| 1 | 
mlosch | 
1.9 | 
% $Header: /u/gcmpack/manual/part6/seaice.tex,v 1.8 2009/05/13 12:54:45 mlosch Exp $ | 
| 2 | 
edhill | 
1.1 | 
% $Name:  $ | 
| 3 | 
  | 
  | 
 | 
| 4 | 
  | 
  | 
%%EH3  Copied from "MITgcm/pkg/seaice/seaice_description.tex" | 
| 5 | 
  | 
  | 
%%EH3  which was written by Dimitris M. | 
| 6 | 
  | 
  | 
 | 
| 7 | 
  | 
  | 
 | 
| 8 | 
molod | 
1.4 | 
\subsection{SEAICE Package} | 
| 9 | 
edhill | 
1.1 | 
\label{sec:pkg:seaice} | 
| 10 | 
edhill | 
1.2 | 
\begin{rawhtml} | 
| 11 | 
  | 
  | 
<!-- CMIREDIR:package_seaice: --> | 
| 12 | 
  | 
  | 
\end{rawhtml} | 
| 13 | 
edhill | 
1.1 | 
 | 
| 14 | 
heimbach | 
1.6 | 
Authors: Martin Losch, Dimitris Menemenlis, An Nguyen, Jean-Michel Campin, | 
| 15 | 
  | 
  | 
Patrick Heimbach, Chris Hill and Jinlun Zhang | 
| 16 | 
  | 
  | 
 | 
| 17 | 
  | 
  | 
%---------------------------------------------------------------------- | 
| 18 | 
  | 
  | 
\subsubsection{Introduction | 
| 19 | 
  | 
  | 
\label{sec:pkg:exf:intro}} | 
| 20 | 
  | 
  | 
 | 
| 21 | 
  | 
  | 
 | 
| 22 | 
edhill | 
1.1 | 
Package ``seaice'' provides a dynamic and thermodynamic interactive | 
| 23 | 
heimbach | 
1.6 | 
sea-ice model.  | 
| 24 | 
  | 
  | 
 | 
| 25 | 
  | 
  | 
CPP options enable or disable different aspects of the package | 
| 26 | 
  | 
  | 
(Section \ref{sec:pkg:seaice:config}). | 
| 27 | 
mlosch | 
1.8 | 
Run-Time options, flags, filenames and field-related dates/times are | 
| 28 | 
mlosch | 
1.9 | 
set in \code{data.seaice} | 
| 29 | 
heimbach | 
1.6 | 
(Section \ref{sec:pkg:seaice:runtime}). | 
| 30 | 
  | 
  | 
A description of key subroutines is given in Section | 
| 31 | 
  | 
  | 
\ref{sec:pkg:seaice:subroutines}. | 
| 32 | 
  | 
  | 
Input fields, units and sign conventions are summarized in | 
| 33 | 
  | 
  | 
Section \ref{sec:pkg:seaice:fields_units}, and available diagnostics | 
| 34 | 
  | 
  | 
output is listed in Section \ref{sec:pkg:seaice:fields_diagnostics}. | 
| 35 | 
  | 
  | 
 | 
| 36 | 
  | 
  | 
%---------------------------------------------------------------------- | 
| 37 | 
  | 
  | 
 | 
| 38 | 
  | 
  | 
\subsubsection{SEAICE configuration, compiling \& running} | 
| 39 | 
  | 
  | 
 | 
| 40 | 
  | 
  | 
\paragraph{Compile-time options | 
| 41 | 
  | 
  | 
\label{sec:pkg:seaice:config}} | 
| 42 | 
  | 
  | 
~ | 
| 43 | 
  | 
  | 
 | 
| 44 | 
  | 
  | 
As with all MITgcm packages, SEAICE can be turned on or off at compile time | 
| 45 | 
  | 
  | 
% | 
| 46 | 
  | 
  | 
\begin{itemize} | 
| 47 | 
  | 
  | 
% | 
| 48 | 
  | 
  | 
\item | 
| 49 | 
mlosch | 
1.9 | 
using the \code{packages.conf} file by adding \code{seaice} to it, | 
| 50 | 
heimbach | 
1.6 | 
% | 
| 51 | 
  | 
  | 
\item | 
| 52 | 
mlosch | 
1.9 | 
or using \code{genmake2} adding | 
| 53 | 
  | 
  | 
\code{-enable=seaice} or \code{-disable=seaice} switches | 
| 54 | 
heimbach | 
1.6 | 
% | 
| 55 | 
  | 
  | 
\item | 
| 56 | 
  | 
  | 
\textit{required packages and CPP options}: \\ | 
| 57 | 
mlosch | 
1.9 | 
SEAICE requires the external forcing package \code{exf} to be enabled; | 
| 58 | 
heimbach | 
1.6 | 
no additional CPP options are required. | 
| 59 | 
  | 
  | 
% | 
| 60 | 
  | 
  | 
\end{itemize} | 
| 61 | 
  | 
  | 
(see Section \ref{sect:buildingCode}). | 
| 62 | 
  | 
  | 
 | 
| 63 | 
  | 
  | 
Parts of the SEAICE code can be enabled or disabled at compile time | 
| 64 | 
  | 
  | 
via CPP preprocessor flags. These options are set in either | 
| 65 | 
mlosch | 
1.9 | 
\code{SEAICE\_OPTIONS.h} or in \code{ECCO\_CPPOPTIONS.h}. | 
| 66 | 
heimbach | 
1.6 | 
Table \ref{tab:pkg:seaice:cpp} summarizes these options. | 
| 67 | 
  | 
  | 
 | 
| 68 | 
  | 
  | 
\begin{table}[h!] | 
| 69 | 
  | 
  | 
\centering | 
| 70 | 
  | 
  | 
  \label{tab:pkg:seaice:cpp} | 
| 71 | 
  | 
  | 
  {\footnotesize | 
| 72 | 
mlosch | 
1.8 | 
    \begin{tabular}{|l|p{10cm}|} | 
| 73 | 
heimbach | 
1.6 | 
      \hline  | 
| 74 | 
  | 
  | 
      \textbf{CPP option}  &  \textbf{Description}  \\ | 
| 75 | 
  | 
  | 
      \hline \hline | 
| 76 | 
mlosch | 
1.9 | 
        \code{SEAICE\_DEBUG} &  | 
| 77 | 
heimbach | 
1.6 | 
          Enhance STDOUT for debugging \\ | 
| 78 | 
mlosch | 
1.9 | 
        \code{SEAICE\_ALLOW\_DYNAMICS} &  | 
| 79 | 
heimbach | 
1.6 | 
          sea-ice dynamics code \\ | 
| 80 | 
mlosch | 
1.9 | 
        \code{SEAICE\_CGRID} &  | 
| 81 | 
mlosch | 
1.8 | 
          LSR solver on C-grid (rather than original B-grid) \\ | 
| 82 | 
mlosch | 
1.9 | 
        \code{SEAICE\_ALLOW\_EVP} &  | 
| 83 | 
heimbach | 
1.6 | 
          use EVP rather than LSR rheology solver \\ | 
| 84 | 
mlosch | 
1.9 | 
        \code{SEAICE\_EXTERNAL\_FLUXES} &  | 
| 85 | 
heimbach | 
1.6 | 
          use EXF-computed fluxes as starting point \\ | 
| 86 | 
mlosch | 
1.9 | 
        \code{SEAICE\_MULTICATEGORY} &  | 
| 87 | 
mlosch | 
1.8 | 
          enable 8-category thermodynamics (by default undefined)\\ | 
| 88 | 
mlosch | 
1.9 | 
        \code{SEAICE\_VARIABLE\_FREEZING\_POINT} &  | 
| 89 | 
mlosch | 
1.8 | 
          enable linear dependence of the freezing point on salinity | 
| 90 | 
  | 
  | 
          (by default undefined)\\ | 
| 91 | 
mlosch | 
1.9 | 
        \code{ALLOW\_SEAICE\_FLOODING} &  | 
| 92 | 
heimbach | 
1.6 | 
          enable snow to ice conversion for submerged sea-ice \\ | 
| 93 | 
mlosch | 
1.9 | 
        \code{SEAICE\_SALINITY} &  | 
| 94 | 
mlosch | 
1.8 | 
          enable "salty" sea-ice (by default undefined) \\ | 
| 95 | 
mlosch | 
1.9 | 
        \code{SEAICE\_AGE} &  | 
| 96 | 
mlosch | 
1.8 | 
          enable "age tracer" sea-ice (by default undefined) \\ | 
| 97 | 
mlosch | 
1.9 | 
        \code{SEAICE\_CAP\_HEFF} &  | 
| 98 | 
mlosch | 
1.8 | 
          enable capping of sea-ice thickness to MAX\_HEFF \\ \hline | 
| 99 | 
mlosch | 
1.9 | 
        \code{SEAICE\_BICE\_STRESS} & | 
| 100 | 
mlosch | 
1.8 | 
          B-grid only for backward compatiblity: turn on ice-stress on | 
| 101 | 
  | 
  | 
          ocean\\ | 
| 102 | 
mlosch | 
1.9 | 
        \code{EXPLICIT\_SSH\_SLOPE} & | 
| 103 | 
mlosch | 
1.8 | 
          B-grid only for backward compatiblity: use ETAN for tilt | 
| 104 | 
  | 
  | 
          computations rather than geostrophic velocities \\ | 
| 105 | 
heimbach | 
1.6 | 
      \hline | 
| 106 | 
  | 
  | 
    \end{tabular} | 
| 107 | 
  | 
  | 
  } | 
| 108 | 
  | 
  | 
  \caption{~} | 
| 109 | 
  | 
  | 
\end{table} | 
| 110 | 
  | 
  | 
 | 
| 111 | 
  | 
  | 
%---------------------------------------------------------------------- | 
| 112 | 
  | 
  | 
 | 
| 113 | 
  | 
  | 
\subsubsection{Run-time parameters | 
| 114 | 
  | 
  | 
\label{sec:pkg:seaice:runtime}} | 
| 115 | 
  | 
  | 
 | 
| 116 | 
  | 
  | 
Run-time parameters are set in files  | 
| 117 | 
mlosch | 
1.9 | 
\code{data.pkg} (read in \code{packages\_readparms.F}), | 
| 118 | 
  | 
  | 
and \code{data.seaice} (read in \code{seaice\_readparms.F}). | 
| 119 | 
heimbach | 
1.6 | 
 | 
| 120 | 
  | 
  | 
\paragraph{Enabling the package} | 
| 121 | 
  | 
  | 
~ \\ | 
| 122 | 
  | 
  | 
% | 
| 123 | 
mlosch | 
1.8 | 
A package is switched on/off at run-time by setting | 
| 124 | 
mlosch | 
1.9 | 
(e.g. for SEAICE) \code{useSEAICE = .TRUE.} in \code{data.pkg}. | 
| 125 | 
heimbach | 
1.6 | 
 | 
| 126 | 
  | 
  | 
\paragraph{General flags and parameters} | 
| 127 | 
  | 
  | 
~ \\ | 
| 128 | 
  | 
  | 
% | 
| 129 | 
mlosch | 
1.8 | 
Table~\ref{tab:pkg:seaice:runtimeparms} lists most run-time parameters. | 
| 130 | 
heimbach | 
1.6 | 
\input{part6/seaice-parms.tex} | 
| 131 | 
  | 
  | 
 | 
| 132 | 
  | 
  | 
 | 
| 133 | 
  | 
  | 
 | 
| 134 | 
  | 
  | 
%---------------------------------------------------------------------- | 
| 135 | 
  | 
  | 
\subsubsection{Description | 
| 136 | 
  | 
  | 
\label{sec:pkg:seaice:descr}} | 
| 137 | 
  | 
  | 
 | 
| 138 | 
  | 
  | 
[TO BE CONTINUED/MODIFIED] | 
| 139 | 
  | 
  | 
 | 
| 140 | 
mlosch | 
1.8 | 
% Sea-ice model thermodynamics are based on Hibler | 
| 141 | 
  | 
  | 
% \cite{hib80}, that is, a 2-category model that simulates ice thickness | 
| 142 | 
  | 
  | 
% and concentration.  Snow is simulated as per Zhang et al. | 
| 143 | 
  | 
  | 
% \cite{zha98a}.  Although recent years have seen an increased use of | 
| 144 | 
  | 
  | 
% multi-category thickness distribution sea-ice models for climate | 
| 145 | 
  | 
  | 
% studies, the Hibler 2-category ice model is still the most widely used | 
| 146 | 
  | 
  | 
% model and has resulted in realistic simulation of sea-ice variability | 
| 147 | 
  | 
  | 
% on regional and global scales.  Being less complicated, compared to | 
| 148 | 
  | 
  | 
% multi-category models, the 2-category model permits easier application | 
| 149 | 
  | 
  | 
% of adjoint model optimization methods. | 
| 150 | 
  | 
  | 
 | 
| 151 | 
  | 
  | 
% Note, however, that the Hibler 2-category model and its variants use a | 
| 152 | 
  | 
  | 
% so-called zero-layer thermodynamic model to estimate ice growth and | 
| 153 | 
  | 
  | 
% decay.  The zero-layer thermodynamic model assumes that ice does not | 
| 154 | 
  | 
  | 
% store heat and, therefore, tends to exaggerate the seasonal | 
| 155 | 
  | 
  | 
% variability in ice thickness.  This exaggeration can be significantly | 
| 156 | 
  | 
  | 
% reduced by using Semtner's \cite{sem76} three-layer thermodynamic | 
| 157 | 
  | 
  | 
% model that permits heat storage in ice.  Recently, the three-layer | 
| 158 | 
  | 
  | 
% thermodynamic model has been reformulated by Winton \cite{win00}.  The | 
| 159 | 
  | 
  | 
% reformulation improves model physics by representing the brine content | 
| 160 | 
  | 
  | 
% of the upper ice with a variable heat capacity.  It also improves | 
| 161 | 
  | 
  | 
% model numerics and consumes less computer time and memory.  The Winton | 
| 162 | 
  | 
  | 
% sea-ice thermodynamics have been ported to the MIT GCM; they currently | 
| 163 | 
  | 
  | 
% reside under pkg/thsice. The package pkg/thsice is fully | 
| 164 | 
  | 
  | 
% compatible with pkg/seaice and with pkg/exf. When turned on togeter | 
| 165 | 
  | 
  | 
% with pkg/seaice, the zero-layer thermodynamics are replaced by the by | 
| 166 | 
  | 
  | 
% Winton thermodynamics | 
| 167 | 
  | 
  | 
 | 
| 168 | 
  | 
  | 
The MITgcm sea ice model (MITgcm/sim) is based on a variant of the | 
| 169 | 
  | 
  | 
viscous-plastic (VP) dynamic-thermodynamic sea ice model \citep{zhang97} | 
| 170 | 
  | 
  | 
first introduced by \citet{hib79, hib80}. In order to adapt this model | 
| 171 | 
  | 
  | 
to the requirements of coupled ice-ocean state estimation, many | 
| 172 | 
  | 
  | 
important aspects of the original code have been modified and | 
| 173 | 
  | 
  | 
improved: | 
| 174 | 
  | 
  | 
\begin{itemize} | 
| 175 | 
  | 
  | 
\item the code has been rewritten for an Arakawa C-grid, both B- and | 
| 176 | 
  | 
  | 
  C-grid variants are available; the C-grid code allows for no-slip | 
| 177 | 
  | 
  | 
  and free-slip lateral boundary conditions; | 
| 178 | 
  | 
  | 
\item two different solution methods for solving the nonlinear | 
| 179 | 
  | 
  | 
  momentum equations have been adopted: LSOR \citep{zhang97}, and EVP | 
| 180 | 
  | 
  | 
  \citep{hun97}; | 
| 181 | 
  | 
  | 
\item ice-ocean stress can be formulated as in \citet{hibler87} or as in | 
| 182 | 
  | 
  | 
  \citet{cam08};  | 
| 183 | 
  | 
  | 
\item ice variables are advected by sophisticated, conservative | 
| 184 | 
  | 
  | 
  advection schemes with flux limiting; | 
| 185 | 
  | 
  | 
\item growth and melt parameterizations have been refined and extended | 
| 186 | 
  | 
  | 
  in order to allow for more stable automatic differentiation of the code. | 
| 187 | 
  | 
  | 
\end{itemize} | 
| 188 | 
  | 
  | 
The sea ice model is tightly coupled to the ocean compontent of the | 
| 189 | 
  | 
  | 
MITgcm.  Heat, fresh water fluxes and surface stresses are computed | 
| 190 | 
  | 
  | 
from the atmospheric state and -- by default -- modified by the ice | 
| 191 | 
  | 
  | 
model at every time step. | 
| 192 | 
edhill | 
1.1 | 
 | 
| 193 | 
  | 
  | 
The ice dynamics models that are most widely used for large-scale | 
| 194 | 
mlosch | 
1.8 | 
climate studies are the viscous-plastic (VP) model \citep{hib79}, the | 
| 195 | 
  | 
  | 
cavitating fluid (CF) model \citep{fla92}, and the | 
| 196 | 
  | 
  | 
elastic-viscous-plastic (EVP) model \citep{hun97}.  Compared to the VP | 
| 197 | 
edhill | 
1.1 | 
model, the CF model does not allow ice shear in calculating ice | 
| 198 | 
  | 
  | 
motion, stress, and deformation.  EVP models approximate VP by adding | 
| 199 | 
  | 
  | 
an elastic term to the equations for easier adaptation to parallel | 
| 200 | 
  | 
  | 
computers.  Because of its higher accuracy in plastic solution and | 
| 201 | 
  | 
  | 
relatively simpler formulation, compared to the EVP model, we decided | 
| 202 | 
mlosch | 
1.8 | 
to use the VP model as the default dynamic component of our ice | 
| 203 | 
  | 
  | 
model. To do this we extended the line successive over relaxation | 
| 204 | 
  | 
  | 
(LSOR) method of \citet{zhang97} for use in a parallel | 
| 205 | 
  | 
  | 
configuration. | 
| 206 | 
  | 
  | 
 | 
| 207 | 
  | 
  | 
Note, that by default the seaice-package includes the orginial | 
| 208 | 
  | 
  | 
so-called zero-layer thermodynamics following \citet{hib80} with a | 
| 209 | 
  | 
  | 
snow cover as in \citet{zha98a}. The zero-layer thermodynamic model | 
| 210 | 
  | 
  | 
assumes that ice does not store heat and, therefore, tends to | 
| 211 | 
  | 
  | 
exaggerate the seasonal variability in ice thickness.  This | 
| 212 | 
  | 
  | 
exaggeration can be significantly reduced by using | 
| 213 | 
  | 
  | 
\citeauthor{sem76}'s~[\citeyear{sem76}] three-layer thermodynamic model | 
| 214 | 
  | 
  | 
that permits heat storage in ice.  Recently, the three-layer | 
| 215 | 
  | 
  | 
thermodynamic model has been reformulated by \citet{win00}.  The | 
| 216 | 
  | 
  | 
reformulation improves model physics by representing the brine content | 
| 217 | 
  | 
  | 
of the upper ice with a variable heat capacity.  It also improves | 
| 218 | 
  | 
  | 
model numerics and consumes less computer time and memory.  The Winton | 
| 219 | 
  | 
  | 
sea-ice thermodynamics have been ported to the MIT GCM; they currently | 
| 220 | 
  | 
  | 
reside under pkg/thsice. The package pkg/thsice is fully compatible | 
| 221 | 
  | 
  | 
with pkg/seaice and with pkg/exf. When turned on together with | 
| 222 | 
  | 
  | 
pkg/seaice, the zero-layer thermodynamics are replaced by the Winton | 
| 223 | 
  | 
  | 
thermodynamics. | 
| 224 | 
edhill | 
1.1 | 
 | 
| 225 | 
  | 
  | 
The sea ice model requires the following input fields: 10-m winds, 2-m | 
| 226 | 
  | 
  | 
air temperature and specific humidity, downward longwave and shortwave | 
| 227 | 
  | 
  | 
radiations, precipitation, evaporation, and river and glacier runoff. | 
| 228 | 
  | 
  | 
The sea ice model also requires surface temperature from the ocean | 
| 229 | 
mlosch | 
1.8 | 
model and the top level horizontal velocity.  Output fields are | 
| 230 | 
  | 
  | 
surface wind stress, evaporation minus precipitation minus runoff, net | 
| 231 | 
  | 
  | 
surface heat flux, and net shortwave flux.  The sea-ice model is | 
| 232 | 
  | 
  | 
global: in ice-free regions bulk formulae are used to estimate oceanic | 
| 233 | 
  | 
  | 
forcing from the atmospheric fields. | 
| 234 | 
  | 
  | 
 | 
| 235 | 
mlosch | 
1.9 | 
\paragraph{Dynamics\label{sec:pkg:seaice:dynamics}} | 
| 236 | 
mlosch | 
1.8 | 
 | 
| 237 | 
  | 
  | 
\newcommand{\vek}[1]{\ensuremath{\vec{\mathbf{#1}}}} | 
| 238 | 
  | 
  | 
\newcommand{\vtau}{\vek{\mathbf{\tau}}} | 
| 239 | 
  | 
  | 
The momentum equation of the sea-ice model is | 
| 240 | 
  | 
  | 
\begin{equation} | 
| 241 | 
  | 
  | 
  \label{eq:momseaice} | 
| 242 | 
  | 
  | 
  m \frac{D\vek{u}}{Dt} = -mf\vek{k}\times\vek{u} + \vtau_{air} + | 
| 243 | 
  | 
  | 
  \vtau_{ocean} - m \nabla{\phi(0)} + \vek{F}, | 
| 244 | 
  | 
  | 
\end{equation} | 
| 245 | 
  | 
  | 
where $m=m_{i}+m_{s}$ is the ice and snow mass per unit area; | 
| 246 | 
  | 
  | 
$\vek{u}=u\vek{i}+v\vek{j}$ is the ice velocity vector; | 
| 247 | 
  | 
  | 
$\vek{i}$, $\vek{j}$, and $\vek{k}$ are unit vectors in the $x$, $y$, and $z$ | 
| 248 | 
  | 
  | 
directions, respectively; | 
| 249 | 
  | 
  | 
$f$ is the Coriolis parameter; | 
| 250 | 
  | 
  | 
$\vtau_{air}$ and $\vtau_{ocean}$ are the wind-ice and ocean-ice stresses, | 
| 251 | 
  | 
  | 
respectively; | 
| 252 | 
  | 
  | 
$g$ is the gravity accelation; | 
| 253 | 
  | 
  | 
$\nabla\phi(0)$ is the gradient (or tilt) of the sea surface height; | 
| 254 | 
  | 
  | 
$\phi(0) = g\eta + p_{a}/\rho_{0} + mg/\rho_{0}$ is the sea surface | 
| 255 | 
  | 
  | 
height potential in response to ocean dynamics ($g\eta$), to | 
| 256 | 
  | 
  | 
atmospheric pressure loading ($p_{a}/\rho_{0}$, where $\rho_{0}$ is a | 
| 257 | 
  | 
  | 
reference density) and a term due to snow and ice loading \citep{cam08}; | 
| 258 | 
  | 
  | 
and $\vek{F}=\nabla\cdot\sigma$ is the divergence of the internal ice | 
| 259 | 
  | 
  | 
stress tensor $\sigma_{ij}$. % | 
| 260 | 
  | 
  | 
Advection of sea-ice momentum is neglected. The wind and ice-ocean stress | 
| 261 | 
  | 
  | 
terms are given by | 
| 262 | 
  | 
  | 
\begin{align*} | 
| 263 | 
  | 
  | 
  \vtau_{air}   = & \rho_{air}  C_{air}   |\vek{U}_{air}  -\vek{u}| | 
| 264 | 
  | 
  | 
                   R_{air}  (\vek{U}_{air}  -\vek{u}), \\  | 
| 265 | 
  | 
  | 
  \vtau_{ocean} = & \rho_{ocean}C_{ocean} |\vek{U}_{ocean}-\vek{u}|  | 
| 266 | 
mlosch | 
1.9 | 
                   R_{ocean}(\vek{U}_{ocean}-\vek{u}), | 
| 267 | 
mlosch | 
1.8 | 
\end{align*} | 
| 268 | 
  | 
  | 
where $\vek{U}_{air/ocean}$ are the surface winds of the atmosphere | 
| 269 | 
  | 
  | 
and surface currents of the ocean, respectively; $C_{air/ocean}$ are | 
| 270 | 
  | 
  | 
air and ocean drag coefficients; $\rho_{air/ocean}$ are reference | 
| 271 | 
  | 
  | 
densities; and $R_{air/ocean}$ are rotation matrices that act on the | 
| 272 | 
  | 
  | 
wind/current vectors. | 
| 273 | 
  | 
  | 
 | 
| 274 | 
  | 
  | 
For an isotropic system the stress tensor $\sigma_{ij}$ ($i,j=1,2$) can | 
| 275 | 
  | 
  | 
be related to the ice strain rate and strength by a nonlinear | 
| 276 | 
  | 
  | 
viscous-plastic (VP) constitutive law \citep{hib79, zhang97}: | 
| 277 | 
  | 
  | 
\begin{equation} | 
| 278 | 
  | 
  | 
  \label{eq:vpequation} | 
| 279 | 
  | 
  | 
  \sigma_{ij}=2\eta(\dot{\epsilon}_{ij},P)\dot{\epsilon}_{ij}  | 
| 280 | 
  | 
  | 
  + \left[\zeta(\dot{\epsilon}_{ij},P) - | 
| 281 | 
  | 
  | 
    \eta(\dot{\epsilon}_{ij},P)\right]\dot{\epsilon}_{kk}\delta_{ij}   | 
| 282 | 
  | 
  | 
  - \frac{P}{2}\delta_{ij}. | 
| 283 | 
  | 
  | 
\end{equation} | 
| 284 | 
  | 
  | 
The ice strain rate is given by | 
| 285 | 
  | 
  | 
\begin{equation*} | 
| 286 | 
  | 
  | 
  \dot{\epsilon}_{ij} = \frac{1}{2}\left(  | 
| 287 | 
  | 
  | 
    \frac{\partial{u_{i}}}{\partial{x_{j}}} + | 
| 288 | 
  | 
  | 
    \frac{\partial{u_{j}}}{\partial{x_{i}}}\right). | 
| 289 | 
  | 
  | 
\end{equation*} | 
| 290 | 
  | 
  | 
The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on | 
| 291 | 
  | 
  | 
both thickness $h$ and compactness (concentration) $c$: | 
| 292 | 
  | 
  | 
\begin{equation} | 
| 293 | 
  | 
  | 
  P_{\max} = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]}, | 
| 294 | 
  | 
  | 
\label{eq:icestrength} | 
| 295 | 
  | 
  | 
\end{equation} | 
| 296 | 
mlosch | 
1.9 | 
with the constants $P^{*}$ (run-time parameter \code{SEAICE\_strength}) and | 
| 297 | 
mlosch | 
1.8 | 
$C^{*}=20$. The nonlinear bulk and shear  | 
| 298 | 
  | 
  | 
viscosities $\eta$ and $\zeta$ are functions of ice strain rate | 
| 299 | 
  | 
  | 
invariants and ice strength such that the principal components of the | 
| 300 | 
  | 
  | 
stress lie on an elliptical yield curve with the ratio of major to | 
| 301 | 
  | 
  | 
minor axis $e$ equal to $2$; they are given by: | 
| 302 | 
  | 
  | 
\begin{align*} | 
| 303 | 
  | 
  | 
  \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})}, | 
| 304 | 
  | 
  | 
   \zeta_{\max}\right) \\ | 
| 305 | 
  | 
  | 
  \eta =& \frac{\zeta}{e^2} \\ | 
| 306 | 
  | 
  | 
  \intertext{with the abbreviation} | 
| 307 | 
  | 
  | 
  \Delta = & \left[ | 
| 308 | 
  | 
  | 
    \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right) | 
| 309 | 
  | 
  | 
    (1+e^{-2}) +  4e^{-2}\dot{\epsilon}_{12}^2 +  | 
| 310 | 
  | 
  | 
    2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2}) | 
| 311 | 
  | 
  | 
  \right]^{\frac{1}{2}}. | 
| 312 | 
  | 
  | 
\end{align*} | 
| 313 | 
  | 
  | 
The bulk viscosities are bounded above by imposing both a minimum | 
| 314 | 
  | 
  | 
$\Delta_{\min}$ (for numerical reasons, run-time parameter | 
| 315 | 
mlosch | 
1.9 | 
\code{SEAICE\_EPS} with a default value of | 
| 316 | 
mlosch | 
1.8 | 
$10^{-10}\text{\,s}^{-1}$) and a maximum $\zeta_{\max} = | 
| 317 | 
  | 
  | 
P_{\max}/\Delta^*$, where | 
| 318 | 
  | 
  | 
$\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. (There is also | 
| 319 | 
  | 
  | 
the option of bounding $\zeta$ from below by setting run-time | 
| 320 | 
mlosch | 
1.9 | 
parameter \code{SEAICE\_zetaMin} $>0$, but this is generally not | 
| 321 | 
mlosch | 
1.8 | 
recommended). For stress tensor computation the replacement pressure $P | 
| 322 | 
  | 
  | 
= 2\,\Delta\zeta$ \citep{hibler95} is used so that the stress state | 
| 323 | 
  | 
  | 
always lies on the elliptic yield curve by definition. | 
| 324 | 
  | 
  | 
 | 
| 325 | 
  | 
  | 
In the so-called truncated ellipse method the shear viscosity $\eta$ | 
| 326 | 
  | 
  | 
is capped to suppress any tensile stress \citep{hibler97, geiger98}: | 
| 327 | 
  | 
  | 
\begin{equation} | 
| 328 | 
  | 
  | 
  \label{eq:etatem} | 
| 329 | 
  | 
  | 
  \eta = \min\left(\frac{\zeta}{e^2}, | 
| 330 | 
  | 
  | 
  \frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})} | 
| 331 | 
  | 
  | 
  {\sqrt{(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})^2 | 
| 332 | 
  | 
  | 
      +4\dot{\epsilon}_{12}^2}}\right). | 
| 333 | 
  | 
  | 
\end{equation} | 
| 334 | 
mlosch | 
1.9 | 
To enable this method, set \code{\#define SEAICE\_ALLOW\_TEM} in | 
| 335 | 
  | 
  | 
\code{SEAICE\_OPTIONS.h} and turn it on with | 
| 336 | 
  | 
  | 
\code{SEAICEuseTEM=.TRUE.} in \code{data.seaice}.  | 
| 337 | 
mlosch | 
1.8 | 
 | 
| 338 | 
  | 
  | 
In the current implementation, the VP-model is integrated with the | 
| 339 | 
  | 
  | 
semi-implicit line successive over relaxation (LSOR)-solver of | 
| 340 | 
  | 
  | 
\citet{zhang97}, which allows for long time steps that, in our case, | 
| 341 | 
  | 
  | 
are limited by the explicit treatment of the Coriolis term. The | 
| 342 | 
  | 
  | 
explicit treatment of the Coriolis term does not represent a severe | 
| 343 | 
  | 
  | 
limitation because it restricts the time step to approximately the | 
| 344 | 
  | 
  | 
same length as in the ocean model where the Coriolis term is also | 
| 345 | 
  | 
  | 
treated explicitly. | 
| 346 | 
  | 
  | 
 | 
| 347 | 
  | 
  | 
\citet{hun97}'s introduced an elastic contribution to the strain | 
| 348 | 
  | 
  | 
rate in order to regularize Eq.~\ref{eq:vpequation} in such a way that | 
| 349 | 
  | 
  | 
the resulting elastic-viscous-plastic (EVP) and VP models are | 
| 350 | 
  | 
  | 
identical at steady state, | 
| 351 | 
  | 
  | 
\begin{equation} | 
| 352 | 
  | 
  | 
  \label{eq:evpequation} | 
| 353 | 
  | 
  | 
  \frac{1}{E}\frac{\partial\sigma_{ij}}{\partial{t}} + | 
| 354 | 
  | 
  | 
  \frac{1}{2\eta}\sigma_{ij}  | 
| 355 | 
  | 
  | 
  + \frac{\eta - \zeta}{4\zeta\eta}\sigma_{kk}\delta_{ij}   | 
| 356 | 
  | 
  | 
  + \frac{P}{4\zeta}\delta_{ij} | 
| 357 | 
  | 
  | 
  = \dot{\epsilon}_{ij}.  | 
| 358 | 
  | 
  | 
\end{equation} | 
| 359 | 
  | 
  | 
%In the EVP model, equations for the components of the stress tensor | 
| 360 | 
  | 
  | 
%$\sigma_{ij}$ are solved explicitly. Both model formulations will be | 
| 361 | 
  | 
  | 
%used and compared the present sea-ice model study. | 
| 362 | 
  | 
  | 
The EVP-model uses an explicit time stepping scheme with a short | 
| 363 | 
  | 
  | 
timestep. According to the recommendation of \citet{hun97}, the | 
| 364 | 
  | 
  | 
EVP-model is stepped forward in time 120 times within the physical | 
| 365 | 
  | 
  | 
ocean model time step (although this parameter is under debate), to | 
| 366 | 
  | 
  | 
allow for elastic waves to disappear.  Because the scheme does not | 
| 367 | 
  | 
  | 
require a matrix inversion it is fast in spite of the small internal | 
| 368 | 
  | 
  | 
timestep and simple to implement on parallel computers | 
| 369 | 
  | 
  | 
\citep{hun97}. For completeness, we repeat the equations for the | 
| 370 | 
  | 
  | 
components of the stress tensor $\sigma_{1} = | 
| 371 | 
  | 
  | 
\sigma_{11}+\sigma_{22}$, $\sigma_{2}= \sigma_{11}-\sigma_{22}$, and | 
| 372 | 
  | 
  | 
$\sigma_{12}$. Introducing the divergence $D_D = | 
| 373 | 
  | 
  | 
\dot{\epsilon}_{11}+\dot{\epsilon}_{22}$, and the horizontal tension | 
| 374 | 
  | 
  | 
and shearing strain rates, $D_T = | 
| 375 | 
  | 
  | 
\dot{\epsilon}_{11}-\dot{\epsilon}_{22}$ and $D_S = | 
| 376 | 
  | 
  | 
2\dot{\epsilon}_{12}$, respectively, and using the above | 
| 377 | 
  | 
  | 
abbreviations, the equations~\ref{eq:evpequation} can be written as: | 
| 378 | 
  | 
  | 
\begin{align} | 
| 379 | 
  | 
  | 
  \label{eq:evpstresstensor1} | 
| 380 | 
  | 
  | 
  \frac{\partial\sigma_{1}}{\partial{t}} + \frac{\sigma_{1}}{2T} + | 
| 381 | 
  | 
  | 
  \frac{P}{2T} &= \frac{P}{2T\Delta} D_D \\ | 
| 382 | 
  | 
  | 
  \label{eq:evpstresstensor2} | 
| 383 | 
  | 
  | 
  \frac{\partial\sigma_{2}}{\partial{t}} + \frac{\sigma_{2} e^{2}}{2T} | 
| 384 | 
  | 
  | 
  &= \frac{P}{2T\Delta} D_T \\ | 
| 385 | 
  | 
  | 
  \label{eq:evpstresstensor12} | 
| 386 | 
  | 
  | 
  \frac{\partial\sigma_{12}}{\partial{t}} + \frac{\sigma_{12} e^{2}}{2T} | 
| 387 | 
  | 
  | 
  &= \frac{P}{4T\Delta} D_S  | 
| 388 | 
  | 
  | 
\end{align} | 
| 389 | 
  | 
  | 
Here, the elastic parameter $E$ is redefined in terms of a damping timescale | 
| 390 | 
  | 
  | 
$T$ for elastic waves \[E=\frac{\zeta}{T}.\] | 
| 391 | 
  | 
  | 
$T=E_{0}\Delta{t}$ with the tunable parameter $E_0<1$ and | 
| 392 | 
  | 
  | 
the external (long) timestep $\Delta{t}$. \citet{hun97} recommend | 
| 393 | 
  | 
  | 
$E_{0} = \frac{1}{3}$ (which is the default value in the code). | 
| 394 | 
  | 
  | 
 | 
| 395 | 
mlosch | 
1.9 | 
To use the EVP solver, make sure that both \code{SEAICE\_CGRID} and | 
| 396 | 
  | 
  | 
\code{SEAICE\_ALLOW\_EVP} are defined in \code{SEAICE\_OPTIONS.h} | 
| 397 | 
mlosch | 
1.8 | 
(default). The solver is turned on by setting the sub-cycling time | 
| 398 | 
mlosch | 
1.9 | 
step \code{SEAICE\_deltaTevp} to a value larger than zero. The | 
| 399 | 
mlosch | 
1.8 | 
choice of this time step is under debate. \citet{hun97} recommend | 
| 400 | 
  | 
  | 
order(120) time steps for the EVP solver within one model time step | 
| 401 | 
mlosch | 
1.9 | 
$\Delta{t}$ (\code{deltaTmom}). One can also choose order(120) time | 
| 402 | 
mlosch | 
1.8 | 
steps within the forcing time scale, but then we recommend adjusting | 
| 403 | 
  | 
  | 
the damping time scale $T$ accordingly, by setting either | 
| 404 | 
mlosch | 
1.9 | 
\code{SEAICE\_elasticParm} ($E_{0}$), so that | 
| 405 | 
mlosch | 
1.8 | 
$E_{0}\Delta{t}=\mbox{forcing time scale}$, or directly | 
| 406 | 
mlosch | 
1.9 | 
\code{SEAICE\_evpTauRelax} ($T$) to the forcing time scale. | 
| 407 | 
mlosch | 
1.8 | 
 | 
| 408 | 
  | 
  | 
Moving sea ice exerts a stress on the ocean which is the opposite of | 
| 409 | 
  | 
  | 
the stress $\vtau_{ocean}$ in Eq.~\ref{eq:momseaice}. This stess is | 
| 410 | 
  | 
  | 
applied directly to the surface layer of the ocean model. An | 
| 411 | 
  | 
  | 
alternative ocean stress formulation is given by \citet{hibler87}. | 
| 412 | 
  | 
  | 
Rather than applying $\vtau_{ocean}$ directly, the stress is derived | 
| 413 | 
  | 
  | 
from integrating over the ice thickness to the bottom of the oceanic | 
| 414 | 
  | 
  | 
surface layer. In the resulting equation for the \emph{combined} | 
| 415 | 
  | 
  | 
ocean-ice momentum, the interfacial stress cancels and the total | 
| 416 | 
  | 
  | 
stress appears as the sum of windstress and divergence of internal ice | 
| 417 | 
  | 
  | 
stresses: $\delta(z) (\vtau_{air} + \vek{F})/\rho_0$, \citep[see also | 
| 418 | 
  | 
  | 
Eq.\,2 of][]{hibler87}. The disadvantage of this formulation is that | 
| 419 | 
  | 
  | 
now the velocity in the surface layer of the ocean that is used to | 
| 420 | 
  | 
  | 
advect tracers, is really an average over the ocean surface | 
| 421 | 
  | 
  | 
velocity and the ice velocity leading to an inconsistency as the ice | 
| 422 | 
  | 
  | 
temperature and salinity are different from the oceanic variables. | 
| 423 | 
  | 
  | 
To turn on the stress formulation of \citet{hibler87}, set | 
| 424 | 
mlosch | 
1.9 | 
\code{useHB87StressCoupling=.TRUE.} in \code{data.seaice}. | 
| 425 | 
mlosch | 
1.8 | 
 | 
| 426 | 
  | 
  | 
 | 
| 427 | 
  | 
  | 
% Our discretization differs from \citet{zhang97, zhang03} in the | 
| 428 | 
  | 
  | 
% underlying grid, namely the Arakawa C-grid, but is otherwise | 
| 429 | 
  | 
  | 
% straightforward. The EVP model, in particular, is discretized | 
| 430 | 
  | 
  | 
% naturally on the C-grid with $\sigma_{1}$ and $\sigma_{2}$ on the | 
| 431 | 
  | 
  | 
% center points and $\sigma_{12}$ on the corner (or vorticity) points of | 
| 432 | 
  | 
  | 
% the grid. With this choice all derivatives are discretized as central | 
| 433 | 
  | 
  | 
% differences and averaging is only involved in computing $\Delta$ and | 
| 434 | 
  | 
  | 
% $P$ at vorticity points. | 
| 435 | 
  | 
  | 
 | 
| 436 | 
mlosch | 
1.9 | 
\paragraph{Finite-volume discretization of the stress tensor | 
| 437 | 
  | 
  | 
  divergence\label{sec:pkg:seaice:discretization}} | 
| 438 | 
mlosch | 
1.8 | 
On an Arakawa C~grid, ice thickness and concentration and thus ice | 
| 439 | 
  | 
  | 
strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are | 
| 440 | 
  | 
  | 
naturally defined a C-points in the center of the grid | 
| 441 | 
  | 
  | 
cell. Discretization requires only averaging of $\zeta$ and $\eta$ to | 
| 442 | 
  | 
  | 
vorticity or Z-points (or $\zeta$-points, but here we use Z in order | 
| 443 | 
  | 
  | 
avoid confusion with the bulk viscosity) at the bottom left corner of | 
| 444 | 
  | 
  | 
the cell to give $\overline{\zeta}^{Z}$ and $\overline{\eta}^{Z}$. In | 
| 445 | 
  | 
  | 
the following, the superscripts indicate location at Z or C points, | 
| 446 | 
  | 
  | 
distance across the cell (F), along the cell edge (G), between | 
| 447 | 
  | 
  | 
$u$-points (U), $v$-points (V), and C-points (C). The control volumes | 
| 448 | 
  | 
  | 
of the $u$- and $v$-equations in the grid cell at indices $(i,j)$ are | 
| 449 | 
  | 
  | 
$A_{i,j}^{w}$ and $A_{i,j}^{s}$, respectively. With these definitions | 
| 450 | 
  | 
  | 
(which follow the model code documentation except that $\zeta$-points | 
| 451 | 
  | 
  | 
have been renamed to Z-points), the strain rates are discretized as: | 
| 452 | 
  | 
  | 
\begin{align} | 
| 453 | 
  | 
  | 
  \dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag | 
| 454 | 
  | 
  | 
  => (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}}  | 
| 455 | 
  | 
  | 
   + k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\  | 
| 456 | 
  | 
  | 
  \dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag | 
| 457 | 
  | 
  | 
  => (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}}  | 
| 458 | 
  | 
  | 
   + k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\  | 
| 459 | 
  | 
  | 
   \dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl( | 
| 460 | 
  | 
  | 
   \partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1} | 
| 461 | 
  | 
  | 
   \biggr) \\ \notag | 
| 462 | 
  | 
  | 
  => (\epsilon_{12})_{i,j}^Z &= \frac{1}{2} | 
| 463 | 
  | 
  | 
  \biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V}  | 
| 464 | 
  | 
  | 
   + \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag | 
| 465 | 
  | 
  | 
  &\phantom{=\frac{1}{2}\biggl(} | 
| 466 | 
  | 
  | 
   - k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} | 
| 467 | 
  | 
  | 
   - k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} | 
| 468 | 
  | 
  | 
   \biggr), | 
| 469 | 
  | 
  | 
\end{align} | 
| 470 | 
  | 
  | 
so that the diagonal terms of the strain rate tensor are naturally | 
| 471 | 
  | 
  | 
defined at C-points and the symmetric off-diagonal term at | 
| 472 | 
  | 
  | 
Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and | 
| 473 | 
  | 
  | 
$v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via | 
| 474 | 
  | 
  | 
``ghost-points''; for free slip boundary conditions | 
| 475 | 
  | 
  | 
$(\epsilon_{12})^Z=0$ on boundaries. | 
| 476 | 
  | 
  | 
 | 
| 477 | 
  | 
  | 
For a spherical polar grid, the coefficients of the metric terms are | 
| 478 | 
  | 
  | 
$k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and | 
| 479 | 
  | 
  | 
the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi | 
| 480 | 
  | 
  | 
\Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a | 
| 481 | 
  | 
  | 
general orthogonal curvilinear grid, $k_{1}$ and | 
| 482 | 
  | 
  | 
$k_{2}$ can be approximated by finite differences of the cell widths: | 
| 483 | 
  | 
  | 
\begin{align} | 
| 484 | 
  | 
  | 
  k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}} | 
| 485 | 
  | 
  | 
  \frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\ | 
| 486 | 
  | 
  | 
  k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}} | 
| 487 | 
  | 
  | 
  \frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\ | 
| 488 | 
  | 
  | 
  k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}} | 
| 489 | 
  | 
  | 
  \frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\ | 
| 490 | 
  | 
  | 
  k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}} | 
| 491 | 
  | 
  | 
  \frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}} | 
| 492 | 
  | 
  | 
\end{align} | 
| 493 | 
  | 
  | 
 | 
| 494 | 
  | 
  | 
The stress tensor is given by the constitutive viscous-plastic | 
| 495 | 
  | 
  | 
relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} + | 
| 496 | 
  | 
  | 
[(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2 | 
| 497 | 
  | 
  | 
]\delta_{\alpha\beta}$ \citep{hib79}. The stress tensor divergence | 
| 498 | 
  | 
  | 
$(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is | 
| 499 | 
  | 
  | 
discretized in finite volumes. This conveniently avoids dealing with | 
| 500 | 
  | 
  | 
further metric terms, as these are ``hidden'' in the differential cell | 
| 501 | 
  | 
  | 
widths. For the $u$-equation ($\alpha=1$) we have: | 
| 502 | 
  | 
  | 
\begin{align} | 
| 503 | 
  | 
  | 
  (\nabla\sigma)_{1}: \phantom{=}& | 
| 504 | 
  | 
  | 
  \frac{1}{A_{i,j}^w} | 
| 505 | 
  | 
  | 
  \int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2 | 
| 506 | 
  | 
  | 
  \\\notag | 
| 507 | 
  | 
  | 
  =& \frac{1}{A_{i,j}^w} \biggl\{ | 
| 508 | 
  | 
  | 
  \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}} | 
| 509 | 
  | 
  | 
  + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}} | 
| 510 | 
  | 
  | 
  \biggr\} \\ \notag | 
| 511 | 
  | 
  | 
  \approx& \frac{1}{A_{i,j}^w} \biggl\{ | 
| 512 | 
  | 
  | 
  \Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}} | 
| 513 | 
  | 
  | 
  + \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}} | 
| 514 | 
  | 
  | 
  \biggr\} \\ \notag | 
| 515 | 
  | 
  | 
  =& \frac{1}{A_{i,j}^w} \biggl\{ | 
| 516 | 
mlosch | 
1.9 | 
  (\Delta{x}_2\sigma_{11})_{i,j}^C - | 
| 517 | 
  | 
  | 
  (\Delta{x}_2\sigma_{11})_{i-1,j}^C  | 
| 518 | 
  | 
  | 
  \\\notag | 
| 519 | 
mlosch | 
1.8 | 
  \phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{} | 
| 520 | 
  | 
  | 
  + (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z | 
| 521 | 
  | 
  | 
  \biggr\} | 
| 522 | 
  | 
  | 
  \intertext{with} | 
| 523 | 
  | 
  | 
  (\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+} | 
| 524 | 
  | 
  | 
  \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j} | 
| 525 | 
  | 
  | 
  \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag | 
| 526 | 
  | 
  | 
  &+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j} | 
| 527 | 
  | 
  | 
  k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag | 
| 528 | 
  | 
  | 
  \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j} | 
| 529 | 
  | 
  | 
  \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag | 
| 530 | 
  | 
  | 
  \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j} | 
| 531 | 
  | 
  | 
  k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag | 
| 532 | 
  | 
  | 
  \phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\ | 
| 533 | 
  | 
  | 
  (\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+} | 
| 534 | 
  | 
  | 
  \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j} | 
| 535 | 
  | 
  | 
  \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag | 
| 536 | 
  | 
  | 
  & + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j} | 
| 537 | 
  | 
  | 
  \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag | 
| 538 | 
  | 
  | 
  & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}  | 
| 539 | 
  | 
  | 
  k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag | 
| 540 | 
  | 
  | 
  & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}  | 
| 541 | 
  | 
  | 
  k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} | 
| 542 | 
  | 
  | 
\end{align} | 
| 543 | 
  | 
  | 
 | 
| 544 | 
  | 
  | 
Similarly, we have for the $v$-equation ($\alpha=2$): | 
| 545 | 
  | 
  | 
\begin{align} | 
| 546 | 
  | 
  | 
  (\nabla\sigma)_{2}: \phantom{=}& | 
| 547 | 
  | 
  | 
  \frac{1}{A_{i,j}^s} | 
| 548 | 
  | 
  | 
  \int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2  | 
| 549 | 
  | 
  | 
  \\\notag | 
| 550 | 
  | 
  | 
  =& \frac{1}{A_{i,j}^s} \biggl\{ | 
| 551 | 
  | 
  | 
  \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}} | 
| 552 | 
  | 
  | 
  + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}} | 
| 553 | 
  | 
  | 
  \biggr\} \\ \notag | 
| 554 | 
  | 
  | 
  \approx& \frac{1}{A_{i,j}^s} \biggl\{ | 
| 555 | 
  | 
  | 
  \Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}} | 
| 556 | 
  | 
  | 
  + \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}} | 
| 557 | 
  | 
  | 
  \biggr\} \\ \notag | 
| 558 | 
  | 
  | 
  =& \frac{1}{A_{i,j}^s} \biggl\{ | 
| 559 | 
  | 
  | 
  (\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z | 
| 560 | 
  | 
  | 
  \\ \notag | 
| 561 | 
  | 
  | 
  \phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{} | 
| 562 | 
  | 
  | 
  + (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C | 
| 563 | 
  | 
  | 
  \biggr\}  | 
| 564 | 
  | 
  | 
  \intertext{with} | 
| 565 | 
  | 
  | 
  (\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+} | 
| 566 | 
  | 
  | 
  \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j} | 
| 567 | 
mlosch | 
1.9 | 
  \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}}  | 
| 568 | 
  | 
  | 
  \\\notag & | 
| 569 | 
  | 
  | 
  + \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j} | 
| 570 | 
  | 
  | 
  \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\\notag | 
| 571 | 
mlosch | 
1.8 | 
  &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j} | 
| 572 | 
mlosch | 
1.9 | 
  k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}  | 
| 573 | 
  | 
  | 
  \\\notag & | 
| 574 | 
  | 
  | 
  - \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j} | 
| 575 | 
mlosch | 
1.8 | 
  k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag | 
| 576 | 
  | 
  | 
  (\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+} | 
| 577 | 
  | 
  | 
  \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j} | 
| 578 | 
  | 
  | 
  \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag | 
| 579 | 
  | 
  | 
  &+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j} | 
| 580 | 
  | 
  | 
  k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag | 
| 581 | 
  | 
  | 
  & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j} | 
| 582 | 
  | 
  | 
  \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag | 
| 583 | 
  | 
  | 
  & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j} | 
| 584 | 
  | 
  | 
  k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag | 
| 585 | 
  | 
  | 
  & -\Delta{x}_{i,j}^{F} \frac{P}{2} | 
| 586 | 
  | 
  | 
\end{align} | 
| 587 | 
  | 
  | 
 | 
| 588 | 
  | 
  | 
Again, no slip boundary conditions are realized via ghost points and | 
| 589 | 
  | 
  | 
$u_{i,j-1}+u_{i,j}=0$ and $v_{i-1,j}+v_{i,j}=0$ across boundaries. For | 
| 590 | 
  | 
  | 
free slip boundary conditions the lateral stress is set to zeros. In | 
| 591 | 
  | 
  | 
analogy to $(\epsilon_{12})^Z=0$ on boundaries, we set | 
| 592 | 
  | 
  | 
$\sigma_{21}^{Z}=0$, or equivalently $\eta_{i,j}^{Z}=0$, on boundaries. | 
| 593 | 
  | 
  | 
 | 
| 594 | 
mlosch | 
1.9 | 
\paragraph{Thermodynamics\label{sec:pkg:seaice:thermodynamics}} | 
| 595 | 
mlosch | 
1.8 | 
 | 
| 596 | 
  | 
  | 
In its original formulation the sea ice model \citep{menemenlis05} | 
| 597 | 
  | 
  | 
uses simple thermodynamics following the appendix of | 
| 598 | 
  | 
  | 
\citet{sem76}. This formulation does not allow storage of heat, | 
| 599 | 
  | 
  | 
that is, the heat capacity of ice is zero. Upward conductive heat flux | 
| 600 | 
  | 
  | 
is parameterized assuming a linear temperature profile and together | 
| 601 | 
  | 
  | 
with a constant ice conductivity. It is expressed as | 
| 602 | 
  | 
  | 
$(K/h)(T_{w}-T_{0})$, where $K$ is the ice conductivity, $h$ the ice | 
| 603 | 
  | 
  | 
thickness, and $T_{w}-T_{0}$ the difference between water and ice | 
| 604 | 
  | 
  | 
surface temperatures. This type of model is often refered to as a | 
| 605 | 
  | 
  | 
``zero-layer'' model. The surface heat flux is computed in a similar | 
| 606 | 
  | 
  | 
way to that of \citet{parkinson79} and \citet{manabe79}.  | 
| 607 | 
  | 
  | 
 | 
| 608 | 
  | 
  | 
The conductive heat flux depends strongly on the ice thickness $h$. | 
| 609 | 
  | 
  | 
However, the ice thickness in the model represents a mean over a | 
| 610 | 
  | 
  | 
potentially very heterogeneous thickness distribution.  In order to | 
| 611 | 
  | 
  | 
parameterize a sub-grid scale distribution for heat flux | 
| 612 | 
  | 
  | 
computations, the mean ice thickness $h$ is split into seven thickness | 
| 613 | 
  | 
  | 
categories $H_{n}$ that are equally distributed between $2h$ and a | 
| 614 | 
  | 
  | 
minimum imposed ice thickness of $5\text{\,cm}$ by $H_n= | 
| 615 | 
  | 
  | 
\frac{2n-1}{7}\,h$ for $n\in[1,7]$. The heat fluxes computed for each | 
| 616 | 
  | 
  | 
thickness category is area-averaged to give the total heat flux | 
| 617 | 
  | 
  | 
\citep{hibler84}. To use this thickness category parameterization set | 
| 618 | 
mlosch | 
1.9 | 
\code{\#define SEAICE\_MULTICATEGORY}; note that this requires | 
| 619 | 
mlosch | 
1.8 | 
different restart files and switching this flag on in the middle of an | 
| 620 | 
  | 
  | 
integration is not possible. | 
| 621 | 
  | 
  | 
 | 
| 622 | 
  | 
  | 
The atmospheric heat flux is balanced by an oceanic heat flux from | 
| 623 | 
  | 
  | 
below.  The oceanic flux is proportional to | 
| 624 | 
  | 
  | 
$\rho\,c_{p}\left(T_{w}-T_{fr}\right)$ where $\rho$ and $c_{p}$ are | 
| 625 | 
  | 
  | 
the density and heat capacity of sea water and $T_{fr}$ is the local | 
| 626 | 
  | 
  | 
freezing point temperature that is a function of salinity. This flux | 
| 627 | 
  | 
  | 
is not assumed to instantaneously melt or create ice, but a time scale | 
| 628 | 
mlosch | 
1.9 | 
of three days (run-time parameter \code{SEAICE\_gamma\_t}) is used | 
| 629 | 
mlosch | 
1.8 | 
to relax $T_{w}$ to the freezing point. | 
| 630 | 
  | 
  | 
% | 
| 631 | 
  | 
  | 
The parameterization of lateral and vertical growth of sea ice follows | 
| 632 | 
  | 
  | 
that of \citet{hib79, hib80}; the so-called lead closing parameter | 
| 633 | 
mlosch | 
1.9 | 
$h_{0}$ (run-time parameter \code{HO}) has a default value of | 
| 634 | 
mlosch | 
1.8 | 
0.5~meters. | 
| 635 | 
  | 
  | 
 | 
| 636 | 
  | 
  | 
On top of the ice there is a layer of snow that modifies the heat flux | 
| 637 | 
  | 
  | 
and the albedo \citep{zha98a}. Snow modifies the effective | 
| 638 | 
  | 
  | 
conductivity according to  | 
| 639 | 
  | 
  | 
\[\frac{K}{h} \rightarrow \frac{1}{\frac{h_{s}}{K_{s}}+\frac{h}{K}},\] | 
| 640 | 
  | 
  | 
where $K_s$ is the conductivity of snow and $h_s$ the snow thickness. | 
| 641 | 
  | 
  | 
If enough snow accumulates so that its weight submerges the ice and | 
| 642 | 
  | 
  | 
the snow is flooded, a simple mass conserving parameterization of | 
| 643 | 
  | 
  | 
snowice formation (a flood-freeze algorithm following Archimedes' | 
| 644 | 
  | 
  | 
principle) turns snow into ice until the ice surface is back at $z=0$ | 
| 645 | 
  | 
  | 
\citep{leppaeranta83}. The flood-freeze algorithm is enabled with the CPP-flag | 
| 646 | 
mlosch | 
1.9 | 
\code{SEAICE\_ALLOW\_FLOODING} and turned on with run-time parameter | 
| 647 | 
  | 
  | 
\code{SEAICEuseFlooding=.true.}. | 
| 648 | 
mlosch | 
1.8 | 
 | 
| 649 | 
  | 
  | 
Effective ice thickness (ice volume per unit area, | 
| 650 | 
  | 
  | 
$c\cdot{h}$), concentration $c$ and effective snow thickness | 
| 651 | 
  | 
  | 
($c\cdot{h}_{s}$) are advected by ice velocities: | 
| 652 | 
  | 
  | 
\begin{equation} | 
| 653 | 
  | 
  | 
  \label{eq:advection} | 
| 654 | 
  | 
  | 
  \frac{\partial{X}}{\partial{t}} = - \nabla\cdot\left(\vek{u}\,X\right) + | 
| 655 | 
  | 
  | 
  \Gamma_{X} + D_{X} | 
| 656 | 
  | 
  | 
\end{equation} | 
| 657 | 
  | 
  | 
where $\Gamma_X$ are the thermodynamic source terms and $D_{X}$ the | 
| 658 | 
  | 
  | 
diffusive terms for quantities $X=(c\cdot{h}), c, (c\cdot{h}_{s})$. | 
| 659 | 
  | 
  | 
% | 
| 660 | 
  | 
  | 
From the various advection scheme that are available in the MITgcm, we | 
| 661 | 
  | 
  | 
choose flux-limited schemes \citep[multidimensional 2nd and 3rd-order | 
| 662 | 
  | 
  | 
advection scheme with flux limiter][]{roe:85, hundsdorfer94} to | 
| 663 | 
  | 
  | 
preserve sharp gradients and edges that are typical of sea ice | 
| 664 | 
  | 
  | 
distributions and to rule out unphysical over- and undershoots | 
| 665 | 
  | 
  | 
(negative thickness or concentration). These scheme conserve volume | 
| 666 | 
  | 
  | 
and horizontal area and are unconditionally stable, so that we can set | 
| 667 | 
mlosch | 
1.9 | 
$D_{X}=0$. Run-timeflags: \code{SEAICEadvScheme} (default=2), | 
| 668 | 
  | 
  | 
\code{DIFF1} (default=0.004). | 
| 669 | 
mlosch | 
1.8 | 
 | 
| 670 | 
  | 
  | 
There is considerable doubt about the reliability of a ``zero-layer'' | 
| 671 | 
  | 
  | 
thermodynamic model --- \citet{semtner84} found significant errors in | 
| 672 | 
  | 
  | 
phase (one month lead) and amplitude ($\approx$50\%\,overestimate) in | 
| 673 | 
  | 
  | 
such models --- so that today many sea ice models employ more complex | 
| 674 | 
  | 
  | 
thermodynamics. The MITgcm sea ice model provides the option to use | 
| 675 | 
  | 
  | 
the thermodynamics model of \citet{win00}, which in turn is based | 
| 676 | 
  | 
  | 
on the 3-layer model of \citet{sem76} and which treats brine | 
| 677 | 
  | 
  | 
content by means of enthalpy conservation. This scheme requires | 
| 678 | 
  | 
  | 
additional state variables, namely the enthalpy of the two ice layers | 
| 679 | 
  | 
  | 
(instead of effective ice salinity), to be advected by ice velocities. | 
| 680 | 
  | 
  | 
% | 
| 681 | 
  | 
  | 
The internal sea ice temperature is inferred from ice enthalpy.  To | 
| 682 | 
  | 
  | 
avoid unphysical (negative) values for ice thickness and | 
| 683 | 
  | 
  | 
concentration, a positive 2nd-order advection scheme with a SuperBee | 
| 684 | 
  | 
  | 
flux limiter \citep{roe:85} is used in this study to advect all | 
| 685 | 
  | 
  | 
sea-ice-related quantities of the \citet{win00} thermodynamic | 
| 686 | 
  | 
  | 
model.  Because of the non-linearity of the advection scheme, care | 
| 687 | 
  | 
  | 
must be taken in advecting these quantities: when simply using ice | 
| 688 | 
  | 
  | 
velocity to advect enthalpy, the total energy (i.e., the volume | 
| 689 | 
  | 
  | 
integral of enthalpy) is not conserved. Alternatively, one can advect | 
| 690 | 
  | 
  | 
the energy content (i.e., product of ice-volume and enthalpy) but then | 
| 691 | 
  | 
  | 
false enthalpy extrema can occur, which then leads to unrealistic ice | 
| 692 | 
  | 
  | 
temperature.  In the currently implemented solution, the sea-ice mass | 
| 693 | 
  | 
  | 
flux is used to advect the enthalpy in order to ensure conservation of | 
| 694 | 
  | 
  | 
enthalpy and to prevent false enthalpy extrema. | 
| 695 | 
edhill | 
1.1 | 
 | 
| 696 | 
heimbach | 
1.6 | 
%---------------------------------------------------------------------- | 
| 697 | 
  | 
  | 
 | 
| 698 | 
  | 
  | 
\subsubsection{Key subroutines | 
| 699 | 
  | 
  | 
\label{sec:pkg:seaice:subroutines}} | 
| 700 | 
  | 
  | 
 | 
| 701 | 
mlosch | 
1.9 | 
Top-level routine: \code{seaice\_model.F} | 
| 702 | 
heimbach | 
1.6 | 
 | 
| 703 | 
  | 
  | 
{\footnotesize | 
| 704 | 
  | 
  | 
\begin{verbatim} | 
| 705 | 
  | 
  | 
 | 
| 706 | 
  | 
  | 
C     !CALLING SEQUENCE: | 
| 707 | 
  | 
  | 
c ... | 
| 708 | 
  | 
  | 
c  seaice_model (TOP LEVEL ROUTINE) | 
| 709 | 
  | 
  | 
c  | | 
| 710 | 
  | 
  | 
c  |-- #ifdef SEAICE_CGRID | 
| 711 | 
  | 
  | 
c  |     SEAICE_DYNSOLVER | 
| 712 | 
heimbach | 
1.7 | 
c  |     | | 
| 713 | 
  | 
  | 
c  |     |-- < compute proxy for geostrophic velocity > | 
| 714 | 
  | 
  | 
c  |     | | 
| 715 | 
  | 
  | 
c  |     |-- < set up mass per unit area and Coriolis terms > | 
| 716 | 
  | 
  | 
c  |     | | 
| 717 | 
  | 
  | 
c  |     |-- < dynamic masking of areas with no ice > | 
| 718 | 
  | 
  | 
c  |     | | 
| 719 | 
  | 
  | 
c  |     | | 
| 720 | 
  | 
  | 
 | 
| 721 | 
heimbach | 
1.6 | 
c  |   #ELSE | 
| 722 | 
  | 
  | 
c  |     DYNSOLVER | 
| 723 | 
  | 
  | 
c  |   #ENDIF | 
| 724 | 
  | 
  | 
c  | | 
| 725 | 
heimbach | 
1.7 | 
c  |-- if ( useOBCS )  | 
| 726 | 
  | 
  | 
c  |     OBCS_APPLY_UVICE | 
| 727 | 
  | 
  | 
c  | | 
| 728 | 
  | 
  | 
c  |-- if ( SEAICEadvHeff .OR. SEAICEadvArea .OR. SEAICEadvSnow .OR. SEAICEadvSalt ) | 
| 729 | 
  | 
  | 
c  |     SEAICE_ADVDIFF | 
| 730 | 
  | 
  | 
c  | | 
| 731 | 
  | 
  | 
c  |-- if ( usePW79thermodynamics )  | 
| 732 | 
  | 
  | 
c  |     SEAICE_GROWTH | 
| 733 | 
  | 
  | 
c  | | 
| 734 | 
  | 
  | 
c  |-- if ( useOBCS )  | 
| 735 | 
  | 
  | 
c  |     if ( SEAICEadvHeff ) OBCS_APPLY_HEFF | 
| 736 | 
  | 
  | 
c  |     if ( SEAICEadvArea ) OBCS_APPLY_AREA | 
| 737 | 
  | 
  | 
c  |     if ( SEAICEadvSALT ) OBCS_APPLY_HSALT | 
| 738 | 
  | 
  | 
c  |     if ( SEAICEadvSNOW ) OBCS_APPLY_HSNOW | 
| 739 | 
  | 
  | 
c  | | 
| 740 | 
  | 
  | 
c  |-- < do various exchanges > | 
| 741 | 
  | 
  | 
c  | | 
| 742 | 
  | 
  | 
c  |-- < do additional diagnostics > | 
| 743 | 
  | 
  | 
c  | | 
| 744 | 
  | 
  | 
c  o | 
| 745 | 
heimbach | 
1.6 | 
 | 
| 746 | 
  | 
  | 
\end{verbatim} | 
| 747 | 
  | 
  | 
} | 
| 748 | 
  | 
  | 
 | 
| 749 | 
  | 
  | 
 | 
| 750 | 
  | 
  | 
%---------------------------------------------------------------------- | 
| 751 | 
  | 
  | 
 | 
| 752 | 
mlosch | 
1.8 | 
\subsubsection{SEAICE diagnostics | 
| 753 | 
heimbach | 
1.6 | 
\label{sec:pkg:seaice:diagnostics}} | 
| 754 | 
  | 
  | 
 | 
| 755 | 
  | 
  | 
Diagnostics output is available via the diagnostics package | 
| 756 | 
  | 
  | 
(see Section \ref{sec:pkg:diagnostics}). | 
| 757 | 
  | 
  | 
Available output fields are summarized in  | 
| 758 | 
  | 
  | 
Table \ref{tab:pkg:seaice:diagnostics}. | 
| 759 | 
  | 
  | 
 | 
| 760 | 
  | 
  | 
\begin{table}[h!] | 
| 761 | 
  | 
  | 
\centering | 
| 762 | 
  | 
  | 
\label{tab:pkg:seaice:diagnostics} | 
| 763 | 
  | 
  | 
{\footnotesize | 
| 764 | 
  | 
  | 
\begin{verbatim} | 
| 765 | 
  | 
  | 
---------+----+----+----------------+----------------- | 
| 766 | 
  | 
  | 
 <-Name->|Levs|grid|<--  Units   -->|<- Tile (max=80c) | 
| 767 | 
  | 
  | 
---------+----+----+----------------+----------------- | 
| 768 | 
  | 
  | 
 SIarea  |  1 |SM  |m^2/m^2         |SEAICE fractional ice-covered area [0 to 1] | 
| 769 | 
  | 
  | 
 SIheff  |  1 |SM  |m               |SEAICE effective ice thickness | 
| 770 | 
  | 
  | 
 SIuice  |  1 |UU  |m/s             |SEAICE zonal ice velocity, >0 from West to East | 
| 771 | 
  | 
  | 
 SIvice  |  1 |VV  |m/s             |SEAICE merid. ice velocity, >0 from South to North | 
| 772 | 
  | 
  | 
 SIhsnow |  1 |SM  |m               |SEAICE snow thickness | 
| 773 | 
  | 
  | 
 SIhsalt |  1 |SM  |g/m^2           |SEAICE effective salinity | 
| 774 | 
mlosch | 
1.8 | 
 SIatmFW |  1 |SM  |kg/m^2/s        |Net freshwater flux from the atmosphere (+=down) | 
| 775 | 
heimbach | 
1.6 | 
 SIuwind |  1 |SM  |m/s             |SEAICE zonal 10-m wind speed, >0 increases uVel | 
| 776 | 
  | 
  | 
 SIvwind |  1 |SM  |m/s             |SEAICE meridional 10-m wind speed, >0 increases uVel | 
| 777 | 
  | 
  | 
 SIfu    |  1 |UU  |N/m^2           |SEAICE zonal surface wind stress, >0 increases uVel | 
| 778 | 
  | 
  | 
 SIfv    |  1 |VV  |N/m^2           |SEAICE merid. surface wind stress, >0 increases vVel | 
| 779 | 
mlosch | 
1.8 | 
 SIempmr |  1 |SM  |kg/m^2/s        |SEAICE upward freshwater flux, > 0 increases salt | 
| 780 | 
heimbach | 
1.6 | 
 SIqnet  |  1 |SM  |W/m^2           |SEAICE upward heatflux, turb+rad, >0 decreases theta | 
| 781 | 
  | 
  | 
 SIqsw   |  1 |SM  |W/m^2           |SEAICE upward shortwave radiat., >0 decreases theta | 
| 782 | 
  | 
  | 
 SIpress |  1 |SM  |m^2/s^2         |SEAICE strength (with upper and lower limit) | 
| 783 | 
  | 
  | 
 SIzeta  |  1 |SM  |m^2/s           |SEAICE nonlinear bulk viscosity | 
| 784 | 
  | 
  | 
 SIeta   |  1 |SM  |m^2/s           |SEAICE nonlinear shear viscosity | 
| 785 | 
  | 
  | 
 SIsigI  |  1 |SM  |no units        |SEAICE normalized principle stress, component one | 
| 786 | 
  | 
  | 
 SIsigII |  1 |SM  |no units        |SEAICE normalized principle stress, component two | 
| 787 | 
  | 
  | 
 SIthdgrh|  1 |SM  |m/s             |SEAICE thermodynamic growth rate of effective ice thickness | 
| 788 | 
  | 
  | 
 SIsnwice|  1 |SM  |m/s             |SEAICE ice formation rate due to flooding | 
| 789 | 
  | 
  | 
 SIuheff |  1 |UU  |m^2/s           |Zonal Transport of effective ice thickness | 
| 790 | 
  | 
  | 
 SIvheff |  1 |VV  |m^2/s           |Meridional Transport of effective ice thickness | 
| 791 | 
  | 
  | 
 ADVxHEFF|  1 |UU  |m.m^2/s         |Zonal      Advective Flux of eff ice thickn | 
| 792 | 
  | 
  | 
 ADVyHEFF|  1 |VV  |m.m^2/s         |Meridional Advective Flux of eff ice thickn | 
| 793 | 
  | 
  | 
 DFxEHEFF|  1 |UU  |m.m^2/s         |Zonal      Diffusive Flux of eff ice thickn | 
| 794 | 
  | 
  | 
 DFyEHEFF|  1 |VV  |m.m^2/s         |Meridional Diffusive Flux of eff ice thickn | 
| 795 | 
  | 
  | 
 ADVxAREA|  1 |UU  |m^2/m^2.m^2/s   |Zonal      Advective Flux of fract area | 
| 796 | 
  | 
  | 
 ADVyAREA|  1 |VV  |m^2/m^2.m^2/s   |Meridional Advective Flux of fract area | 
| 797 | 
  | 
  | 
 DFxEAREA|  1 |UU  |m^2/m^2.m^2/s   |Zonal      Diffusive Flux of fract area | 
| 798 | 
  | 
  | 
 DFyEAREA|  1 |VV  |m^2/m^2.m^2/s   |Meridional Diffusive Flux of fract area | 
| 799 | 
  | 
  | 
 ADVxSNOW|  1 |UU  |m.m^2/s         |Zonal      Advective Flux of eff snow thickn | 
| 800 | 
  | 
  | 
 ADVySNOW|  1 |VV  |m.m^2/s         |Meridional Advective Flux of eff snow thickn | 
| 801 | 
  | 
  | 
 DFxESNOW|  1 |UU  |m.m^2/s         |Zonal      Diffusive Flux of eff snow thickn | 
| 802 | 
  | 
  | 
 DFyESNOW|  1 |VV  |m.m^2/s         |Meridional Diffusive Flux of eff snow thickn | 
| 803 | 
  | 
  | 
 ADVxSSLT|  1 |UU  |psu.m^2/s       |Zonal      Advective Flux of seaice salinity | 
| 804 | 
  | 
  | 
 ADVySSLT|  1 |VV  |psu.m^2/s       |Meridional Advective Flux of seaice salinity | 
| 805 | 
  | 
  | 
 DFxESSLT|  1 |UU  |psu.m^2/s       |Zonal      Diffusive Flux of seaice salinity | 
| 806 | 
  | 
  | 
 DFyESSLT|  1 |VV  |psu.m^2/s       |Meridional Diffusive Flux of seaice salinity | 
| 807 | 
  | 
  | 
\end{verbatim} | 
| 808 | 
  | 
  | 
} | 
| 809 | 
mlosch | 
1.8 | 
\caption{Available diagnostics of the seaice-package} | 
| 810 | 
heimbach | 
1.6 | 
\end{table} | 
| 811 | 
  | 
  | 
 | 
| 812 | 
  | 
  | 
 | 
| 813 | 
molod | 
1.4 | 
%\subsubsection{Package Reference} | 
| 814 | 
edhill | 
1.1 | 
 | 
| 815 | 
molod | 
1.5 | 
\subsubsection{Experiments and tutorials that use seaice} | 
| 816 | 
  | 
  | 
\label{sec:pkg:seaice:experiments} | 
| 817 | 
  | 
  | 
 | 
| 818 | 
  | 
  | 
\begin{itemize} | 
| 819 | 
  | 
  | 
\item{Labrador Sea experiment in lab\_sea verification directory. } | 
| 820 | 
  | 
  | 
\end{itemize} | 
| 821 | 
  | 
  | 
 | 
| 822 | 
mlosch | 
1.8 | 
 | 
| 823 | 
  | 
  | 
%%% Local Variables:  | 
| 824 | 
  | 
  | 
%%% mode: latex | 
| 825 | 
  | 
  | 
%%% TeX-master: "../manual" | 
| 826 | 
  | 
  | 
%%% End:  |