--- manual/s_phys_pkgs/text/seaice.tex 2014/04/01 07:30:32 1.21 +++ manual/s_phys_pkgs/text/seaice.tex 2015/01/21 18:18:22 1.22 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_phys_pkgs/text/seaice.tex,v 1.21 2014/04/01 07:30:32 mlosch Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_phys_pkgs/text/seaice.tex,v 1.22 2015/01/21 18:18:22 mlosch Exp $ % $Name: $ %%EH3 Copied from "MITgcm/pkg/seaice/seaice_description.tex" @@ -592,6 +592,60 @@ $E_{0}\Delta{t}=\mbox{forcing time scale}$, or directly \code{SEAICE\_evpTauRelax} ($T$) to the forcing time scale. +\paragraph{More stable variant of Elastic-Viscous-Plastic Dynamics: EVP*\label{sec:pkg:seaice:EVPstar}}~\\ +% +The genuine EVP schemes appears to give noisy solutions \citep{hun01, + lemieux12, bouillon13}. This has lead to a modified EVP or EVP* +\citep{lemieux12, bouillon13, kimmritz15}; here, refer to these +variants by EVP*. The main idea is to modify the ``natural'' +time-discretization of the momentum equations: +\begin{equation} + \label{eq:evpstar} + m\frac{D\vec{u}}{Dt} \approx m\frac{u^{p+1}-u^{n}}{\Delta{t}} + + \beta^{*}\frac{u^{p+1}-u^{p}}{\Delta{t}_{\mathrm{EVP}}} +\end{equation} +where $n$ is the previous time step index, and $p$ is the previous +sub-cycling index. The term allows the definition of a residual +$|u^{p+1}-u^{p}|$ that, as $u^{p+1} \rightarrow u^{n+1}$, converges to +$0$ and a re-interpretation of EVP as a pure iterative solver where +the sub-cycling has lost all time-relation \citep{bouillon13, + kimmritz15}. Using the terminology of \citet{kimmritz15}, the +evolution equations of stress $\sigma_{ij}$ and momentum $\vec{u}$ can +be written as: +\begin{align} + \label{eq:evpstarsigma} + \sigma_{ij}^{p+1}&=\sigma_{ij}^p+\frac{1}{\alpha} + \Big(\sigma_{ij}(\vec{u}^p)-\sigma_{ij}^p\Big), + \phantom{\int}\\ + \label{eq:evpstarmom} + \vec{u}^{p+1}&=\vec{u}^p+\frac{1}{\beta} + \Big(\frac{\Delta t}{m}\nabla \cdot{\bf \sigma}^{p+1}+ + \frac{\Delta t}{m}\vec{R}^{p+1/2}+\vec{u}_n-\vec{u}^p\Big). +\end{align} +$\vec{R}$ contains all terms in the momentum equations except for the +rheology terms and the time derivative, $\alpha$ and $\beta$ are free +parameters (\code{SEAICE\_evpAlpha}, \code{SEAICE\_evpBeta}) that +replace the time stepping parameters \code{SEAICE\_deltaTevp} +($\Delta{T}_{\mathrm{EVP}}$), \code{SEAICE\_elasticParm} ($E_{0}$), or +\code{SEAICE\_evpTauRelax} ($T$). $\alpha$ and $\beta$ determine the +speed of convergence and the stability. Usually, it makes sense to use +$\alpha = \beta$, and \code{SEAICEnEVPstarSteps} $>> \alpha = \beta$ +\citep{kimmritz15}. + +In order to use EVP* in the MITgcm, set \code{SEAICEuseEVPstar = + .TRUE.,} in \code{data.seaice}. \code{SEAICEuseEVPrev =.TRUE.,} uses +the actual form of equations (\ref{eq:evpstarsigma}) and +(\ref{eq:evpstarmom}) with fewer implicit terms and the factor of +$e^{2}$ dropped in the stress equations (\ref{eq:evpstresstensor2}) +and (\ref{eq:evpstresstensor12}). This turns out to improve +convergence \citep{bouillon13}. + +Note, that for historical reasons, \code{SEAICE\_deltaTevp} needs to +be set to some value in order to use also EVP*. Also note, that +probably because of the C-grid staggering of velocities and stresses, +EVP* does not converge as successfully as in \citet{kimmritz15}. + + \paragraph{Truncated ellipse method (TEM) for yield curve \label{sec:pkg:seaice:TEM}}~\\ % In the so-called truncated ellipse method the shear viscosity $\eta$