------------------
112
113 \subsubsection{Run-time parameters
114 \label{sec:pkg:seaice:runtime}}
115
116 Run-time parameters are set in files
117 \code{data.pkg} (read in \code{packages\_readparms.F}),
118 and \code{data.seaice} (read in \code{seaice\_readparms.F}).
119
120 \paragraph{Enabling the package}
121 ~ \\
122 %
123 A package is switched on/off at run-time by setting
124 (e.g. for SEAICE) \code{useSEAICE = .TRUE.} in \code{data.pkg}.
125
126 \paragraph{General flags and parameters}
127 ~ \\
128 %
129 Table~\ref{tab:pkg:seaice:runtimeparms} lists most run-time parameters.
130 \input{s_phys_pkgs/text/seaice-parms.tex}
131
132 \paragraph{Input fields and units\label{sec:pkg:seaice:fields_units}}
133 \begin{description}
134 \item[\code{HeffFile}:] Initial sea ice thickness averaged over grid cell
135 in meters; initializes variable \code{HEFF};
136 \item[\code{AreaFile}:] Initial fractional sea ice cover, range $[0,1]$;
137 initializes variable \code{AREA};
138 \item[\code{HsnowFile}:] Initial snow thickness on sea ice averaged
139 over grid cell in meters; initializes variable \code{HSNOW};
140 \item[\code{HsaltFile}:] Initial salinity of sea ice averaged over grid
141 cell in g/m$^2$; initializes variable \code{HSALT};
142 \item[\code{IceAgeFile}:] Initial ice age of sea ice averaged over grid
143 cell in seconds; initializes variable \code{ICEAGE};
144 \end{description}
145
146 %----------------------------------------------------------------------
147 \subsubsection{Description
148 \label{sec:pkg:seaice:descr}}
149
150 [TO BE CONTINUED/MODIFIED]
151
152 % Sea-ice model thermodynamics are based on Hibler
153 % \cite{hib80}, that is, a 2-category model that simulates ice thickness
154 % and concentration. Snow is simulated as per Zhang et al.
155 % \cite{zha98a}. Although recent years have seen an increased use of
156 % multi-category thickness distribution sea-ice models for climate
157 % studies, the Hibler 2-category ice model is still the most widely used
158 % model and has resulted in realistic simulation of sea-ice variability
159 % on regional and global scales. Being less complicated, compared to
160 % multi-category models, the 2-category model permits easier application
161 % of adjoint model optimization methods.
162
163 % Note, however, that the Hibler 2-category model and its variants use a
164 % so-called zero-layer thermodynamic model to estimate ice growth and
165 % decay. The zero-layer thermodynamic model assumes that ice does not
166 % store heat and, therefore, tends to exaggerate the seasonal
167 % variability in ice thickness. This exaggeration can be significantly
168 % reduced by using Semtner's \cite{sem76} three-layer thermodynamic
169 % model that permits heat storage in ice. Recently, the three-layer
170 % thermodynamic model has been reformulated by Winton \cite{win00}. The
171 % reformulation improves model physics by representing the brine content
172 % of the upper ice with a variable heat capacity. It also improves
173 % model numerics and consumes less computer time and memory. The Winton
174 % sea-ice thermodynamics have been ported to the MIT GCM; they currently
175 % reside under pkg/thsice. The package pkg/thsice is fully
176 % compatible with pkg/seaice and with pkg/exf. When turned on togeter
177 % with pkg/seaice, the zero-layer thermodynamics are replaced by the by
178 % Winton thermodynamics
179
180 The MITgcm sea ice model (MITgcm/sim) is based on a variant of the
181 viscous-plastic (VP) dynamic-thermodynamic sea ice model \citep{zhang97}
182 first introduced by \citet{hib79, hib80}. In order to adapt this model
183 to the requirements of coupled ice-ocean state estimation, many
184 important aspects of the original code have been modified and
185 improved:
186 \begin{itemize}
187 \item the code has been rewritten for an Arakawa C-grid, both B- and
188 C-grid variants are available; the C-grid code allows for no-slip
189 and free-slip lateral boundary conditions;
190 \item two different solution methods for solving the nonlinear
191 momentum equations have been adopted: LSOR \citep{zhang97}, and EVP
192 \citep{hun97};
193 \item ice-ocean stress can be formulated as in \citet{hibler87} or as in
194 \citet{cam08};
195 \item ice variables are advected by sophisticated, conservative
196 advection schemes with flux limiting;
197 \item growth and melt parameterizations have been refined and extended
198 in order to allow for more stable automatic differentiation of the code.
199 \end{itemize}
200 The sea ice model is tightly coupled to the ocean compontent of the
201 MITgcm. Heat, fresh water fluxes and surface stresses are computed
202 from the atmospheric state and -- by default -- modified by the ice
203 model at every time step.
204
205 The ice dynamics models that are most widely used for large-scale
206 climate studies are the viscous-plastic (VP) model \citep{hib79}, the
207 cavitating fluid (CF) model \citep{fla92}, and the
208 elastic-viscous-plastic (EVP) model \citep{hun97}. Compared to the VP
209 model, the CF model does not allow ice shear in calculating ice
210 motion, stress, and deformation. EVP models approximate VP by adding
211 an elastic term to the equations for easier adaptation to parallel
212 computers. Because of its higher accuracy in plastic solution and
213 relatively simpler formulation, compared to the EVP model, we decided
214 to use the VP model as the default dynamic component of our ice
215 model. To do this we extended the line successive over relaxation
216 (LSOR) method of \citet{zhang97} for use in a parallel
217 configuration.
218
219 Note, that by default the seaice-package includes the orginial
220 so-called zero-layer thermodynamics following \citet{hib80} with a
221 snow cover as in \citet{zha98a}. The zero-layer thermodynamic model
222 assumes that ice does not store heat and, therefore, tends to
223 exaggerate the seasonal variability in ice thickness. This
224 exaggeration can be significantly reduced by using
225 \citeauthor{sem76}'s~[\citeyear{sem76}] three-layer thermodynamic model
226 that permits heat storage in ice. Recently, the three-layer
227 thermodynamic model has been reformulated by \citet{win00}. The
228 reformulation improves model physics by representing the brine content
229 of the upper ice with a variable heat capacity. It also improves
230 model numerics and consumes less computer time and memory. The Winton
231 sea-ice thermodynamics have been ported to the MIT GCM; they currently
232 reside under pkg/thsice. The package pkg/thsice is fully compatible
233 with pkg/seaice and with pkg/exf. When turned on together with
234 pkg/seaice, the zero-layer thermodynamics are replaced by the Winton
235 thermodynamics.
236
237 The sea ice model requires the following input fields: 10-m winds, 2-m
238 air temperature and specific humidity, downward longwave and shortwave
239 radiations, precipitation, evaporation, and river and glacier runoff.
240 The sea ice model also requires surface temperature from the ocean
241 model and the top level horizontal velocity. Output fields are
242 surface wind stress, evaporation minus precipitation minus runoff, net
243 surface heat flux, and net shortwave flux. The sea-ice model is
244 global: in ice-free regions bulk formulae are used to estimate oceanic
245 forcing from the atmospheric fields.
246
247 \paragraph{Dynamics\label{sec:pkg:seaice:dynamics}}
248
249 \newcommand{\vek}[1]{\ensuremath{\vec{\mathbf{#1}}}}
250 \newcommand{\vtau}{\vek{\mathbf{\tau}}}
251 The momentum equation of the sea-ice model is
252 \begin{equation}
253 \label{eq:momseaice}
254 m \frac{D\vek{u}}{Dt} = -mf\vek{k}\times\vek{u} + \vtau_{air} +
255 \vtau_{ocean} - m \nabla{\phi(0)} + \vek{F},
256 \end{equation}
257 where $m=m_{i}+m_{s}$ is the ice and snow mass per unit area;
258 $\vek{u}=u\vek{i}+v\vek{j}$ is the ice velocity vector;
259 $\vek{i}$, $\vek{j}$, and $\vek{k}$ are unit vectors in the $x$, $y$, and $z$
260 directions, respectively;
261 $f$ is the Coriolis parameter;
262 $\vtau_{air}$ and $\vtau_{ocean}$ are the wind-ice and ocean-ice stresses,
263 respectively;
264 $g$ is the gravity accelation;
265 $\nabla\phi(0)$ is the gradient (or tilt) of the sea surface height;
266 $\phi(0) = g\eta + p_{a}/\rho_{0} + mg/\rho_{0}$ is the sea surface
267 height potential in response to ocean dynamics ($g\eta$), to
268 atmospheric pressure loading ($p_{a}/\rho_{0}$, where $\rho_{0}$ is a
269 reference density) and a term due to snow and ice loading \citep{cam08};
270 and $\vek{F}=\nabla\cdot\sigma$ is the divergence of the internal ice
271 stress tensor $\sigma_{ij}$. %
272 Advection of sea-ice momentum is neglected. The wind and ice-ocean stress
273 terms are given by
274 \begin{align*}
275 \vtau_{air} = & \rho_{air} C_{air} |\vek{U}_{air} -\vek{u}|
276 R_{air} (\vek{U}_{air} -\vek{u}), \\
277 \vtau_{ocean} = & \rho_{ocean}C_{ocean} |\vek{U}_{ocean}-\vek{u}|
278 R_{ocean}(\vek{U}_{ocean}-\vek{u}),
279 \end{align*}
280 where $\vek{U}_{air/ocean}$ are the surface winds of the atmosphere
281 and surface currents of the ocean, respectively; $C_{air/ocean}$ are
282 air and ocean drag coefficients; $\rho_{air/ocean}$ are reference
283 densities; and $R_{air/ocean}$ are rotation matrices that act on the
284 wind/current vectors.
285
286 For an isotropic system the stress tensor $\sigma_{ij}$ ($i,j=1,2$) can
287 be related to the ice strain rate and strength by a nonlinear
288 viscous-plastic (VP) constitutive law \citep{hib79, zhang97}:
289 \begin{equation}
290 \label{eq:vpequation}
291 \sigma_{ij}=2\eta(\dot{\epsilon}_{ij},P)\dot{\epsilon}_{ij}
292 + \left[\zeta(\dot{\epsilon}_{ij},P) -
293 \eta(\dot{\epsilon}_{ij},P)\right]\dot{\epsilon}_{kk}\delta_{ij}
294 - \frac{P}{2}\delta_{ij}.
295 \end{equation}
296 The ice strain rate is given by
297 \begin{equation*}
298 \dot{\epsilon}_{ij} = \frac{1}{2}\left(
299 \frac{\partial{u_{i}}}{\partial{x_{j}}} +
300 \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).
301 \end{equation*}
302 The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on
303 both thickness $h$ and compactness (concentration) $c$:
304 \begin{equation}
305 P_{\max} = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},
306 \label{eq:icestrength}
307 \end{equation}
308 with the constants $P^{*}$ (run-time parameter \code{SEAICE\_strength}) and
309 $C^{*}=20$. The nonlinear bulk and shear
310 viscosities $\eta$ and $\zeta$ are functions of ice strain rate
311 invariants and ice strength such that the principal components of the
312 stress lie on an elliptical yield curve with the ratio of major to
313 minor axis $e$ equal to $2$; they are given by:
314 \begin{align*}
315 \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})},
316 \zeta_{\max}\right) \\
317 \eta =& \frac{\zeta}{e^2} \\
318 \intertext{with the abbreviation}
319 \Delta = & \left[
320 \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)
321 (1+e^{-2}) + 4e^{-2}\dot{\epsilon}_{12}^2 +
322 2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})
323 \right]^{\frac{1}{2}}.
324 \end{align*}
325 The bulk viscosities are bounded above by imposing both a minimum
326 $\Delta_{\min}$ (for numerical reasons, run-time parameter
327 \code{SEAICE\_EPS} with a default value of
328 $10^{-10}\text{\,s}^{-1}$) and a maximum $\zeta_{\max} =
329 P_{\max}/\Delta^*$, where
330 $\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. (There is also
331 the option of bounding $\zeta$ from below by setting run-time
332 parameter \code{SEAICE\_zetaMin} $>0$, but this is generally not
333 recommended). For stress tensor computation the replacement pressure $P
334 = 2\,\Delta\zeta$ \citep{hibler95} is used so that the stress state
335 always lies on the elliptic yield curve by definition.
336
337 In the so-called truncated ellipse method the shear viscosity $\eta$
338 is capped to suppress any tensile stress \citep{hibler97, geiger98}:
339 \begin{equation}
340 \label{eq:etatem}
341 \eta = \min\left(\frac{\zeta}{e^2},
342 \frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})}
343 {\sqrt{(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})^2
344 +4\dot{\epsilon}_{12}^2}}\right).
345 \end{equation}
346 To enable this method, set \code{\#define SEAICE\_ALLOW\_TEM} in
347 \code{SEAICE\_OPTIONS.h} and turn it on with
348 \code{SEAICEuseTEM=.TRUE.} in \code{data.seaice}.
349
350 In the current implementation, the VP-model is integrated with the
351 semi-implicit line successive over relaxation (LSOR)-solver of
352 \citet{zhang97}, which allows for long time steps that, in our case,
353 are limited by the explicit treatment of the Coriolis term. The
354 explicit treatment of the Coriolis term does not represent a severe
355 limitation because it restricts the time step to approximately the
356 same length as in the ocean model where the Coriolis term is also
357 treated explicitly.
358
359 \citet{hun97}'s introduced an elastic contribution to the strain
360 rate in order to regularize Eq.~\ref{eq:vpequation} in such a way that
361 the resulting elastic-viscous-plastic (EVP) and VP models are
362 identical at steady state,
363 \begin{equation}
364 \label{eq:evpequation}
365 \frac{1}{E}\frac{\partial\sigma_{ij}}{\partial{t}} +
366 \frac{1}{2\eta}\sigma_{ij}
367 + \frac{\eta - \zeta}{4\zeta\eta}\sigma_{kk}\delta_{ij}
368 + \frac{P}{4\zeta}\delta_{ij}
369 = \dot{\epsilon}_{ij}.
370 \end{equation}
371 %In the EVP model, equations for the components of the stress tensor
372 %$\sigma_{ij}$ are solved explicitly. Both model formulations will be
373 %used and compared the present sea-ice model study.
374 The EVP-model uses an explicit time stepping scheme with a short
375 timestep. According to the recommendation of \citet{hun97}, the
376 EVP-model is stepped forward in time 120 times within the physical
377 ocean model time step (although this parameter is under debate), to
378 allow for elastic waves to disappear. Because the scheme does not
379 require a matrix inversion it is fast in spite of the small internal
380 timestep and simple to implement on parallel computers
381 \citep{hun97}. For completeness, we repeat the equations for the
382 components of the stress tensor $\sigma_{1} =
383 \sigma_{11}+\sigma_{22}$, $\sigma_{2}= \sigma_{11}-\sigma_{22}$, and
384 $\sigma_{12}$. Introducing the divergence $D_D =
385 \dot{\epsilon}_{11}+\dot{\epsilon}_{22}$, and the horizontal tension
386 and shearing strain rates, $D_T =
387 \dot{\epsilon}_{11}-\dot{\epsilon}_{22}$ and $D_S =
388 2\dot{\epsilon}_{12}$, respectively, and using the above
389 abbreviations, the equations~\ref{eq:evpequation} can be written as:
390 \begin{align}
391 \label{eq:evpstresstensor1}
392 \frac{\partial\sigma_{1}}{\partial{t}} + \frac{\sigma_{1}}{2T} +
393 \frac{P}{2T} &= \frac{P}{2T\Delta} D_D \\
394 \label{eq:evpstresstensor2}
395 \frac{\partial\sigma_{2}}{\partial{t}} + \frac{\sigma_{2} e^{2}}{2T}
396 &= \frac{P}{2T\Delta} D_T \\
397 \label{eq:evpstresstensor12}
398 \frac{\partial\sigma_{12}}{\partial{t}} + \frac{\sigma_{12} e^{2}}{2T}
399 &= \frac{P}{4T\Delta} D_S
400 \end{align}
401 Here, the elastic parameter $E$ is redefined in terms of a damping timescale
402 $T$ for elastic waves \[E=\frac{\zeta}{T}.\]
403 $T=E_{0}\Delta{t}$ with the tunable parameter $E_0<1$ and
404 the external (long) timestep $\Delta{t}$. \citet{hun97} recommend
405 $E_{0} = \frac{1}{3}$ (which is the default value in the code).
406
407 To use the EVP solver, make sure that both \code{SEAICE\_CGRID} and
408 \code{SEAICE\_ALLOW\_EVP} are defined in \code{SEAICE\_OPTIONS.h}
409 (default). The solver is turned on by setting the sub-cycling time
410 step \code{SEAICE\_deltaTevp} to a value larger than zero. The
411 choice of this time step is under debate. \citet{hun97} recommend
412 order(120) time steps for the EVP solver within one model time step
413 $\Delta{t}$ (\code{deltaTmom}). One can also choose order(120) time
414 steps within the forcing time scale, but then we recommend adjusting
415 the damping time scale $T$ accordingly, by setting either
416 \code{SEAICE\_elasticParm} ($E_{0}$), so that
417 $E_{0}\Delta{t}=\mbox{forcing time scale}$, or directly
418 \code{SEAICE\_evpTauRelax} ($T$) to the forcing time scale.
419
420 Moving sea ice exerts a stress on the ocean which is the opposite of
421 the stress $\vtau_{ocean}$ in Eq.~\ref{eq:momseaice}. This stess is
422 applied directly to the surface layer of the ocean model. An
423 alternative ocean stress formulation is given by \citet{hibler87}.
424 Rather than applying $\vtau_{ocean}$ directly, the stress is derived
425 from integrating over the ice thickness to the bottom of the oceanic
426 surface layer. In the resulting equation for the \emph{combined}
427 ocean-ice momentum, the interfacial stress cancels and the total
428 stress appears as the sum of windstress and divergence of internal ice
429 stresses: $\delta(z) (\vtau_{air} + \vek{F})/\rho_0$, \citep[see also
430 Eq.\,2 of][]{hibler87}. The disadvantage of this formulation is that
431 now the velocity in the surface layer of the ocean that is used to
432 advect tracers, is really an average over the ocean surface
433 velocity and the ice velocity leading to an inconsistency as the ice
434 temperature and salinity are different from the oceanic variables.
435 To turn on the stress formulation of \citet{hibler87}, set
436 \code{useHB87StressCoupling=.TRUE.} in \code{data.seaice}.
437
438
439 % Our discretization differs from \citet{zhang97, zhang03} in the
440 % underlying grid, namely the Arakawa C-grid, but is otherwise
441 % straightforward. The EVP model, in particular, is discretized
442 % naturally on the C-grid with $\sigma_{1}$ and $\sigma_{2}$ on the
443 % center points and $\sigma_{12}$ on the corner (or vorticity) points of
444 % the grid. With this choice all derivatives are discretized as central
445 % differences and averaging is only involved in computing $\Delta$ and
446 % $P$ at vorticity points.
447
448 \paragraph{Finite-volume discretization of the stress tensor
449 divergence\label{sec:pkg:seaice:discretization}}
450 On an Arakawa C~grid, ice thickness and concentration and thus ice
451 strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are
452 naturally defined a C-points in the center of the grid
453 cell. Discretization requires only averaging of $\zeta$ and $\eta$ to
454 vorticity or Z-points (or $\zeta$-points, but here we use Z in order
455 avoid confusion with the bulk viscosity) at the bottom left corner of
456 the cell to give $\overline{\zeta}^{Z}$ and $\overline{\eta}^{Z}$. In
457 the following, the superscripts indicate location at Z or C points,
458 distance across the cell (F), along the cell edge (G), between
459 $u$-points (U), $v$-points (V), and C-points (C). The control volumes
460 of the $u$- and $v$-equations in the grid cell at indices $(i,j)$ are
461 $A_{i,j}^{w}$ and $A_{i,j}^{s}$, respectively. With these definitions
462 (which follow the model code documentation except that $\zeta$-points
463 have been renamed to Z-points), the strain rates are discretized as:
464 \begin{align}
465 \dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag
466 => (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}}
467 + k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\
468 \dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag
469 => (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}}
470 + k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\
471 \dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl(
472 \partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1}
473 \biggr) \\ \notag
474 => (\epsilon_{12})_{i,j}^Z &= \frac{1}{2}
475 \biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V}
476 + \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag
477 &\phantom{=\frac{1}{2}\biggl(}
478 - k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
479 - k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
480 \biggr),
481 \end{align}
482 so that the diagonal terms of the strain rate tensor are naturally
483 defined at C-points and the symmetric off-diagonal term at
484 Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and
485 $v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via
486 ``ghost-points''; for free slip boundary conditions
487 $(\epsilon_{12})^Z=0$ on boundaries.
488
489 For a spherical polar grid, the coefficients of the metric terms are
490 $k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and
491 the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi
492 \Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a
493 general orthogonal curvilinear grid, $k_{1}$ and
494 $k_{2}$ can be approximated by finite differences of the cell widths:
495 \begin{align}
496 k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}}
497 \frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\
498 k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}}
499 \frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\
500 k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}}
501 \frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\
502 k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}}
503 \frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}}
504 \end{align}
505
506 The stress tensor is given by the constitutive viscous-plastic
507 relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} +
508 [(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2
509 ]\delta_{\alpha\beta}$ \citep{hib79}. The stress tensor divergence
510 $(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is
511 discretized in finite volumes. This conveniently avoids dealing with
512 further metric terms, as these are ``hidden'' in the differential cell
513 widths. For the $u$-equation ($\alpha=1$) we have:
514 \begin{align}
515 (\nabla\sigma)_{1}: \phantom{=}&
516 \frac{1}{A_{i,j}^w}
517 \int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2
518 \\\notag
519 =& \frac{1}{A_{i,j}^w} \biggl\{
520 \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
521 + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
522 \biggr\} \\ \notag
523 \approx& \frac{1}{A_{i,j}^w} \biggl\{
524 \Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
525 + \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
526 \biggr\} \\ \notag
527 =& \frac{1}{A_{i,j}^w} \biggl\{
528 (\Delta{x}_2\sigma_{11})_{i,j}^C -
529 (\Delta{x}_2\sigma_{11})_{i-1,j}^C
530 \\\notag
531 \phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{}
532 + (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z
533 \biggr\}
534 \end{align}
535 with
536 \begin{align}
537 (\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+}
538 \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
539 \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
540 &+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
541 k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
542 \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
543 \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
544 \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
545 k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
546 \phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\
547 (\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+}
548 \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
549 \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag
550 & + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
551 \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
552 & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
553 k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
554 & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
555 k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
556 \end{align}
557
558 Similarly, we have for the $v$-equation ($\alpha=2$):
559 \begin{align}
560 (\nabla\sigma)_{2}: \phantom{=}&
561 \frac{1}{A_{i,j}^s}
562 \int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2
563 \\\notag
564 =& \frac{1}{A_{i,j}^s} \biggl\{
565 \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
566 + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
567 \biggr\} \\ \notag
568 \approx& \frac{1}{A_{i,j}^s} \biggl\{
569 \Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
570 + \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
571 \biggr\} \\ \notag
572 =& \frac{1}{A_{i,j}^s} \biggl\{
573 (\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z
574 \\ \notag
575 \phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{}
576 + (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C
577 \biggr\}
578 \end{align}
579 with
580 \begin{align}
581 (\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+}
582 \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
583 \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}}
584 \\\notag &
585 + \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
586 \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\\notag
587 &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
588 k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
589 \\\notag &
590 - \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
591 k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag
592 (\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+}
593 \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
594 \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
595 &+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
596 k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
597 & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
598 \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
599 & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
600 k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
601 & -\Delta{x}_{i,j}^{F} \frac{P}{2}
602 \end{align}
603
604 Again, no slip boundary conditions are realized via ghost points and
605 $u_{i,j-1}+u_{i,j}=0$ and $v_{i-1,j}+v_{i,j}=0$ across boundaries. For
606 free slip boundary conditions the lateral stress is set to zeros. In
607 analogy to $(\epsilon_{12})^Z=0$ on boundaries, we set
608 $\sigma_{21}^{Z}=0$, or equivalently $\eta_{i,j}^{Z}=0$, on boundaries.
609
610 \paragraph{Thermodynamics\label{sec:pkg:seaice:thermodynamics}}
611
612 In its original formulation the sea ice model \citep{menemenlis05}
613 uses simple thermodynamics following the appendix of
614 \citet{sem76}. This formulation does not allow storage of heat,
615 that is, the heat capacity of ice is zero. Upward conductive heat flux
616 is parameterized assuming a linear temperature profile and together
617 with a constant ice conductivity. It is expressed as
618 $(K/h)(T_{w}-T_{0})$, where $K$ is the ice conductivity, $h$ the ice
619 thickness, and $T_{w}-T_{0}$ the difference between water and ice
620 surface temperatures. This type of model is often refered to as a
621 ``zero-layer'' model. The surface heat flux is computed in a similar
622 way to that of \citet{parkinson79} and \citet{manabe79}.
623
624 The conductive heat flux depends strongly on the ice thickness $h$.
625 However, the ice thickness in the model represents a mean over a
626 potentially very heterogeneous thickness distribution. In order to
627 parameterize a sub-grid scale distribution for heat flux
628 computations, the mean ice thickness $h$ is split into seven thickness
629 categories $H_{n}$ that are equally distributed between $2h$ and a
630 minimum imposed ice thickness of $5\text{\,cm}$ by $H_n=
631 \frac{2n-1}{7}\,h$ for $n\in[1,7]$. The heat fluxes computed for each
632 thickness category is area-averaged to give the total heat flux
633 \citep{hibler84}. To use this thickness category parameterization set
634 \code{\#define SEAICE\_MULTICATEGORY}; note that this requires
635 different restart files and switching this flag on in the middle of an
636 integration is not possible.
637
638 The atmospheric heat flux is balanced by an oceanic heat flux from
639 below. The oceanic flux is proportional to
640 $\rho\,c_{p}\left(T_{w}-T_{fr}\right)$ where $\rho$ and $c_{p}$ are
641 the density and heat capacity of sea water and $T_{fr}$ is the local
642 freezing point temperature that is a function of salinity. This flux
643 is not assumed to instantaneously melt or create ice, but a time scale
644 of three days (run-time parameter \code{SEAICE\_gamma\_t}) is used
645 to relax $T_{w}$ to the freezing point.
646 %
647 The parameterization of lateral and vertical growth of sea ice follows
648 that of \citet{hib79, hib80}; the so-called lead closing parameter
649 $h_{0}$ (run-time parameter \code{HO}) has a default value of
650 0.5~meters.
651
652 On top of the ice there is a layer of snow that modifies the heat flux
653 and the albedo \citep{zha98a}. Snow modifies the effective
654 conductivity according to
655 \[\frac{K}{h} \rightarrow \frac{1}{\frac{h_{s}}{K_{s}}+\frac{h}{K}},\]
656 where $K_s$ is the conductivity of snow and $h_s$ the snow thickness.
657 If enough snow accumulates so that its weight submerges the ice and
658 the snow is flooded, a simple mass conserving parameterization of
659 snowice formation (a flood-freeze algorithm following Archimedes'
660 principle) turns snow into ice until the ice surface is back at $z=0$
661 \citep{leppaeranta83}. The flood-freeze algorithm is enabled with the CPP-flag
662 \code{SEAICE\_ALLOW\_FLOODING} and turned on with run-time parameter
663 \code{SEAICEuseFlooding=.true.}.
664
665 Effective ice thickness (ice volume per unit area,
666 $c\cdot{h}$), concentration $c$ and effective snow thickness
667 ($c\cdot{h}_{s}$) are advected by ice velocities:
668 \begin{equation}
669 \label{eq:advection}
670 \frac{\partial{X}}{\partial{t}} = - \nabla\cdot\left(\vek{u}\,X\right) +
671 \Gamma_{X} + D_{X}
672 \end{equation}
673 where $\Gamma_X$ are the thermodynamic source terms and $D_{X}$ the
674 diffusive terms for quantities $X=(c\cdot{h}), c, (c\cdot{h}_{s})$.
675 %
676 From the various advection scheme that are available in the MITgcm, we
677 recommend flux-limited schemes \citep[multidimensional 2nd and
678 3rd-order advection scheme with flux limiter][]{roe:85, hundsdorfer94}
679 to preserve sharp gradients and edges that are typical of sea ice
680 distributions and to rule out unphysical over- and undershoots
681 (negative thickness or concentration). These schemes conserve volume
682 and horizontal area and are unconditionally stable, so that we can set
683 $D_{X}=0$. Run-timeflags: \code{SEAICEadvScheme} (default=2, is the
684 historic 2nd-order, centered difference scheme), \code{DIFF1}
685 (default=0.004).
686
687 There is considerable doubt about the reliability of a ``zero-layer''
688 thermodynamic model --- \citet{semtner84} found significant errors in
689 phase (one month lead) and amplitude ($\approx$50\%\,overestimate) in
690 such models --- so that today many sea ice models employ more complex
691 thermodynamics. The MITgcm sea ice model provides the option to use
692 the thermodynamics model of \citet{win00}, which in turn is based
693 on the 3-layer model of \citet{sem76} and which treats brine
694 content by means of enthalpy conservation. This scheme requires
695 additional state variables, namely the enthalpy of the two ice layers
696 (instead of effective ice salinity), to be advected by ice velocities.
697 %
698 The internal sea ice temperature is inferred from ice enthalpy. To
699 avoid unphysical (negative) values for ice thickness and
700 concentration, a positive 2nd-order advection scheme with a SuperBee
701 flux limiter \citep{roe:85} is used in this study to advect all
702 sea-ice-related quantities of the \citet{win00} thermodynamic
703 model. Because of the non-linearity of the advection scheme, care
704 must be taken in advecting these quantities: when simply using ice
705 velocity to advect enthalpy, the total energy (i.e., the volume
706 integral of enthalpy) is not conserved. Alternatively, one can advect
707 the energy content (i.e., product of ice-volume and enthalpy) but then
708 false enthalpy extrema can occur, which then leads to unrealistic ice
709 temperature. In the currently implemented solution, the sea-ice mass
710 flux is used to advect the enthalpy in order to ensure conservation of
711 enthalpy and to prevent false enthalpy extrema.
712
713 %----------------------------------------------------------------------
714
715 \subsubsection{Key subroutines
716 \label{sec:pkg:seaice:subroutines}}
717
718 Top-level routine: \code{seaice\_model.F}
719
720 {\footnotesize
721 \begin{verbatim}
722
723 C !CALLING SEQUENCE:
724 c ...
725 c seaice_model (TOP LEVEL ROUTINE)
726 c |
727 c |-- #ifdef SEAICE_CGRID
728 c | SEAICE_DYNSOLVER
729 c | |
730 c | |-- < compute proxy for geostrophic velocity >
731 c | |
732 c | |-- < set up mass per unit area and Coriolis terms >
733 c | |
734 c | |-- < dynamic masking of areas with no ice >
735 c | |
736 c | |
737
738 c | #ELSE
739 c | DYNSOLVER
740 c | #ENDIF
741 c |
742 c |-- if ( useOBCS )
743 c | OBCS_APPLY_UVICE
744 c |
745 c |-- if ( SEAICEadvHeff .OR. SEAICEadvArea .OR. SEAICEadvSnow .OR. SEAICEadvSalt )
746 c | SEAICE_ADVDIFF
747 c |
748 c |-- if ( usePW79thermodynamics )
749 c | SEAICE_GROWTH
750 c |
751 c |-- if ( useOBCS )
752 c | if ( SEAICEadvHeff ) OBCS_APPLY_HEFF
753 c | if ( SEAICEadvArea ) OBCS_APPLY_AREA
754 c | if ( SEAICEadvSALT ) OBCS_APPLY_HSALT
755 c | if ( SEAICEadvSNOW ) OBCS_APPLY_HSNOW
756 c |
757 c |-- < do various exchanges >
758 c |
759 c |-- < do additional diagnostics >
760 c |
761 c o
762
763 \end{verbatim}
764 }
765
766
767 %----------------------------------------------------------------------
768
769 \subsubsection{SEAICE diagnostics
770 \label{sec:pkg:seaice:diagnostics}}
771
772 Diagnostics output is available via the diagnostics package
773 (see Section \ref{sec:pkg:diagnostics}).
774 Available output fields are summarized in
775 Table \ref{tab:pkg:seaice:diagnostics}.
776
777 \begin{table}[!ht]
778 \centering
779 \label{tab:pkg:seaice:diagnostics}
780 {\footnotesize
781 \begin{verbatim}
782 ---------+----+----+----------------+-----------------
783 <-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)
784 ---------+----+----+----------------+-----------------
785 SIarea | 1 |SM |m^2/m^2 |SEAICE fractional ice-covered area [0 to 1]
786 SIheff | 1 |SM |m |SEAICE effective ice thickness
787 SIuice | 1 |UU |m/s |SEAICE zonal ice velocity, >0 from West to East
788 SIvice | 1 |VV |m/s |SEAICE merid. ice velocity, >0 from South to North
789 SIhsnow | 1 |SM |m |SEAICE snow thickness
790 SIhsalt | 1 |SM |g/m^2 |SEAICE effective salinity
791 SIatmFW | 1 |SM |kg/m^2/s |Net freshwater flux from the atmosphere (+=down)
792 SIuwind | 1 |SM |m/s |SEAICE zonal 10-m wind speed, >0 increases uVel
793 SIvwind | 1 |SM |m/s |SEAICE meridional 10-m wind speed, >0 increases uVel
794 SIfu | 1 |UU |N/m^2 |SEAICE zonal surface wind stress, >0 increases uVel
795 SIfv | 1 |VV |N/m^2 |SEAICE merid. surface wind stress, >0 increases vVel
796 SIempmr | 1 |SM |kg/m^2/s |SEAICE upward freshwater flux, > 0 increases salt
797 SIqnet | 1 |SM |W/m^2 |SEAICE upward heatflux, turb+rad, >0 decreases theta
798 SIqsw | 1 |SM |W/m^2 |SEAICE upward shortwave radiat., >0 decreases theta
799 SIpress | 1 |SM |m^2/s^2 |SEAICE strength (with upper and lower limit)
800 SIzeta | 1 |SM |m^2/s |SEAICE nonlinear bulk viscosity
801 SIeta | 1 |SM |m^2/s |SEAICE nonlinear shear viscosity
802 SIsigI | 1 |SM |no units |SEAICE normalized principle stress, component one
803 SIsigII | 1 |SM |no units |SEAICE normalized principle stress, component two
804 SIthdgrh| 1 |SM |m/s |SEAICE thermodynamic growth rate of effective ice thickness
805 SIsnwice| 1 |SM |m/s |SEAICE ice formation rate due to flooding
806 SIuheff | 1 |UU |m^2/s |Zonal Transport of effective ice thickness
807 SIvheff | 1 |VV |m^2/s |Meridional Transport of effective ice thickness
808 ADVxHEFF| 1 |UU |m.m^2/s |Zonal Advective Flux of eff ice thickn
809 ADVyHEFF| 1 |VV |m.m^2/s |Meridional Advective Flux of eff ice thickn
810 DFxEHEFF| 1 |UU |m.m^2/s |Zonal Diffusive Flux of eff ice thickn
811 DFyEHEFF| 1 |VV |m.m^2/s |Meridional Diffusive Flux of eff ice thickn
812 ADVxAREA| 1 |UU |m^2/m^2.m^2/s |Zonal Advective Flux of fract area
813 ADVyAREA| 1 |VV |m^2/m^2.m^2/s |Meridional Advective Flux of fract area
814 DFxEAREA| 1 |UU |m^2/m^2.m^2/s |Zonal Diffusive Flux of fract area
815 DFyEAREA| 1 |VV |m^2/m^2.m^2/s |Meridional Diffusive Flux of fract area
816 ADVxSNOW| 1 |UU |m.m^2/s |Zonal Advective Flux of eff snow thickn
817 ADVySNOW| 1 |VV |m.m^2/s |Meridional Advective Flux of eff snow thickn
818 DFxESNOW| 1 |UU |m.m^2/s |Zonal Diffusive Flux of eff snow thickn
819 DFyESNOW| 1 |VV |m.m^2/s |Meridional Diffusive Flux of eff snow thickn
820 ADVxSSLT| 1 |UU |psu.m^2/s |Zonal Advective Flux of seaice salinity
821 ADVySSLT| 1 |VV |psu.m^2/s |Meridional Advective Flux of seaice salinity
822 DFxESSLT| 1 |UU |psu.m^2/s |Zonal Diffusive Flux of seaice salinity
823 DFyESSLT| 1 |VV |psu.m^2/s |Meridional Diffusive Flux of seaice salinity
824 \end{verbatim}
825 }
826 \caption{Available diagnostics of the seaice-package}
827 \end{table}
828
829
830 %\subsubsection{Package Reference}
831
832 \subsubsection{Experiments and tutorials that use seaice}
833 \label{sec:pkg:seaice:experiments}
834
835 \begin{itemize}
836 \item{Labrador Sea experiment in lab\_sea verification directory. }
837 \end{itemize}
838
839
840 %%% Local Variables:
841 %%% mode: latex
842 %%% TeX-master: "../../manual"
843 %%% End:

  ViewVC Help
Powered by ViewVC 1.1.22