/[MITgcm]/manual/s_phys_pkgs/text/seaice.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/seaice.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.5 by molod, Wed Jun 28 15:35:07 2006 UTC revision 1.11 by jmc, Fri Aug 27 13:15:37 2010 UTC
# Line 11  Line 11 
11  <!-- CMIREDIR:package_seaice: -->  <!-- CMIREDIR:package_seaice: -->
12  \end{rawhtml}  \end{rawhtml}
13    
14    Authors: Martin Losch, Dimitris Menemenlis, An Nguyen, Jean-Michel Campin,
15    Patrick Heimbach, Chris Hill and Jinlun Zhang
16    
17    %----------------------------------------------------------------------
18    \subsubsection{Introduction
19    \label{sec:pkg:exf:intro}}
20    
21    
22  Package ``seaice'' provides a dynamic and thermodynamic interactive  Package ``seaice'' provides a dynamic and thermodynamic interactive
23  sea-ice model.  Sea-ice model thermodynamics are based on Hibler  sea-ice model.
24  \cite{hib80}, that is, a 2-category model that simulates ice thickness  
25  and concentration.  Snow is simulated as per Zhang et al.  CPP options enable or disable different aspects of the package
26  \cite{zha98a}.  Although recent years have seen an increased use of  (Section \ref{sec:pkg:seaice:config}).
27  multi-category thickness distribution sea-ice models for climate  Run-Time options, flags, filenames and field-related dates/times are
28  studies, the Hibler 2-category ice model is still the most widely used  set in \code{data.seaice}
29  model and has resulted in realistic simulation of sea-ice variability  (Section \ref{sec:pkg:seaice:runtime}).
30  on regional and global scales.  Being less complicated, compared to  A description of key subroutines is given in Section
31  multi-category models, the 2-category model permits easier application  \ref{sec:pkg:seaice:subroutines}.
32  of adjoint model optimization methods.  Input fields, units and sign conventions are summarized in
33    Section \ref{sec:pkg:seaice:fields_units}, and available diagnostics
34  Note, however, that the Hibler 2-category model and its variants use a  output is listed in Section \ref{sec:pkg:seaice:diagnostics}.
35  so-called zero-layer thermodynamic model to estimate ice growth and  
36  decay.  The zero-layer thermodynamic model assumes that ice does not  %----------------------------------------------------------------------
37  store heat and, therefore, tends to exaggerate the seasonal  
38  variability in ice thickness.  This exaggeration can be significantly  \subsubsection{SEAICE configuration, compiling \& running}
39  reduced by using Semtner's \cite{sem76} three-layer thermodynamic  
40  model that permits heat storage in ice.  Recently, the three-layer  \paragraph{Compile-time options
41  thermodynamic model has been reformulated by Winton \cite{win00}.  The  \label{sec:pkg:seaice:config}}
42  reformulation improves model physics by representing the brine content  ~
43  of the upper ice with a variable heat capacity.  It also improves  
44  model numerics and consumes less computer time and memory.  The Winton  As with all MITgcm packages, SEAICE can be turned on or off at compile time
45  sea-ice thermodynamics have been ported to the MIT GCM; they currently  %
46  reside under pkg/thsice.  At present pkg/thsice is not fully  \begin{itemize}
47  compatible with pkg/seaice and with pkg/exf.  But the eventual  %
48  objective is to have fully compatible and interchangeable  \item
49  thermodynamic packages for sea-ice, so that it becomes possible to use  using the \code{packages.conf} file by adding \code{seaice} to it,
50  Hibler dynamics with Winton thermodyanmics.  %
51    \item
52    or using \code{genmake2} adding
53    \code{-enable=seaice} or \code{-disable=seaice} switches
54    %
55    \item
56    \textit{required packages and CPP options}: \\
57    SEAICE requires the external forcing package \code{exf} to be enabled;
58    no additional CPP options are required.
59    %
60    \end{itemize}
61    (see Section \ref{sect:buildingCode}).
62    
63    Parts of the SEAICE code can be enabled or disabled at compile time
64    via CPP preprocessor flags. These options are set in either
65    \code{SEAICE\_OPTIONS.h} or in \code{ECCO\_CPPOPTIONS.h}.
66    Table \ref{tab:pkg:seaice:cpp} summarizes these options.
67    
68    \begin{table}[h!]
69    \centering
70      \label{tab:pkg:seaice:cpp}
71      {\footnotesize
72        \begin{tabular}{|l|p{10cm}|}
73          \hline
74          \textbf{CPP option}  &  \textbf{Description}  \\
75          \hline \hline
76            \code{SEAICE\_DEBUG} &
77              Enhance STDOUT for debugging \\
78            \code{SEAICE\_ALLOW\_DYNAMICS} &
79              sea-ice dynamics code \\
80            \code{SEAICE\_CGRID} &
81              LSR solver on C-grid (rather than original B-grid) \\
82            \code{SEAICE\_ALLOW\_EVP} &
83              use EVP rather than LSR rheology solver \\
84            \code{SEAICE\_EXTERNAL\_FLUXES} &
85              use EXF-computed fluxes as starting point \\
86            \code{SEAICE\_MULTICATEGORY} &
87              enable 8-category thermodynamics (by default undefined)\\
88            \code{SEAICE\_VARIABLE\_FREEZING\_POINT} &
89              enable linear dependence of the freezing point on salinity
90              (by default undefined)\\
91            \code{ALLOW\_SEAICE\_FLOODING} &
92              enable snow to ice conversion for submerged sea-ice \\
93            \code{SEAICE\_SALINITY} &
94              enable "salty" sea-ice (by default undefined) \\
95            \code{SEAICE\_AGE} &
96              enable "age tracer" sea-ice (by default undefined) \\
97            \code{SEAICE\_CAP\_HEFF} &
98              enable capping of sea-ice thickness to MAX\_HEFF \\ \hline
99            \code{SEAICE\_BICE\_STRESS} &
100              B-grid only for backward compatiblity: turn on ice-stress on
101              ocean\\
102            \code{EXPLICIT\_SSH\_SLOPE} &
103              B-grid only for backward compatiblity: use ETAN for tilt
104              computations rather than geostrophic velocities \\
105          \hline
106        \end{tabular}
107      }
108      \caption{~}
109    \end{table}
110    
111    %----------------------------------------------------------------------
112    
113    \subsubsection{Run-time parameters
114    \label{sec:pkg:seaice:runtime}}
115    
116    Run-time parameters are set in files
117    \code{data.pkg} (read in \code{packages\_readparms.F}),
118    and \code{data.seaice} (read in \code{seaice\_readparms.F}).
119    
120    \paragraph{Enabling the package}
121    ~ \\
122    %
123    A package is switched on/off at run-time by setting
124    (e.g. for SEAICE) \code{useSEAICE = .TRUE.} in \code{data.pkg}.
125    
126    \paragraph{General flags and parameters}
127    ~ \\
128    %
129    Table~\ref{tab:pkg:seaice:runtimeparms} lists most run-time parameters.
130    \input{s_phys_pkgs/text/seaice-parms.tex}
131    
132    \paragraph{Input fields and units\label{sec:pkg:seaice:fields_units}}
133    \begin{description}
134    \item[\code{HeffFile}:] Initial sea ice thickness averaged over grid cell
135      in meters; initializes variable \code{HEFF};
136    \item[\code{AreaFile}:] Initial fractional sea ice cover, range $[0,1]$;
137      initializes variable \code{AREA};
138    \item[\code{HsnowFile}:] Initial snow thickness on sea ice averaged
139      over grid cell in meters; initializes variable \code{HSNOW};
140    \item[\code{HsaltFile}:] Initial salinity of sea ice averaged over grid
141      cell in g/m$^2$; initializes variable \code{HSALT};
142    \item[\code{IceAgeFile}:] Initial ice age of sea ice averaged over grid
143      cell in seconds; initializes variable \code{ICEAGE};
144    \end{description}
145    
146    %----------------------------------------------------------------------
147    \subsubsection{Description
148    \label{sec:pkg:seaice:descr}}
149    
150    [TO BE CONTINUED/MODIFIED]
151    
152    % Sea-ice model thermodynamics are based on Hibler
153    % \cite{hib80}, that is, a 2-category model that simulates ice thickness
154    % and concentration.  Snow is simulated as per Zhang et al.
155    % \cite{zha98a}.  Although recent years have seen an increased use of
156    % multi-category thickness distribution sea-ice models for climate
157    % studies, the Hibler 2-category ice model is still the most widely used
158    % model and has resulted in realistic simulation of sea-ice variability
159    % on regional and global scales.  Being less complicated, compared to
160    % multi-category models, the 2-category model permits easier application
161    % of adjoint model optimization methods.
162    
163    % Note, however, that the Hibler 2-category model and its variants use a
164    % so-called zero-layer thermodynamic model to estimate ice growth and
165    % decay.  The zero-layer thermodynamic model assumes that ice does not
166    % store heat and, therefore, tends to exaggerate the seasonal
167    % variability in ice thickness.  This exaggeration can be significantly
168    % reduced by using Semtner's \cite{sem76} three-layer thermodynamic
169    % model that permits heat storage in ice.  Recently, the three-layer
170    % thermodynamic model has been reformulated by Winton \cite{win00}.  The
171    % reformulation improves model physics by representing the brine content
172    % of the upper ice with a variable heat capacity.  It also improves
173    % model numerics and consumes less computer time and memory.  The Winton
174    % sea-ice thermodynamics have been ported to the MIT GCM; they currently
175    % reside under pkg/thsice. The package pkg/thsice is fully
176    % compatible with pkg/seaice and with pkg/exf. When turned on togeter
177    % with pkg/seaice, the zero-layer thermodynamics are replaced by the by
178    % Winton thermodynamics
179    
180    The MITgcm sea ice model (MITgcm/sim) is based on a variant of the
181    viscous-plastic (VP) dynamic-thermodynamic sea ice model \citep{zhang97}
182    first introduced by \citet{hib79, hib80}. In order to adapt this model
183    to the requirements of coupled ice-ocean state estimation, many
184    important aspects of the original code have been modified and
185    improved:
186    \begin{itemize}
187    \item the code has been rewritten for an Arakawa C-grid, both B- and
188      C-grid variants are available; the C-grid code allows for no-slip
189      and free-slip lateral boundary conditions;
190    \item two different solution methods for solving the nonlinear
191      momentum equations have been adopted: LSOR \citep{zhang97}, and EVP
192      \citep{hun97};
193    \item ice-ocean stress can be formulated as in \citet{hibler87} or as in
194      \citet{cam08};
195    \item ice variables are advected by sophisticated, conservative
196      advection schemes with flux limiting;
197    \item growth and melt parameterizations have been refined and extended
198      in order to allow for more stable automatic differentiation of the code.
199    \end{itemize}
200    The sea ice model is tightly coupled to the ocean compontent of the
201    MITgcm.  Heat, fresh water fluxes and surface stresses are computed
202    from the atmospheric state and -- by default -- modified by the ice
203    model at every time step.
204    
205  The ice dynamics models that are most widely used for large-scale  The ice dynamics models that are most widely used for large-scale
206  climate studies are the viscous-plastic (VP) model \cite{hib79}, the  climate studies are the viscous-plastic (VP) model \citep{hib79}, the
207  cavitating fluid (CF) model \cite{fla92}, and the  cavitating fluid (CF) model \citep{fla92}, and the
208  elastic-viscous-plastic (EVP) model \cite{hun97}.  Compared to the VP  elastic-viscous-plastic (EVP) model \citep{hun97}.  Compared to the VP
209  model, the CF model does not allow ice shear in calculating ice  model, the CF model does not allow ice shear in calculating ice
210  motion, stress, and deformation.  EVP models approximate VP by adding  motion, stress, and deformation.  EVP models approximate VP by adding
211  an elastic term to the equations for easier adaptation to parallel  an elastic term to the equations for easier adaptation to parallel
212  computers.  Because of its higher accuracy in plastic solution and  computers.  Because of its higher accuracy in plastic solution and
213  relatively simpler formulation, compared to the EVP model, we decided  relatively simpler formulation, compared to the EVP model, we decided
214  to use the VP model as the dynamic component of our ice model.  To do  to use the VP model as the default dynamic component of our ice
215  this we extended the alternating-direction-implicit (ADI) method of  model. To do this we extended the line successive over relaxation
216  Zhang and Rothrock \cite{zha00} for use in a parallel configuration.  (LSOR) method of \citet{zhang97} for use in a parallel
217    configuration.
218    
219    Note, that by default the seaice-package includes the orginial
220    so-called zero-layer thermodynamics following \citet{hib80} with a
221    snow cover as in \citet{zha98a}. The zero-layer thermodynamic model
222    assumes that ice does not store heat and, therefore, tends to
223    exaggerate the seasonal variability in ice thickness.  This
224    exaggeration can be significantly reduced by using
225    \citeauthor{sem76}'s~[\citeyear{sem76}] three-layer thermodynamic model
226    that permits heat storage in ice.  Recently, the three-layer
227    thermodynamic model has been reformulated by \citet{win00}.  The
228    reformulation improves model physics by representing the brine content
229    of the upper ice with a variable heat capacity.  It also improves
230    model numerics and consumes less computer time and memory.  The Winton
231    sea-ice thermodynamics have been ported to the MIT GCM; they currently
232    reside under pkg/thsice. The package pkg/thsice is fully compatible
233    with pkg/seaice and with pkg/exf. When turned on together with
234    pkg/seaice, the zero-layer thermodynamics are replaced by the Winton
235    thermodynamics.
236    
237  The sea ice model requires the following input fields: 10-m winds, 2-m  The sea ice model requires the following input fields: 10-m winds, 2-m
238  air temperature and specific humidity, downward longwave and shortwave  air temperature and specific humidity, downward longwave and shortwave
239  radiations, precipitation, evaporation, and river and glacier runoff.  radiations, precipitation, evaporation, and river and glacier runoff.
240  The sea ice model also requires surface temperature from the ocean  The sea ice model also requires surface temperature from the ocean
241  model and third level horizontal velocity which is used as a proxy for  model and the top level horizontal velocity.  Output fields are
242  surface geostrophic velocity.  Output fields are surface wind stress,  surface wind stress, evaporation minus precipitation minus runoff, net
243  evaporation minus precipitation minus runoff, net surface heat flux,  surface heat flux, and net shortwave flux.  The sea-ice model is
244  and net shortwave flux.  The sea-ice model is global: in ice-free  global: in ice-free regions bulk formulae are used to estimate oceanic
245  regions bulk formulae are used to estimate oceanic forcing from the  forcing from the atmospheric fields.
246  atmospheric fields.  
247    \paragraph{Dynamics\label{sec:pkg:seaice:dynamics}}
248    
249    \newcommand{\vek}[1]{\ensuremath{\vec{\mathbf{#1}}}}
250    \newcommand{\vtau}{\vek{\mathbf{\tau}}}
251    The momentum equation of the sea-ice model is
252    \begin{equation}
253      \label{eq:momseaice}
254      m \frac{D\vek{u}}{Dt} = -mf\vek{k}\times\vek{u} + \vtau_{air} +
255      \vtau_{ocean} - m \nabla{\phi(0)} + \vek{F},
256    \end{equation}
257    where $m=m_{i}+m_{s}$ is the ice and snow mass per unit area;
258    $\vek{u}=u\vek{i}+v\vek{j}$ is the ice velocity vector;
259    $\vek{i}$, $\vek{j}$, and $\vek{k}$ are unit vectors in the $x$, $y$, and $z$
260    directions, respectively;
261    $f$ is the Coriolis parameter;
262    $\vtau_{air}$ and $\vtau_{ocean}$ are the wind-ice and ocean-ice stresses,
263    respectively;
264    $g$ is the gravity accelation;
265    $\nabla\phi(0)$ is the gradient (or tilt) of the sea surface height;
266    $\phi(0) = g\eta + p_{a}/\rho_{0} + mg/\rho_{0}$ is the sea surface
267    height potential in response to ocean dynamics ($g\eta$), to
268    atmospheric pressure loading ($p_{a}/\rho_{0}$, where $\rho_{0}$ is a
269    reference density) and a term due to snow and ice loading \citep{cam08};
270    and $\vek{F}=\nabla\cdot\sigma$ is the divergence of the internal ice
271    stress tensor $\sigma_{ij}$. %
272    Advection of sea-ice momentum is neglected. The wind and ice-ocean stress
273    terms are given by
274    \begin{align*}
275      \vtau_{air}   = & \rho_{air}  C_{air}   |\vek{U}_{air}  -\vek{u}|
276                       R_{air}  (\vek{U}_{air}  -\vek{u}), \\
277      \vtau_{ocean} = & \rho_{ocean}C_{ocean} |\vek{U}_{ocean}-\vek{u}|
278                       R_{ocean}(\vek{U}_{ocean}-\vek{u}),
279    \end{align*}
280    where $\vek{U}_{air/ocean}$ are the surface winds of the atmosphere
281    and surface currents of the ocean, respectively; $C_{air/ocean}$ are
282    air and ocean drag coefficients; $\rho_{air/ocean}$ are reference
283    densities; and $R_{air/ocean}$ are rotation matrices that act on the
284    wind/current vectors.
285    
286    For an isotropic system the stress tensor $\sigma_{ij}$ ($i,j=1,2$) can
287    be related to the ice strain rate and strength by a nonlinear
288    viscous-plastic (VP) constitutive law \citep{hib79, zhang97}:
289    \begin{equation}
290      \label{eq:vpequation}
291      \sigma_{ij}=2\eta(\dot{\epsilon}_{ij},P)\dot{\epsilon}_{ij}
292      + \left[\zeta(\dot{\epsilon}_{ij},P) -
293        \eta(\dot{\epsilon}_{ij},P)\right]\dot{\epsilon}_{kk}\delta_{ij}  
294      - \frac{P}{2}\delta_{ij}.
295    \end{equation}
296    The ice strain rate is given by
297    \begin{equation*}
298      \dot{\epsilon}_{ij} = \frac{1}{2}\left(
299        \frac{\partial{u_{i}}}{\partial{x_{j}}} +
300        \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).
301    \end{equation*}
302    The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on
303    both thickness $h$ and compactness (concentration) $c$:
304    \begin{equation}
305      P_{\max} = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},
306    \label{eq:icestrength}
307    \end{equation}
308    with the constants $P^{*}$ (run-time parameter \code{SEAICE\_strength}) and
309    $C^{*}=20$. The nonlinear bulk and shear
310    viscosities $\eta$ and $\zeta$ are functions of ice strain rate
311    invariants and ice strength such that the principal components of the
312    stress lie on an elliptical yield curve with the ratio of major to
313    minor axis $e$ equal to $2$; they are given by:
314    \begin{align*}
315      \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})},
316       \zeta_{\max}\right) \\
317      \eta =& \frac{\zeta}{e^2} \\
318      \intertext{with the abbreviation}
319      \Delta = & \left[
320        \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)
321        (1+e^{-2}) +  4e^{-2}\dot{\epsilon}_{12}^2 +
322        2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})
323      \right]^{\frac{1}{2}}.
324    \end{align*}
325    The bulk viscosities are bounded above by imposing both a minimum
326    $\Delta_{\min}$ (for numerical reasons, run-time parameter
327    \code{SEAICE\_EPS} with a default value of
328    $10^{-10}\text{\,s}^{-1}$) and a maximum $\zeta_{\max} =
329    P_{\max}/\Delta^*$, where
330    $\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. (There is also
331    the option of bounding $\zeta$ from below by setting run-time
332    parameter \code{SEAICE\_zetaMin} $>0$, but this is generally not
333    recommended). For stress tensor computation the replacement pressure $P
334    = 2\,\Delta\zeta$ \citep{hibler95} is used so that the stress state
335    always lies on the elliptic yield curve by definition.
336    
337    In the so-called truncated ellipse method the shear viscosity $\eta$
338    is capped to suppress any tensile stress \citep{hibler97, geiger98}:
339    \begin{equation}
340      \label{eq:etatem}
341      \eta = \min\left(\frac{\zeta}{e^2},
342      \frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})}
343      {\sqrt{(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})^2
344          +4\dot{\epsilon}_{12}^2}}\right).
345    \end{equation}
346    To enable this method, set \code{\#define SEAICE\_ALLOW\_TEM} in
347    \code{SEAICE\_OPTIONS.h} and turn it on with
348    \code{SEAICEuseTEM=.TRUE.} in \code{data.seaice}.
349    
350    In the current implementation, the VP-model is integrated with the
351    semi-implicit line successive over relaxation (LSOR)-solver of
352    \citet{zhang97}, which allows for long time steps that, in our case,
353    are limited by the explicit treatment of the Coriolis term. The
354    explicit treatment of the Coriolis term does not represent a severe
355    limitation because it restricts the time step to approximately the
356    same length as in the ocean model where the Coriolis term is also
357    treated explicitly.
358    
359    \citet{hun97}'s introduced an elastic contribution to the strain
360    rate in order to regularize Eq.~\ref{eq:vpequation} in such a way that
361    the resulting elastic-viscous-plastic (EVP) and VP models are
362    identical at steady state,
363    \begin{equation}
364      \label{eq:evpequation}
365      \frac{1}{E}\frac{\partial\sigma_{ij}}{\partial{t}} +
366      \frac{1}{2\eta}\sigma_{ij}
367      + \frac{\eta - \zeta}{4\zeta\eta}\sigma_{kk}\delta_{ij}  
368      + \frac{P}{4\zeta}\delta_{ij}
369      = \dot{\epsilon}_{ij}.
370    \end{equation}
371    %In the EVP model, equations for the components of the stress tensor
372    %$\sigma_{ij}$ are solved explicitly. Both model formulations will be
373    %used and compared the present sea-ice model study.
374    The EVP-model uses an explicit time stepping scheme with a short
375    timestep. According to the recommendation of \citet{hun97}, the
376    EVP-model is stepped forward in time 120 times within the physical
377    ocean model time step (although this parameter is under debate), to
378    allow for elastic waves to disappear.  Because the scheme does not
379    require a matrix inversion it is fast in spite of the small internal
380    timestep and simple to implement on parallel computers
381    \citep{hun97}. For completeness, we repeat the equations for the
382    components of the stress tensor $\sigma_{1} =
383    \sigma_{11}+\sigma_{22}$, $\sigma_{2}= \sigma_{11}-\sigma_{22}$, and
384    $\sigma_{12}$. Introducing the divergence $D_D =
385    \dot{\epsilon}_{11}+\dot{\epsilon}_{22}$, and the horizontal tension
386    and shearing strain rates, $D_T =
387    \dot{\epsilon}_{11}-\dot{\epsilon}_{22}$ and $D_S =
388    2\dot{\epsilon}_{12}$, respectively, and using the above
389    abbreviations, the equations~\ref{eq:evpequation} can be written as:
390    \begin{align}
391      \label{eq:evpstresstensor1}
392      \frac{\partial\sigma_{1}}{\partial{t}} + \frac{\sigma_{1}}{2T} +
393      \frac{P}{2T} &= \frac{P}{2T\Delta} D_D \\
394      \label{eq:evpstresstensor2}
395      \frac{\partial\sigma_{2}}{\partial{t}} + \frac{\sigma_{2} e^{2}}{2T}
396      &= \frac{P}{2T\Delta} D_T \\
397      \label{eq:evpstresstensor12}
398      \frac{\partial\sigma_{12}}{\partial{t}} + \frac{\sigma_{12} e^{2}}{2T}
399      &= \frac{P}{4T\Delta} D_S
400    \end{align}
401    Here, the elastic parameter $E$ is redefined in terms of a damping timescale
402    $T$ for elastic waves \[E=\frac{\zeta}{T}.\]
403    $T=E_{0}\Delta{t}$ with the tunable parameter $E_0<1$ and
404    the external (long) timestep $\Delta{t}$. \citet{hun97} recommend
405    $E_{0} = \frac{1}{3}$ (which is the default value in the code).
406    
407    To use the EVP solver, make sure that both \code{SEAICE\_CGRID} and
408    \code{SEAICE\_ALLOW\_EVP} are defined in \code{SEAICE\_OPTIONS.h}
409    (default). The solver is turned on by setting the sub-cycling time
410    step \code{SEAICE\_deltaTevp} to a value larger than zero. The
411    choice of this time step is under debate. \citet{hun97} recommend
412    order(120) time steps for the EVP solver within one model time step
413    $\Delta{t}$ (\code{deltaTmom}). One can also choose order(120) time
414    steps within the forcing time scale, but then we recommend adjusting
415    the damping time scale $T$ accordingly, by setting either
416    \code{SEAICE\_elasticParm} ($E_{0}$), so that
417    $E_{0}\Delta{t}=\mbox{forcing time scale}$, or directly
418    \code{SEAICE\_evpTauRelax} ($T$) to the forcing time scale.
419    
420    Moving sea ice exerts a stress on the ocean which is the opposite of
421    the stress $\vtau_{ocean}$ in Eq.~\ref{eq:momseaice}. This stess is
422    applied directly to the surface layer of the ocean model. An
423    alternative ocean stress formulation is given by \citet{hibler87}.
424    Rather than applying $\vtau_{ocean}$ directly, the stress is derived
425    from integrating over the ice thickness to the bottom of the oceanic
426    surface layer. In the resulting equation for the \emph{combined}
427    ocean-ice momentum, the interfacial stress cancels and the total
428    stress appears as the sum of windstress and divergence of internal ice
429    stresses: $\delta(z) (\vtau_{air} + \vek{F})/\rho_0$, \citep[see also
430    Eq.\,2 of][]{hibler87}. The disadvantage of this formulation is that
431    now the velocity in the surface layer of the ocean that is used to
432    advect tracers, is really an average over the ocean surface
433    velocity and the ice velocity leading to an inconsistency as the ice
434    temperature and salinity are different from the oceanic variables.
435    To turn on the stress formulation of \citet{hibler87}, set
436    \code{useHB87StressCoupling=.TRUE.} in \code{data.seaice}.
437    
438    
439    % Our discretization differs from \citet{zhang97, zhang03} in the
440    % underlying grid, namely the Arakawa C-grid, but is otherwise
441    % straightforward. The EVP model, in particular, is discretized
442    % naturally on the C-grid with $\sigma_{1}$ and $\sigma_{2}$ on the
443    % center points and $\sigma_{12}$ on the corner (or vorticity) points of
444    % the grid. With this choice all derivatives are discretized as central
445    % differences and averaging is only involved in computing $\Delta$ and
446    % $P$ at vorticity points.
447    
448    \paragraph{Finite-volume discretization of the stress tensor
449      divergence\label{sec:pkg:seaice:discretization}}
450    On an Arakawa C~grid, ice thickness and concentration and thus ice
451    strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are
452    naturally defined a C-points in the center of the grid
453    cell. Discretization requires only averaging of $\zeta$ and $\eta$ to
454    vorticity or Z-points (or $\zeta$-points, but here we use Z in order
455    avoid confusion with the bulk viscosity) at the bottom left corner of
456    the cell to give $\overline{\zeta}^{Z}$ and $\overline{\eta}^{Z}$. In
457    the following, the superscripts indicate location at Z or C points,
458    distance across the cell (F), along the cell edge (G), between
459    $u$-points (U), $v$-points (V), and C-points (C). The control volumes
460    of the $u$- and $v$-equations in the grid cell at indices $(i,j)$ are
461    $A_{i,j}^{w}$ and $A_{i,j}^{s}$, respectively. With these definitions
462    (which follow the model code documentation except that $\zeta$-points
463    have been renamed to Z-points), the strain rates are discretized as:
464    \begin{align}
465      \dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag
466      => (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}}
467       + k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\
468      \dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag
469      => (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}}
470       + k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\
471       \dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl(
472       \partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1}
473       \biggr) \\ \notag
474      => (\epsilon_{12})_{i,j}^Z &= \frac{1}{2}
475      \biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V}
476       + \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag
477      &\phantom{=\frac{1}{2}\biggl(}
478       - k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
479       - k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
480       \biggr),
481    \end{align}
482    so that the diagonal terms of the strain rate tensor are naturally
483    defined at C-points and the symmetric off-diagonal term at
484    Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and
485    $v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via
486    ``ghost-points''; for free slip boundary conditions
487    $(\epsilon_{12})^Z=0$ on boundaries.
488    
489    For a spherical polar grid, the coefficients of the metric terms are
490    $k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and
491    the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi
492    \Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a
493    general orthogonal curvilinear grid, $k_{1}$ and
494    $k_{2}$ can be approximated by finite differences of the cell widths:
495    \begin{align}
496      k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}}
497      \frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\
498      k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}}
499      \frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\
500      k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}}
501      \frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\
502      k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}}
503      \frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}}
504    \end{align}
505    
506    The stress tensor is given by the constitutive viscous-plastic
507    relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} +
508    [(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2
509    ]\delta_{\alpha\beta}$ \citep{hib79}. The stress tensor divergence
510    $(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is
511    discretized in finite volumes. This conveniently avoids dealing with
512    further metric terms, as these are ``hidden'' in the differential cell
513    widths. For the $u$-equation ($\alpha=1$) we have:
514    \begin{align}
515      (\nabla\sigma)_{1}: \phantom{=}&
516      \frac{1}{A_{i,j}^w}
517      \int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2
518      \\\notag
519      =& \frac{1}{A_{i,j}^w} \biggl\{
520      \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
521      + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
522      \biggr\} \\ \notag
523      \approx& \frac{1}{A_{i,j}^w} \biggl\{
524      \Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
525      + \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
526      \biggr\} \\ \notag
527      =& \frac{1}{A_{i,j}^w} \biggl\{
528      (\Delta{x}_2\sigma_{11})_{i,j}^C -
529      (\Delta{x}_2\sigma_{11})_{i-1,j}^C
530      \\\notag
531      \phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{}
532      + (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z
533      \biggr\}
534      \intertext{with}
535      (\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+}
536      \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
537      \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
538      &+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
539      k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
540      \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
541      \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
542      \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
543      k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
544      \phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\
545      (\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+}
546      \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
547      \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag
548      & + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
549      \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
550      & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
551      k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
552      & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
553      k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
554    \end{align}
555    
556    Similarly, we have for the $v$-equation ($\alpha=2$):
557    \begin{align}
558      (\nabla\sigma)_{2}: \phantom{=}&
559      \frac{1}{A_{i,j}^s}
560      \int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2
561      \\\notag
562      =& \frac{1}{A_{i,j}^s} \biggl\{
563      \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
564      + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
565      \biggr\} \\ \notag
566      \approx& \frac{1}{A_{i,j}^s} \biggl\{
567      \Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
568      + \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
569      \biggr\} \\ \notag
570      =& \frac{1}{A_{i,j}^s} \biggl\{
571      (\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z
572      \\ \notag
573      \phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{}
574      + (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C
575      \biggr\}
576      \intertext{with}
577      (\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+}
578      \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
579      \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}}
580      \\\notag &
581      + \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
582      \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\\notag
583      &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
584      k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
585      \\\notag &
586      - \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
587      k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag
588      (\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+}
589      \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
590      \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
591      &+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
592      k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
593      & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
594      \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
595      & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
596      k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
597      & -\Delta{x}_{i,j}^{F} \frac{P}{2}
598    \end{align}
599    
600    Again, no slip boundary conditions are realized via ghost points and
601    $u_{i,j-1}+u_{i,j}=0$ and $v_{i-1,j}+v_{i,j}=0$ across boundaries. For
602    free slip boundary conditions the lateral stress is set to zeros. In
603    analogy to $(\epsilon_{12})^Z=0$ on boundaries, we set
604    $\sigma_{21}^{Z}=0$, or equivalently $\eta_{i,j}^{Z}=0$, on boundaries.
605    
606    \paragraph{Thermodynamics\label{sec:pkg:seaice:thermodynamics}}
607    
608    In its original formulation the sea ice model \citep{menemenlis05}
609    uses simple thermodynamics following the appendix of
610    \citet{sem76}. This formulation does not allow storage of heat,
611    that is, the heat capacity of ice is zero. Upward conductive heat flux
612    is parameterized assuming a linear temperature profile and together
613    with a constant ice conductivity. It is expressed as
614    $(K/h)(T_{w}-T_{0})$, where $K$ is the ice conductivity, $h$ the ice
615    thickness, and $T_{w}-T_{0}$ the difference between water and ice
616    surface temperatures. This type of model is often refered to as a
617    ``zero-layer'' model. The surface heat flux is computed in a similar
618    way to that of \citet{parkinson79} and \citet{manabe79}.
619    
620    The conductive heat flux depends strongly on the ice thickness $h$.
621    However, the ice thickness in the model represents a mean over a
622    potentially very heterogeneous thickness distribution.  In order to
623    parameterize a sub-grid scale distribution for heat flux
624    computations, the mean ice thickness $h$ is split into seven thickness
625    categories $H_{n}$ that are equally distributed between $2h$ and a
626    minimum imposed ice thickness of $5\text{\,cm}$ by $H_n=
627    \frac{2n-1}{7}\,h$ for $n\in[1,7]$. The heat fluxes computed for each
628    thickness category is area-averaged to give the total heat flux
629    \citep{hibler84}. To use this thickness category parameterization set
630    \code{\#define SEAICE\_MULTICATEGORY}; note that this requires
631    different restart files and switching this flag on in the middle of an
632    integration is not possible.
633    
634    The atmospheric heat flux is balanced by an oceanic heat flux from
635    below.  The oceanic flux is proportional to
636    $\rho\,c_{p}\left(T_{w}-T_{fr}\right)$ where $\rho$ and $c_{p}$ are
637    the density and heat capacity of sea water and $T_{fr}$ is the local
638    freezing point temperature that is a function of salinity. This flux
639    is not assumed to instantaneously melt or create ice, but a time scale
640    of three days (run-time parameter \code{SEAICE\_gamma\_t}) is used
641    to relax $T_{w}$ to the freezing point.
642    %
643    The parameterization of lateral and vertical growth of sea ice follows
644    that of \citet{hib79, hib80}; the so-called lead closing parameter
645    $h_{0}$ (run-time parameter \code{HO}) has a default value of
646    0.5~meters.
647    
648    On top of the ice there is a layer of snow that modifies the heat flux
649    and the albedo \citep{zha98a}. Snow modifies the effective
650    conductivity according to
651    \[\frac{K}{h} \rightarrow \frac{1}{\frac{h_{s}}{K_{s}}+\frac{h}{K}},\]
652    where $K_s$ is the conductivity of snow and $h_s$ the snow thickness.
653    If enough snow accumulates so that its weight submerges the ice and
654    the snow is flooded, a simple mass conserving parameterization of
655    snowice formation (a flood-freeze algorithm following Archimedes'
656    principle) turns snow into ice until the ice surface is back at $z=0$
657    \citep{leppaeranta83}. The flood-freeze algorithm is enabled with the CPP-flag
658    \code{SEAICE\_ALLOW\_FLOODING} and turned on with run-time parameter
659    \code{SEAICEuseFlooding=.true.}.
660    
661    Effective ice thickness (ice volume per unit area,
662    $c\cdot{h}$), concentration $c$ and effective snow thickness
663    ($c\cdot{h}_{s}$) are advected by ice velocities:
664    \begin{equation}
665      \label{eq:advection}
666      \frac{\partial{X}}{\partial{t}} = - \nabla\cdot\left(\vek{u}\,X\right) +
667      \Gamma_{X} + D_{X}
668    \end{equation}
669    where $\Gamma_X$ are the thermodynamic source terms and $D_{X}$ the
670    diffusive terms for quantities $X=(c\cdot{h}), c, (c\cdot{h}_{s})$.
671    %
672    From the various advection scheme that are available in the MITgcm, we
673    choose flux-limited schemes \citep[multidimensional 2nd and 3rd-order
674    advection scheme with flux limiter][]{roe:85, hundsdorfer94} to
675    preserve sharp gradients and edges that are typical of sea ice
676    distributions and to rule out unphysical over- and undershoots
677    (negative thickness or concentration). These scheme conserve volume
678    and horizontal area and are unconditionally stable, so that we can set
679    $D_{X}=0$. Run-timeflags: \code{SEAICEadvScheme} (default=2),
680    \code{DIFF1} (default=0.004).
681    
682    There is considerable doubt about the reliability of a ``zero-layer''
683    thermodynamic model --- \citet{semtner84} found significant errors in
684    phase (one month lead) and amplitude ($\approx$50\%\,overestimate) in
685    such models --- so that today many sea ice models employ more complex
686    thermodynamics. The MITgcm sea ice model provides the option to use
687    the thermodynamics model of \citet{win00}, which in turn is based
688    on the 3-layer model of \citet{sem76} and which treats brine
689    content by means of enthalpy conservation. This scheme requires
690    additional state variables, namely the enthalpy of the two ice layers
691    (instead of effective ice salinity), to be advected by ice velocities.
692    %
693    The internal sea ice temperature is inferred from ice enthalpy.  To
694    avoid unphysical (negative) values for ice thickness and
695    concentration, a positive 2nd-order advection scheme with a SuperBee
696    flux limiter \citep{roe:85} is used in this study to advect all
697    sea-ice-related quantities of the \citet{win00} thermodynamic
698    model.  Because of the non-linearity of the advection scheme, care
699    must be taken in advecting these quantities: when simply using ice
700    velocity to advect enthalpy, the total energy (i.e., the volume
701    integral of enthalpy) is not conserved. Alternatively, one can advect
702    the energy content (i.e., product of ice-volume and enthalpy) but then
703    false enthalpy extrema can occur, which then leads to unrealistic ice
704    temperature.  In the currently implemented solution, the sea-ice mass
705    flux is used to advect the enthalpy in order to ensure conservation of
706    enthalpy and to prevent false enthalpy extrema.
707    
708    %----------------------------------------------------------------------
709    
710    \subsubsection{Key subroutines
711    \label{sec:pkg:seaice:subroutines}}
712    
713    Top-level routine: \code{seaice\_model.F}
714    
715    {\footnotesize
716    \begin{verbatim}
717    
718    C     !CALLING SEQUENCE:
719    c ...
720    c  seaice_model (TOP LEVEL ROUTINE)
721    c  |
722    c  |-- #ifdef SEAICE_CGRID
723    c  |     SEAICE_DYNSOLVER
724    c  |     |
725    c  |     |-- < compute proxy for geostrophic velocity >
726    c  |     |
727    c  |     |-- < set up mass per unit area and Coriolis terms >
728    c  |     |
729    c  |     |-- < dynamic masking of areas with no ice >
730    c  |     |
731    c  |     |
732    
733    c  |   #ELSE
734    c  |     DYNSOLVER
735    c  |   #ENDIF
736    c  |
737    c  |-- if ( useOBCS )
738    c  |     OBCS_APPLY_UVICE
739    c  |
740    c  |-- if ( SEAICEadvHeff .OR. SEAICEadvArea .OR. SEAICEadvSnow .OR. SEAICEadvSalt )
741    c  |     SEAICE_ADVDIFF
742    c  |
743    c  |-- if ( usePW79thermodynamics )
744    c  |     SEAICE_GROWTH
745    c  |
746    c  |-- if ( useOBCS )
747    c  |     if ( SEAICEadvHeff ) OBCS_APPLY_HEFF
748    c  |     if ( SEAICEadvArea ) OBCS_APPLY_AREA
749    c  |     if ( SEAICEadvSALT ) OBCS_APPLY_HSALT
750    c  |     if ( SEAICEadvSNOW ) OBCS_APPLY_HSNOW
751    c  |
752    c  |-- < do various exchanges >
753    c  |
754    c  |-- < do additional diagnostics >
755    c  |
756    c  o
757    
758    \end{verbatim}
759    }
760    
761    
762    %----------------------------------------------------------------------
763    
764    \subsubsection{SEAICE diagnostics
765    \label{sec:pkg:seaice:diagnostics}}
766    
767    Diagnostics output is available via the diagnostics package
768    (see Section \ref{sec:pkg:diagnostics}).
769    Available output fields are summarized in
770    Table \ref{tab:pkg:seaice:diagnostics}.
771    
772    \begin{table}[h!]
773    \centering
774    \label{tab:pkg:seaice:diagnostics}
775    {\footnotesize
776    \begin{verbatim}
777    ---------+----+----+----------------+-----------------
778     <-Name->|Levs|grid|<--  Units   -->|<- Tile (max=80c)
779    ---------+----+----+----------------+-----------------
780     SIarea  |  1 |SM  |m^2/m^2         |SEAICE fractional ice-covered area [0 to 1]
781     SIheff  |  1 |SM  |m               |SEAICE effective ice thickness
782     SIuice  |  1 |UU  |m/s             |SEAICE zonal ice velocity, >0 from West to East
783     SIvice  |  1 |VV  |m/s             |SEAICE merid. ice velocity, >0 from South to North
784     SIhsnow |  1 |SM  |m               |SEAICE snow thickness
785     SIhsalt |  1 |SM  |g/m^2           |SEAICE effective salinity
786     SIatmFW |  1 |SM  |kg/m^2/s        |Net freshwater flux from the atmosphere (+=down)
787     SIuwind |  1 |SM  |m/s             |SEAICE zonal 10-m wind speed, >0 increases uVel
788     SIvwind |  1 |SM  |m/s             |SEAICE meridional 10-m wind speed, >0 increases uVel
789     SIfu    |  1 |UU  |N/m^2           |SEAICE zonal surface wind stress, >0 increases uVel
790     SIfv    |  1 |VV  |N/m^2           |SEAICE merid. surface wind stress, >0 increases vVel
791     SIempmr |  1 |SM  |kg/m^2/s        |SEAICE upward freshwater flux, > 0 increases salt
792     SIqnet  |  1 |SM  |W/m^2           |SEAICE upward heatflux, turb+rad, >0 decreases theta
793     SIqsw   |  1 |SM  |W/m^2           |SEAICE upward shortwave radiat., >0 decreases theta
794     SIpress |  1 |SM  |m^2/s^2         |SEAICE strength (with upper and lower limit)
795     SIzeta  |  1 |SM  |m^2/s           |SEAICE nonlinear bulk viscosity
796     SIeta   |  1 |SM  |m^2/s           |SEAICE nonlinear shear viscosity
797     SIsigI  |  1 |SM  |no units        |SEAICE normalized principle stress, component one
798     SIsigII |  1 |SM  |no units        |SEAICE normalized principle stress, component two
799     SIthdgrh|  1 |SM  |m/s             |SEAICE thermodynamic growth rate of effective ice thickness
800     SIsnwice|  1 |SM  |m/s             |SEAICE ice formation rate due to flooding
801     SIuheff |  1 |UU  |m^2/s           |Zonal Transport of effective ice thickness
802     SIvheff |  1 |VV  |m^2/s           |Meridional Transport of effective ice thickness
803     ADVxHEFF|  1 |UU  |m.m^2/s         |Zonal      Advective Flux of eff ice thickn
804     ADVyHEFF|  1 |VV  |m.m^2/s         |Meridional Advective Flux of eff ice thickn
805     DFxEHEFF|  1 |UU  |m.m^2/s         |Zonal      Diffusive Flux of eff ice thickn
806     DFyEHEFF|  1 |VV  |m.m^2/s         |Meridional Diffusive Flux of eff ice thickn
807     ADVxAREA|  1 |UU  |m^2/m^2.m^2/s   |Zonal      Advective Flux of fract area
808     ADVyAREA|  1 |VV  |m^2/m^2.m^2/s   |Meridional Advective Flux of fract area
809     DFxEAREA|  1 |UU  |m^2/m^2.m^2/s   |Zonal      Diffusive Flux of fract area
810     DFyEAREA|  1 |VV  |m^2/m^2.m^2/s   |Meridional Diffusive Flux of fract area
811     ADVxSNOW|  1 |UU  |m.m^2/s         |Zonal      Advective Flux of eff snow thickn
812     ADVySNOW|  1 |VV  |m.m^2/s         |Meridional Advective Flux of eff snow thickn
813     DFxESNOW|  1 |UU  |m.m^2/s         |Zonal      Diffusive Flux of eff snow thickn
814     DFyESNOW|  1 |VV  |m.m^2/s         |Meridional Diffusive Flux of eff snow thickn
815     ADVxSSLT|  1 |UU  |psu.m^2/s       |Zonal      Advective Flux of seaice salinity
816     ADVySSLT|  1 |VV  |psu.m^2/s       |Meridional Advective Flux of seaice salinity
817     DFxESSLT|  1 |UU  |psu.m^2/s       |Zonal      Diffusive Flux of seaice salinity
818     DFyESSLT|  1 |VV  |psu.m^2/s       |Meridional Diffusive Flux of seaice salinity
819    \end{verbatim}
820    }
821    \caption{Available diagnostics of the seaice-package}
822    \end{table}
823    
824    
825  %\subsubsection{Package Reference}  %\subsubsection{Package Reference}
# Line 75  atmospheric fields. Line 831  atmospheric fields.
831  \item{Labrador Sea experiment in lab\_sea verification directory. }  \item{Labrador Sea experiment in lab\_sea verification directory. }
832  \end{itemize}  \end{itemize}
833    
834    
835    %%% Local Variables:
836    %%% mode: latex
837    %%% TeX-master: "../manual"
838    %%% End:

Legend:
Removed from v.1.5  
changed lines
  Added in v.1.11

  ViewVC Help
Powered by ViewVC 1.1.22