/[MITgcm]/manual/s_phys_pkgs/text/seaice.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/seaice.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.6 by heimbach, Tue Jan 15 23:58:53 2008 UTC revision 1.9 by mlosch, Thu May 14 15:35:17 2009 UTC
# Line 24  sea-ice model. Line 24  sea-ice model.
24    
25  CPP options enable or disable different aspects of the package  CPP options enable or disable different aspects of the package
26  (Section \ref{sec:pkg:seaice:config}).  (Section \ref{sec:pkg:seaice:config}).
27  Runtime options, flags, filenames and field-related dates/times are  Run-Time options, flags, filenames and field-related dates/times are
28  set in \texttt{data.seaice}  set in \code{data.seaice}
29  (Section \ref{sec:pkg:seaice:runtime}).  (Section \ref{sec:pkg:seaice:runtime}).
30  A description of key subroutines is given in Section  A description of key subroutines is given in Section
31  \ref{sec:pkg:seaice:subroutines}.  \ref{sec:pkg:seaice:subroutines}.
# Line 46  As with all MITgcm packages, SEAICE can Line 46  As with all MITgcm packages, SEAICE can
46  \begin{itemize}  \begin{itemize}
47  %  %
48  \item  \item
49  using the \texttt{packages.conf} file by adding \texttt{seaice} to it,  using the \code{packages.conf} file by adding \code{seaice} to it,
50  %  %
51  \item  \item
52  or using \texttt{genmake2} adding  or using \code{genmake2} adding
53  \texttt{-enable=seaice} or \texttt{-disable=seaice} switches  \code{-enable=seaice} or \code{-disable=seaice} switches
54  %  %
55  \item  \item
56  \textit{required packages and CPP options}: \\  \textit{required packages and CPP options}: \\
57  SEAICE requires the external forcing package \texttt{exf} to be enabled;  SEAICE requires the external forcing package \code{exf} to be enabled;
58  no additional CPP options are required.  no additional CPP options are required.
59  %  %
60  \end{itemize}  \end{itemize}
# Line 62  no additional CPP options are required. Line 62  no additional CPP options are required.
62    
63  Parts of the SEAICE code can be enabled or disabled at compile time  Parts of the SEAICE code can be enabled or disabled at compile time
64  via CPP preprocessor flags. These options are set in either  via CPP preprocessor flags. These options are set in either
65  \texttt{SEAICE\_OPTIONS.h} or in \texttt{ECCO\_CPPOPTIONS.h}.  \code{SEAICE\_OPTIONS.h} or in \code{ECCO\_CPPOPTIONS.h}.
66  Table \ref{tab:pkg:seaice:cpp} summarizes these options.  Table \ref{tab:pkg:seaice:cpp} summarizes these options.
67    
68  \begin{table}[h!]  \begin{table}[h!]
69  \centering  \centering
70    \label{tab:pkg:seaice:cpp}    \label{tab:pkg:seaice:cpp}
71    {\footnotesize    {\footnotesize
72      \begin{tabular}{|l|l|}      \begin{tabular}{|l|p{10cm}|}
73        \hline        \hline
74        \textbf{CPP option}  &  \textbf{Description}  \\        \textbf{CPP option}  &  \textbf{Description}  \\
75        \hline \hline        \hline \hline
76          \texttt{SEAICE\_DEBUG} &          \code{SEAICE\_DEBUG} &
77            Enhance STDOUT for debugging \\            Enhance STDOUT for debugging \\
78          \texttt{SEAICE\_ALLOW\_DYNAMICS} &          \code{SEAICE\_ALLOW\_DYNAMICS} &
79            sea-ice dynamics code \\            sea-ice dynamics code \\
80          \texttt{SEAICE\_CGRID} &          \code{SEAICE\_CGRID} &
81            LSR solver on C-grid (rather than original B-grid \\            LSR solver on C-grid (rather than original B-grid) \\
82          \texttt{SEAICE\_ALLOW\_EVP} &          \code{SEAICE\_ALLOW\_EVP} &
83            use EVP rather than LSR rheology solver \\            use EVP rather than LSR rheology solver \\
84          \texttt{SEAICE\_EXTERNAL\_FLUXES} &          \code{SEAICE\_EXTERNAL\_FLUXES} &
85            use EXF-computed fluxes as starting point \\            use EXF-computed fluxes as starting point \\
86          \texttt{SEAICE\_MULTICATEGORY} &          \code{SEAICE\_MULTICATEGORY} &
87            enable 8-category thermodynamics \\            enable 8-category thermodynamics (by default undefined)\\
88          \texttt{SEAICE\_VARIABLE\_FREEZING\_POINT} &          \code{SEAICE\_VARIABLE\_FREEZING\_POINT} &
89            enable linear dependence of the freezing point on salinity \\            enable linear dependence of the freezing point on salinity
90          \texttt{ALLOW\_SEAICE\_FLOODING} &            (by default undefined)\\
91            \code{ALLOW\_SEAICE\_FLOODING} &
92            enable snow to ice conversion for submerged sea-ice \\            enable snow to ice conversion for submerged sea-ice \\
93          \texttt{SEAICE\_SALINITY} &          \code{SEAICE\_SALINITY} &
94            enable "salty" sea-ice \\            enable "salty" sea-ice (by default undefined) \\
95          \texttt{SEAICE\_CAP\_HEFF} &          \code{SEAICE\_AGE} &
96            enable capping of sea-ice thickness to MAX\_HEFF \\            enable "age tracer" sea-ice (by default undefined) \\
97            \code{SEAICE\_CAP\_HEFF} &
98              enable capping of sea-ice thickness to MAX\_HEFF \\ \hline
99            \code{SEAICE\_BICE\_STRESS} &
100              B-grid only for backward compatiblity: turn on ice-stress on
101              ocean\\
102            \code{EXPLICIT\_SSH\_SLOPE} &
103              B-grid only for backward compatiblity: use ETAN for tilt
104              computations rather than geostrophic velocities \\
105        \hline        \hline
106      \end{tabular}      \end{tabular}
107    }    }
# Line 105  Table \ref{tab:pkg:seaice:cpp} summarize Line 114  Table \ref{tab:pkg:seaice:cpp} summarize
114  \label{sec:pkg:seaice:runtime}}  \label{sec:pkg:seaice:runtime}}
115    
116  Run-time parameters are set in files  Run-time parameters are set in files
117  \texttt{data.pkg} (read in \texttt{packages\_readparms.F}),  \code{data.pkg} (read in \code{packages\_readparms.F}),
118  and \texttt{data.seaice} (read in \texttt{seaice\_readparms.F}).  and \code{data.seaice} (read in \code{seaice\_readparms.F}).
119    
120  \paragraph{Enabling the package}  \paragraph{Enabling the package}
121  ~ \\  ~ \\
122  %  %
123  A package is switched on/off at runtime by setting  A package is switched on/off at run-time by setting
124  (e.g. for SEAICE) \texttt{useSEAICE = .TRUE.} in \texttt{data.pkg}.  (e.g. for SEAICE) \code{useSEAICE = .TRUE.} in \code{data.pkg}.
125    
126  \paragraph{General flags and parameters}  \paragraph{General flags and parameters}
127  ~ \\  ~ \\
128  %  %
129    Table~\ref{tab:pkg:seaice:runtimeparms} lists most run-time parameters.
130  \input{part6/seaice-parms.tex}  \input{part6/seaice-parms.tex}
131    
132    
# Line 127  A package is switched on/off at runtime Line 137  A package is switched on/off at runtime
137    
138  [TO BE CONTINUED/MODIFIED]  [TO BE CONTINUED/MODIFIED]
139    
140  Sea-ice model thermodynamics are based on Hibler  % Sea-ice model thermodynamics are based on Hibler
141  \cite{hib80}, that is, a 2-category model that simulates ice thickness  % \cite{hib80}, that is, a 2-category model that simulates ice thickness
142  and concentration.  Snow is simulated as per Zhang et al.  % and concentration.  Snow is simulated as per Zhang et al.
143  \cite{zha98a}.  Although recent years have seen an increased use of  % \cite{zha98a}.  Although recent years have seen an increased use of
144  multi-category thickness distribution sea-ice models for climate  % multi-category thickness distribution sea-ice models for climate
145  studies, the Hibler 2-category ice model is still the most widely used  % studies, the Hibler 2-category ice model is still the most widely used
146  model and has resulted in realistic simulation of sea-ice variability  % model and has resulted in realistic simulation of sea-ice variability
147  on regional and global scales.  Being less complicated, compared to  % on regional and global scales.  Being less complicated, compared to
148  multi-category models, the 2-category model permits easier application  % multi-category models, the 2-category model permits easier application
149  of adjoint model optimization methods.  % of adjoint model optimization methods.
150    
151  Note, however, that the Hibler 2-category model and its variants use a  % Note, however, that the Hibler 2-category model and its variants use a
152  so-called zero-layer thermodynamic model to estimate ice growth and  % so-called zero-layer thermodynamic model to estimate ice growth and
153  decay.  The zero-layer thermodynamic model assumes that ice does not  % decay.  The zero-layer thermodynamic model assumes that ice does not
154  store heat and, therefore, tends to exaggerate the seasonal  % store heat and, therefore, tends to exaggerate the seasonal
155  variability in ice thickness.  This exaggeration can be significantly  % variability in ice thickness.  This exaggeration can be significantly
156  reduced by using Semtner's \cite{sem76} three-layer thermodynamic  % reduced by using Semtner's \cite{sem76} three-layer thermodynamic
157  model that permits heat storage in ice.  Recently, the three-layer  % model that permits heat storage in ice.  Recently, the three-layer
158  thermodynamic model has been reformulated by Winton \cite{win00}.  The  % thermodynamic model has been reformulated by Winton \cite{win00}.  The
159  reformulation improves model physics by representing the brine content  % reformulation improves model physics by representing the brine content
160  of the upper ice with a variable heat capacity.  It also improves  % of the upper ice with a variable heat capacity.  It also improves
161  model numerics and consumes less computer time and memory.  The Winton  % model numerics and consumes less computer time and memory.  The Winton
162  sea-ice thermodynamics have been ported to the MIT GCM; they currently  % sea-ice thermodynamics have been ported to the MIT GCM; they currently
163  reside under pkg/thsice.  At present pkg/thsice is not fully  % reside under pkg/thsice. The package pkg/thsice is fully
164  compatible with pkg/seaice and with pkg/exf.  But the eventual  % compatible with pkg/seaice and with pkg/exf. When turned on togeter
165  objective is to have fully compatible and interchangeable  % with pkg/seaice, the zero-layer thermodynamics are replaced by the by
166  thermodynamic packages for sea-ice, so that it becomes possible to use  % Winton thermodynamics
167  Hibler dynamics with Winton thermodyanmics.  
168    The MITgcm sea ice model (MITgcm/sim) is based on a variant of the
169    viscous-plastic (VP) dynamic-thermodynamic sea ice model \citep{zhang97}
170    first introduced by \citet{hib79, hib80}. In order to adapt this model
171    to the requirements of coupled ice-ocean state estimation, many
172    important aspects of the original code have been modified and
173    improved:
174    \begin{itemize}
175    \item the code has been rewritten for an Arakawa C-grid, both B- and
176      C-grid variants are available; the C-grid code allows for no-slip
177      and free-slip lateral boundary conditions;
178    \item two different solution methods for solving the nonlinear
179      momentum equations have been adopted: LSOR \citep{zhang97}, and EVP
180      \citep{hun97};
181    \item ice-ocean stress can be formulated as in \citet{hibler87} or as in
182      \citet{cam08};
183    \item ice variables are advected by sophisticated, conservative
184      advection schemes with flux limiting;
185    \item growth and melt parameterizations have been refined and extended
186      in order to allow for more stable automatic differentiation of the code.
187    \end{itemize}
188    The sea ice model is tightly coupled to the ocean compontent of the
189    MITgcm.  Heat, fresh water fluxes and surface stresses are computed
190    from the atmospheric state and -- by default -- modified by the ice
191    model at every time step.
192    
193  The ice dynamics models that are most widely used for large-scale  The ice dynamics models that are most widely used for large-scale
194  climate studies are the viscous-plastic (VP) model \cite{hib79}, the  climate studies are the viscous-plastic (VP) model \citep{hib79}, the
195  cavitating fluid (CF) model \cite{fla92}, and the  cavitating fluid (CF) model \citep{fla92}, and the
196  elastic-viscous-plastic (EVP) model \cite{hun97}.  Compared to the VP  elastic-viscous-plastic (EVP) model \citep{hun97}.  Compared to the VP
197  model, the CF model does not allow ice shear in calculating ice  model, the CF model does not allow ice shear in calculating ice
198  motion, stress, and deformation.  EVP models approximate VP by adding  motion, stress, and deformation.  EVP models approximate VP by adding
199  an elastic term to the equations for easier adaptation to parallel  an elastic term to the equations for easier adaptation to parallel
200  computers.  Because of its higher accuracy in plastic solution and  computers.  Because of its higher accuracy in plastic solution and
201  relatively simpler formulation, compared to the EVP model, we decided  relatively simpler formulation, compared to the EVP model, we decided
202  to use the VP model as the dynamic component of our ice model.  To do  to use the VP model as the default dynamic component of our ice
203  this we extended the alternating-direction-implicit (ADI) method of  model. To do this we extended the line successive over relaxation
204  Zhang and Rothrock \cite{zha00} for use in a parallel configuration.  (LSOR) method of \citet{zhang97} for use in a parallel
205    configuration.
206    
207    Note, that by default the seaice-package includes the orginial
208    so-called zero-layer thermodynamics following \citet{hib80} with a
209    snow cover as in \citet{zha98a}. The zero-layer thermodynamic model
210    assumes that ice does not store heat and, therefore, tends to
211    exaggerate the seasonal variability in ice thickness.  This
212    exaggeration can be significantly reduced by using
213    \citeauthor{sem76}'s~[\citeyear{sem76}] three-layer thermodynamic model
214    that permits heat storage in ice.  Recently, the three-layer
215    thermodynamic model has been reformulated by \citet{win00}.  The
216    reformulation improves model physics by representing the brine content
217    of the upper ice with a variable heat capacity.  It also improves
218    model numerics and consumes less computer time and memory.  The Winton
219    sea-ice thermodynamics have been ported to the MIT GCM; they currently
220    reside under pkg/thsice. The package pkg/thsice is fully compatible
221    with pkg/seaice and with pkg/exf. When turned on together with
222    pkg/seaice, the zero-layer thermodynamics are replaced by the Winton
223    thermodynamics.
224    
225  The sea ice model requires the following input fields: 10-m winds, 2-m  The sea ice model requires the following input fields: 10-m winds, 2-m
226  air temperature and specific humidity, downward longwave and shortwave  air temperature and specific humidity, downward longwave and shortwave
227  radiations, precipitation, evaporation, and river and glacier runoff.  radiations, precipitation, evaporation, and river and glacier runoff.
228  The sea ice model also requires surface temperature from the ocean  The sea ice model also requires surface temperature from the ocean
229  model and third level horizontal velocity which is used as a proxy for  model and the top level horizontal velocity.  Output fields are
230  surface geostrophic velocity.  Output fields are surface wind stress,  surface wind stress, evaporation minus precipitation minus runoff, net
231  evaporation minus precipitation minus runoff, net surface heat flux,  surface heat flux, and net shortwave flux.  The sea-ice model is
232  and net shortwave flux.  The sea-ice model is global: in ice-free  global: in ice-free regions bulk formulae are used to estimate oceanic
233  regions bulk formulae are used to estimate oceanic forcing from the  forcing from the atmospheric fields.
234  atmospheric fields.  
235    \paragraph{Dynamics\label{sec:pkg:seaice:dynamics}}
236    
237    \newcommand{\vek}[1]{\ensuremath{\vec{\mathbf{#1}}}}
238    \newcommand{\vtau}{\vek{\mathbf{\tau}}}
239    The momentum equation of the sea-ice model is
240    \begin{equation}
241      \label{eq:momseaice}
242      m \frac{D\vek{u}}{Dt} = -mf\vek{k}\times\vek{u} + \vtau_{air} +
243      \vtau_{ocean} - m \nabla{\phi(0)} + \vek{F},
244    \end{equation}
245    where $m=m_{i}+m_{s}$ is the ice and snow mass per unit area;
246    $\vek{u}=u\vek{i}+v\vek{j}$ is the ice velocity vector;
247    $\vek{i}$, $\vek{j}$, and $\vek{k}$ are unit vectors in the $x$, $y$, and $z$
248    directions, respectively;
249    $f$ is the Coriolis parameter;
250    $\vtau_{air}$ and $\vtau_{ocean}$ are the wind-ice and ocean-ice stresses,
251    respectively;
252    $g$ is the gravity accelation;
253    $\nabla\phi(0)$ is the gradient (or tilt) of the sea surface height;
254    $\phi(0) = g\eta + p_{a}/\rho_{0} + mg/\rho_{0}$ is the sea surface
255    height potential in response to ocean dynamics ($g\eta$), to
256    atmospheric pressure loading ($p_{a}/\rho_{0}$, where $\rho_{0}$ is a
257    reference density) and a term due to snow and ice loading \citep{cam08};
258    and $\vek{F}=\nabla\cdot\sigma$ is the divergence of the internal ice
259    stress tensor $\sigma_{ij}$. %
260    Advection of sea-ice momentum is neglected. The wind and ice-ocean stress
261    terms are given by
262    \begin{align*}
263      \vtau_{air}   = & \rho_{air}  C_{air}   |\vek{U}_{air}  -\vek{u}|
264                       R_{air}  (\vek{U}_{air}  -\vek{u}), \\
265      \vtau_{ocean} = & \rho_{ocean}C_{ocean} |\vek{U}_{ocean}-\vek{u}|
266                       R_{ocean}(\vek{U}_{ocean}-\vek{u}),
267    \end{align*}
268    where $\vek{U}_{air/ocean}$ are the surface winds of the atmosphere
269    and surface currents of the ocean, respectively; $C_{air/ocean}$ are
270    air and ocean drag coefficients; $\rho_{air/ocean}$ are reference
271    densities; and $R_{air/ocean}$ are rotation matrices that act on the
272    wind/current vectors.
273    
274    For an isotropic system the stress tensor $\sigma_{ij}$ ($i,j=1,2$) can
275    be related to the ice strain rate and strength by a nonlinear
276    viscous-plastic (VP) constitutive law \citep{hib79, zhang97}:
277    \begin{equation}
278      \label{eq:vpequation}
279      \sigma_{ij}=2\eta(\dot{\epsilon}_{ij},P)\dot{\epsilon}_{ij}
280      + \left[\zeta(\dot{\epsilon}_{ij},P) -
281        \eta(\dot{\epsilon}_{ij},P)\right]\dot{\epsilon}_{kk}\delta_{ij}  
282      - \frac{P}{2}\delta_{ij}.
283    \end{equation}
284    The ice strain rate is given by
285    \begin{equation*}
286      \dot{\epsilon}_{ij} = \frac{1}{2}\left(
287        \frac{\partial{u_{i}}}{\partial{x_{j}}} +
288        \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).
289    \end{equation*}
290    The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on
291    both thickness $h$ and compactness (concentration) $c$:
292    \begin{equation}
293      P_{\max} = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},
294    \label{eq:icestrength}
295    \end{equation}
296    with the constants $P^{*}$ (run-time parameter \code{SEAICE\_strength}) and
297    $C^{*}=20$. The nonlinear bulk and shear
298    viscosities $\eta$ and $\zeta$ are functions of ice strain rate
299    invariants and ice strength such that the principal components of the
300    stress lie on an elliptical yield curve with the ratio of major to
301    minor axis $e$ equal to $2$; they are given by:
302    \begin{align*}
303      \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})},
304       \zeta_{\max}\right) \\
305      \eta =& \frac{\zeta}{e^2} \\
306      \intertext{with the abbreviation}
307      \Delta = & \left[
308        \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)
309        (1+e^{-2}) +  4e^{-2}\dot{\epsilon}_{12}^2 +
310        2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})
311      \right]^{\frac{1}{2}}.
312    \end{align*}
313    The bulk viscosities are bounded above by imposing both a minimum
314    $\Delta_{\min}$ (for numerical reasons, run-time parameter
315    \code{SEAICE\_EPS} with a default value of
316    $10^{-10}\text{\,s}^{-1}$) and a maximum $\zeta_{\max} =
317    P_{\max}/\Delta^*$, where
318    $\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. (There is also
319    the option of bounding $\zeta$ from below by setting run-time
320    parameter \code{SEAICE\_zetaMin} $>0$, but this is generally not
321    recommended). For stress tensor computation the replacement pressure $P
322    = 2\,\Delta\zeta$ \citep{hibler95} is used so that the stress state
323    always lies on the elliptic yield curve by definition.
324    
325    In the so-called truncated ellipse method the shear viscosity $\eta$
326    is capped to suppress any tensile stress \citep{hibler97, geiger98}:
327    \begin{equation}
328      \label{eq:etatem}
329      \eta = \min\left(\frac{\zeta}{e^2},
330      \frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})}
331      {\sqrt{(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})^2
332          +4\dot{\epsilon}_{12}^2}}\right).
333    \end{equation}
334    To enable this method, set \code{\#define SEAICE\_ALLOW\_TEM} in
335    \code{SEAICE\_OPTIONS.h} and turn it on with
336    \code{SEAICEuseTEM=.TRUE.} in \code{data.seaice}.
337    
338    In the current implementation, the VP-model is integrated with the
339    semi-implicit line successive over relaxation (LSOR)-solver of
340    \citet{zhang97}, which allows for long time steps that, in our case,
341    are limited by the explicit treatment of the Coriolis term. The
342    explicit treatment of the Coriolis term does not represent a severe
343    limitation because it restricts the time step to approximately the
344    same length as in the ocean model where the Coriolis term is also
345    treated explicitly.
346    
347    \citet{hun97}'s introduced an elastic contribution to the strain
348    rate in order to regularize Eq.~\ref{eq:vpequation} in such a way that
349    the resulting elastic-viscous-plastic (EVP) and VP models are
350    identical at steady state,
351    \begin{equation}
352      \label{eq:evpequation}
353      \frac{1}{E}\frac{\partial\sigma_{ij}}{\partial{t}} +
354      \frac{1}{2\eta}\sigma_{ij}
355      + \frac{\eta - \zeta}{4\zeta\eta}\sigma_{kk}\delta_{ij}  
356      + \frac{P}{4\zeta}\delta_{ij}
357      = \dot{\epsilon}_{ij}.
358    \end{equation}
359    %In the EVP model, equations for the components of the stress tensor
360    %$\sigma_{ij}$ are solved explicitly. Both model formulations will be
361    %used and compared the present sea-ice model study.
362    The EVP-model uses an explicit time stepping scheme with a short
363    timestep. According to the recommendation of \citet{hun97}, the
364    EVP-model is stepped forward in time 120 times within the physical
365    ocean model time step (although this parameter is under debate), to
366    allow for elastic waves to disappear.  Because the scheme does not
367    require a matrix inversion it is fast in spite of the small internal
368    timestep and simple to implement on parallel computers
369    \citep{hun97}. For completeness, we repeat the equations for the
370    components of the stress tensor $\sigma_{1} =
371    \sigma_{11}+\sigma_{22}$, $\sigma_{2}= \sigma_{11}-\sigma_{22}$, and
372    $\sigma_{12}$. Introducing the divergence $D_D =
373    \dot{\epsilon}_{11}+\dot{\epsilon}_{22}$, and the horizontal tension
374    and shearing strain rates, $D_T =
375    \dot{\epsilon}_{11}-\dot{\epsilon}_{22}$ and $D_S =
376    2\dot{\epsilon}_{12}$, respectively, and using the above
377    abbreviations, the equations~\ref{eq:evpequation} can be written as:
378    \begin{align}
379      \label{eq:evpstresstensor1}
380      \frac{\partial\sigma_{1}}{\partial{t}} + \frac{\sigma_{1}}{2T} +
381      \frac{P}{2T} &= \frac{P}{2T\Delta} D_D \\
382      \label{eq:evpstresstensor2}
383      \frac{\partial\sigma_{2}}{\partial{t}} + \frac{\sigma_{2} e^{2}}{2T}
384      &= \frac{P}{2T\Delta} D_T \\
385      \label{eq:evpstresstensor12}
386      \frac{\partial\sigma_{12}}{\partial{t}} + \frac{\sigma_{12} e^{2}}{2T}
387      &= \frac{P}{4T\Delta} D_S
388    \end{align}
389    Here, the elastic parameter $E$ is redefined in terms of a damping timescale
390    $T$ for elastic waves \[E=\frac{\zeta}{T}.\]
391    $T=E_{0}\Delta{t}$ with the tunable parameter $E_0<1$ and
392    the external (long) timestep $\Delta{t}$. \citet{hun97} recommend
393    $E_{0} = \frac{1}{3}$ (which is the default value in the code).
394    
395    To use the EVP solver, make sure that both \code{SEAICE\_CGRID} and
396    \code{SEAICE\_ALLOW\_EVP} are defined in \code{SEAICE\_OPTIONS.h}
397    (default). The solver is turned on by setting the sub-cycling time
398    step \code{SEAICE\_deltaTevp} to a value larger than zero. The
399    choice of this time step is under debate. \citet{hun97} recommend
400    order(120) time steps for the EVP solver within one model time step
401    $\Delta{t}$ (\code{deltaTmom}). One can also choose order(120) time
402    steps within the forcing time scale, but then we recommend adjusting
403    the damping time scale $T$ accordingly, by setting either
404    \code{SEAICE\_elasticParm} ($E_{0}$), so that
405    $E_{0}\Delta{t}=\mbox{forcing time scale}$, or directly
406    \code{SEAICE\_evpTauRelax} ($T$) to the forcing time scale.
407    
408    Moving sea ice exerts a stress on the ocean which is the opposite of
409    the stress $\vtau_{ocean}$ in Eq.~\ref{eq:momseaice}. This stess is
410    applied directly to the surface layer of the ocean model. An
411    alternative ocean stress formulation is given by \citet{hibler87}.
412    Rather than applying $\vtau_{ocean}$ directly, the stress is derived
413    from integrating over the ice thickness to the bottom of the oceanic
414    surface layer. In the resulting equation for the \emph{combined}
415    ocean-ice momentum, the interfacial stress cancels and the total
416    stress appears as the sum of windstress and divergence of internal ice
417    stresses: $\delta(z) (\vtau_{air} + \vek{F})/\rho_0$, \citep[see also
418    Eq.\,2 of][]{hibler87}. The disadvantage of this formulation is that
419    now the velocity in the surface layer of the ocean that is used to
420    advect tracers, is really an average over the ocean surface
421    velocity and the ice velocity leading to an inconsistency as the ice
422    temperature and salinity are different from the oceanic variables.
423    To turn on the stress formulation of \citet{hibler87}, set
424    \code{useHB87StressCoupling=.TRUE.} in \code{data.seaice}.
425    
426    
427    % Our discretization differs from \citet{zhang97, zhang03} in the
428    % underlying grid, namely the Arakawa C-grid, but is otherwise
429    % straightforward. The EVP model, in particular, is discretized
430    % naturally on the C-grid with $\sigma_{1}$ and $\sigma_{2}$ on the
431    % center points and $\sigma_{12}$ on the corner (or vorticity) points of
432    % the grid. With this choice all derivatives are discretized as central
433    % differences and averaging is only involved in computing $\Delta$ and
434    % $P$ at vorticity points.
435    
436    \paragraph{Finite-volume discretization of the stress tensor
437      divergence\label{sec:pkg:seaice:discretization}}
438    On an Arakawa C~grid, ice thickness and concentration and thus ice
439    strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are
440    naturally defined a C-points in the center of the grid
441    cell. Discretization requires only averaging of $\zeta$ and $\eta$ to
442    vorticity or Z-points (or $\zeta$-points, but here we use Z in order
443    avoid confusion with the bulk viscosity) at the bottom left corner of
444    the cell to give $\overline{\zeta}^{Z}$ and $\overline{\eta}^{Z}$. In
445    the following, the superscripts indicate location at Z or C points,
446    distance across the cell (F), along the cell edge (G), between
447    $u$-points (U), $v$-points (V), and C-points (C). The control volumes
448    of the $u$- and $v$-equations in the grid cell at indices $(i,j)$ are
449    $A_{i,j}^{w}$ and $A_{i,j}^{s}$, respectively. With these definitions
450    (which follow the model code documentation except that $\zeta$-points
451    have been renamed to Z-points), the strain rates are discretized as:
452    \begin{align}
453      \dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag
454      => (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}}
455       + k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\
456      \dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag
457      => (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}}
458       + k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\
459       \dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl(
460       \partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1}
461       \biggr) \\ \notag
462      => (\epsilon_{12})_{i,j}^Z &= \frac{1}{2}
463      \biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V}
464       + \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag
465      &\phantom{=\frac{1}{2}\biggl(}
466       - k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
467       - k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
468       \biggr),
469    \end{align}
470    so that the diagonal terms of the strain rate tensor are naturally
471    defined at C-points and the symmetric off-diagonal term at
472    Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and
473    $v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via
474    ``ghost-points''; for free slip boundary conditions
475    $(\epsilon_{12})^Z=0$ on boundaries.
476    
477    For a spherical polar grid, the coefficients of the metric terms are
478    $k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and
479    the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi
480    \Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a
481    general orthogonal curvilinear grid, $k_{1}$ and
482    $k_{2}$ can be approximated by finite differences of the cell widths:
483    \begin{align}
484      k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}}
485      \frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\
486      k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}}
487      \frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\
488      k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}}
489      \frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\
490      k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}}
491      \frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}}
492    \end{align}
493    
494    The stress tensor is given by the constitutive viscous-plastic
495    relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} +
496    [(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2
497    ]\delta_{\alpha\beta}$ \citep{hib79}. The stress tensor divergence
498    $(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is
499    discretized in finite volumes. This conveniently avoids dealing with
500    further metric terms, as these are ``hidden'' in the differential cell
501    widths. For the $u$-equation ($\alpha=1$) we have:
502    \begin{align}
503      (\nabla\sigma)_{1}: \phantom{=}&
504      \frac{1}{A_{i,j}^w}
505      \int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2
506      \\\notag
507      =& \frac{1}{A_{i,j}^w} \biggl\{
508      \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
509      + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
510      \biggr\} \\ \notag
511      \approx& \frac{1}{A_{i,j}^w} \biggl\{
512      \Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
513      + \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
514      \biggr\} \\ \notag
515      =& \frac{1}{A_{i,j}^w} \biggl\{
516      (\Delta{x}_2\sigma_{11})_{i,j}^C -
517      (\Delta{x}_2\sigma_{11})_{i-1,j}^C
518      \\\notag
519      \phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{}
520      + (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z
521      \biggr\}
522      \intertext{with}
523      (\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+}
524      \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
525      \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
526      &+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
527      k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
528      \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
529      \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
530      \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
531      k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
532      \phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\
533      (\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+}
534      \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
535      \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag
536      & + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
537      \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
538      & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
539      k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
540      & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
541      k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
542    \end{align}
543    
544    Similarly, we have for the $v$-equation ($\alpha=2$):
545    \begin{align}
546      (\nabla\sigma)_{2}: \phantom{=}&
547      \frac{1}{A_{i,j}^s}
548      \int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2
549      \\\notag
550      =& \frac{1}{A_{i,j}^s} \biggl\{
551      \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
552      + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
553      \biggr\} \\ \notag
554      \approx& \frac{1}{A_{i,j}^s} \biggl\{
555      \Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
556      + \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
557      \biggr\} \\ \notag
558      =& \frac{1}{A_{i,j}^s} \biggl\{
559      (\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z
560      \\ \notag
561      \phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{}
562      + (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C
563      \biggr\}
564      \intertext{with}
565      (\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+}
566      \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
567      \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}}
568      \\\notag &
569      + \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
570      \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\\notag
571      &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
572      k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
573      \\\notag &
574      - \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
575      k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag
576      (\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+}
577      \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
578      \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
579      &+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
580      k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
581      & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
582      \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
583      & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
584      k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
585      & -\Delta{x}_{i,j}^{F} \frac{P}{2}
586    \end{align}
587    
588    Again, no slip boundary conditions are realized via ghost points and
589    $u_{i,j-1}+u_{i,j}=0$ and $v_{i-1,j}+v_{i,j}=0$ across boundaries. For
590    free slip boundary conditions the lateral stress is set to zeros. In
591    analogy to $(\epsilon_{12})^Z=0$ on boundaries, we set
592    $\sigma_{21}^{Z}=0$, or equivalently $\eta_{i,j}^{Z}=0$, on boundaries.
593    
594    \paragraph{Thermodynamics\label{sec:pkg:seaice:thermodynamics}}
595    
596    In its original formulation the sea ice model \citep{menemenlis05}
597    uses simple thermodynamics following the appendix of
598    \citet{sem76}. This formulation does not allow storage of heat,
599    that is, the heat capacity of ice is zero. Upward conductive heat flux
600    is parameterized assuming a linear temperature profile and together
601    with a constant ice conductivity. It is expressed as
602    $(K/h)(T_{w}-T_{0})$, where $K$ is the ice conductivity, $h$ the ice
603    thickness, and $T_{w}-T_{0}$ the difference between water and ice
604    surface temperatures. This type of model is often refered to as a
605    ``zero-layer'' model. The surface heat flux is computed in a similar
606    way to that of \citet{parkinson79} and \citet{manabe79}.
607    
608    The conductive heat flux depends strongly on the ice thickness $h$.
609    However, the ice thickness in the model represents a mean over a
610    potentially very heterogeneous thickness distribution.  In order to
611    parameterize a sub-grid scale distribution for heat flux
612    computations, the mean ice thickness $h$ is split into seven thickness
613    categories $H_{n}$ that are equally distributed between $2h$ and a
614    minimum imposed ice thickness of $5\text{\,cm}$ by $H_n=
615    \frac{2n-1}{7}\,h$ for $n\in[1,7]$. The heat fluxes computed for each
616    thickness category is area-averaged to give the total heat flux
617    \citep{hibler84}. To use this thickness category parameterization set
618    \code{\#define SEAICE\_MULTICATEGORY}; note that this requires
619    different restart files and switching this flag on in the middle of an
620    integration is not possible.
621    
622    The atmospheric heat flux is balanced by an oceanic heat flux from
623    below.  The oceanic flux is proportional to
624    $\rho\,c_{p}\left(T_{w}-T_{fr}\right)$ where $\rho$ and $c_{p}$ are
625    the density and heat capacity of sea water and $T_{fr}$ is the local
626    freezing point temperature that is a function of salinity. This flux
627    is not assumed to instantaneously melt or create ice, but a time scale
628    of three days (run-time parameter \code{SEAICE\_gamma\_t}) is used
629    to relax $T_{w}$ to the freezing point.
630    %
631    The parameterization of lateral and vertical growth of sea ice follows
632    that of \citet{hib79, hib80}; the so-called lead closing parameter
633    $h_{0}$ (run-time parameter \code{HO}) has a default value of
634    0.5~meters.
635    
636    On top of the ice there is a layer of snow that modifies the heat flux
637    and the albedo \citep{zha98a}. Snow modifies the effective
638    conductivity according to
639    \[\frac{K}{h} \rightarrow \frac{1}{\frac{h_{s}}{K_{s}}+\frac{h}{K}},\]
640    where $K_s$ is the conductivity of snow and $h_s$ the snow thickness.
641    If enough snow accumulates so that its weight submerges the ice and
642    the snow is flooded, a simple mass conserving parameterization of
643    snowice formation (a flood-freeze algorithm following Archimedes'
644    principle) turns snow into ice until the ice surface is back at $z=0$
645    \citep{leppaeranta83}. The flood-freeze algorithm is enabled with the CPP-flag
646    \code{SEAICE\_ALLOW\_FLOODING} and turned on with run-time parameter
647    \code{SEAICEuseFlooding=.true.}.
648    
649    Effective ice thickness (ice volume per unit area,
650    $c\cdot{h}$), concentration $c$ and effective snow thickness
651    ($c\cdot{h}_{s}$) are advected by ice velocities:
652    \begin{equation}
653      \label{eq:advection}
654      \frac{\partial{X}}{\partial{t}} = - \nabla\cdot\left(\vek{u}\,X\right) +
655      \Gamma_{X} + D_{X}
656    \end{equation}
657    where $\Gamma_X$ are the thermodynamic source terms and $D_{X}$ the
658    diffusive terms for quantities $X=(c\cdot{h}), c, (c\cdot{h}_{s})$.
659    %
660    From the various advection scheme that are available in the MITgcm, we
661    choose flux-limited schemes \citep[multidimensional 2nd and 3rd-order
662    advection scheme with flux limiter][]{roe:85, hundsdorfer94} to
663    preserve sharp gradients and edges that are typical of sea ice
664    distributions and to rule out unphysical over- and undershoots
665    (negative thickness or concentration). These scheme conserve volume
666    and horizontal area and are unconditionally stable, so that we can set
667    $D_{X}=0$. Run-timeflags: \code{SEAICEadvScheme} (default=2),
668    \code{DIFF1} (default=0.004).
669    
670    There is considerable doubt about the reliability of a ``zero-layer''
671    thermodynamic model --- \citet{semtner84} found significant errors in
672    phase (one month lead) and amplitude ($\approx$50\%\,overestimate) in
673    such models --- so that today many sea ice models employ more complex
674    thermodynamics. The MITgcm sea ice model provides the option to use
675    the thermodynamics model of \citet{win00}, which in turn is based
676    on the 3-layer model of \citet{sem76} and which treats brine
677    content by means of enthalpy conservation. This scheme requires
678    additional state variables, namely the enthalpy of the two ice layers
679    (instead of effective ice salinity), to be advected by ice velocities.
680    %
681    The internal sea ice temperature is inferred from ice enthalpy.  To
682    avoid unphysical (negative) values for ice thickness and
683    concentration, a positive 2nd-order advection scheme with a SuperBee
684    flux limiter \citep{roe:85} is used in this study to advect all
685    sea-ice-related quantities of the \citet{win00} thermodynamic
686    model.  Because of the non-linearity of the advection scheme, care
687    must be taken in advecting these quantities: when simply using ice
688    velocity to advect enthalpy, the total energy (i.e., the volume
689    integral of enthalpy) is not conserved. Alternatively, one can advect
690    the energy content (i.e., product of ice-volume and enthalpy) but then
691    false enthalpy extrema can occur, which then leads to unrealistic ice
692    temperature.  In the currently implemented solution, the sea-ice mass
693    flux is used to advect the enthalpy in order to ensure conservation of
694    enthalpy and to prevent false enthalpy extrema.
695    
696  %----------------------------------------------------------------------  %----------------------------------------------------------------------
697    
698  \subsubsection{Key subroutines  \subsubsection{Key subroutines
699  \label{sec:pkg:seaice:subroutines}}  \label{sec:pkg:seaice:subroutines}}
700    
701  Top-level routine: \texttt{exf\_getforcing.F}  Top-level routine: \code{seaice\_model.F}
702    
703  {\footnotesize  {\footnotesize
704  \begin{verbatim}  \begin{verbatim}
# Line 197  c  seaice_model (TOP LEVEL ROUTINE) Line 709  c  seaice_model (TOP LEVEL ROUTINE)
709  c  |  c  |
710  c  |-- #ifdef SEAICE_CGRID  c  |-- #ifdef SEAICE_CGRID
711  c  |     SEAICE_DYNSOLVER  c  |     SEAICE_DYNSOLVER
712    c  |     |
713    c  |     |-- < compute proxy for geostrophic velocity >
714    c  |     |
715    c  |     |-- < set up mass per unit area and Coriolis terms >
716    c  |     |
717    c  |     |-- < dynamic masking of areas with no ice >
718    c  |     |
719    c  |     |
720    
721  c  |   #ELSE  c  |   #ELSE
722  c  |     DYNSOLVER  c  |     DYNSOLVER
723  c  |   #ENDIF  c  |   #ENDIF
724  c  |  c  |
725  c  ...  c  |-- if ( useOBCS )
726    c  |     OBCS_APPLY_UVICE
727    c  |
728    c  |-- if ( SEAICEadvHeff .OR. SEAICEadvArea .OR. SEAICEadvSnow .OR. SEAICEadvSalt )
729    c  |     SEAICE_ADVDIFF
730    c  |
731    c  |-- if ( usePW79thermodynamics )
732    c  |     SEAICE_GROWTH
733    c  |
734    c  |-- if ( useOBCS )
735    c  |     if ( SEAICEadvHeff ) OBCS_APPLY_HEFF
736    c  |     if ( SEAICEadvArea ) OBCS_APPLY_AREA
737    c  |     if ( SEAICEadvSALT ) OBCS_APPLY_HSALT
738    c  |     if ( SEAICEadvSNOW ) OBCS_APPLY_HSNOW
739    c  |
740    c  |-- < do various exchanges >
741    c  |
742    c  |-- < do additional diagnostics >
743    c  |
744    c  o
745    
746  \end{verbatim}  \end{verbatim}
747  }  }
# Line 209  c  ... Line 749  c  ...
749    
750  %----------------------------------------------------------------------  %----------------------------------------------------------------------
751    
752  \subsubsection{EXF diagnostics  \subsubsection{SEAICE diagnostics
753  \label{sec:pkg:seaice:diagnostics}}  \label{sec:pkg:seaice:diagnostics}}
754    
755  Diagnostics output is available via the diagnostics package  Diagnostics output is available via the diagnostics package
# Line 231  Table \ref{tab:pkg:seaice:diagnostics}. Line 771  Table \ref{tab:pkg:seaice:diagnostics}.
771   SIvice  |  1 |VV  |m/s             |SEAICE merid. ice velocity, >0 from South to North   SIvice  |  1 |VV  |m/s             |SEAICE merid. ice velocity, >0 from South to North
772   SIhsnow |  1 |SM  |m               |SEAICE snow thickness   SIhsnow |  1 |SM  |m               |SEAICE snow thickness
773   SIhsalt |  1 |SM  |g/m^2           |SEAICE effective salinity   SIhsalt |  1 |SM  |g/m^2           |SEAICE effective salinity
774   SIatmFW |  1 |SM  |m/s             |Net freshwater flux from the atmosphere (+=down)   SIatmFW |  1 |SM  |kg/m^2/s        |Net freshwater flux from the atmosphere (+=down)
775   SIuwind |  1 |SM  |m/s             |SEAICE zonal 10-m wind speed, >0 increases uVel   SIuwind |  1 |SM  |m/s             |SEAICE zonal 10-m wind speed, >0 increases uVel
776   SIvwind |  1 |SM  |m/s             |SEAICE meridional 10-m wind speed, >0 increases uVel   SIvwind |  1 |SM  |m/s             |SEAICE meridional 10-m wind speed, >0 increases uVel
777   SIfu    |  1 |UU  |N/m^2           |SEAICE zonal surface wind stress, >0 increases uVel   SIfu    |  1 |UU  |N/m^2           |SEAICE zonal surface wind stress, >0 increases uVel
778   SIfv    |  1 |VV  |N/m^2           |SEAICE merid. surface wind stress, >0 increases vVel   SIfv    |  1 |VV  |N/m^2           |SEAICE merid. surface wind stress, >0 increases vVel
779   SIempmr |  1 |SM  |m/s             |SEAICE upward freshwater flux, > 0 increases salt   SIempmr |  1 |SM  |kg/m^2/s        |SEAICE upward freshwater flux, > 0 increases salt
780   SIqnet  |  1 |SM  |W/m^2           |SEAICE upward heatflux, turb+rad, >0 decreases theta   SIqnet  |  1 |SM  |W/m^2           |SEAICE upward heatflux, turb+rad, >0 decreases theta
781   SIqsw   |  1 |SM  |W/m^2           |SEAICE upward shortwave radiat., >0 decreases theta   SIqsw   |  1 |SM  |W/m^2           |SEAICE upward shortwave radiat., >0 decreases theta
782   SIpress |  1 |SM  |m^2/s^2         |SEAICE strength (with upper and lower limit)   SIpress |  1 |SM  |m^2/s^2         |SEAICE strength (with upper and lower limit)
# Line 266  Table \ref{tab:pkg:seaice:diagnostics}. Line 806  Table \ref{tab:pkg:seaice:diagnostics}.
806   DFyESSLT|  1 |VV  |psu.m^2/s       |Meridional Diffusive Flux of seaice salinity   DFyESSLT|  1 |VV  |psu.m^2/s       |Meridional Diffusive Flux of seaice salinity
807  \end{verbatim}  \end{verbatim}
808  }  }
809  \caption{~}  \caption{Available diagnostics of the seaice-package}
810  \end{table}  \end{table}
811    
812    
# Line 279  Table \ref{tab:pkg:seaice:diagnostics}. Line 819  Table \ref{tab:pkg:seaice:diagnostics}.
819  \item{Labrador Sea experiment in lab\_sea verification directory. }  \item{Labrador Sea experiment in lab\_sea verification directory. }
820  \end{itemize}  \end{itemize}
821    
822    
823    %%% Local Variables:
824    %%% mode: latex
825    %%% TeX-master: "../manual"
826    %%% End:

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.9

  ViewVC Help
Powered by ViewVC 1.1.22