/[MITgcm]/manual/s_phys_pkgs/text/obcs.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/text/obcs.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.15 - (show annotations) (download) (as text)
Wed Nov 9 11:48:40 2011 UTC (13 years, 8 months ago) by mlosch
Branch: MAIN
Changes since 1.14: +3 -3 lines
File MIME type: application/x-tex
adjust description of Stevens' BCs after addition of new code

1 \subsection{OBCS: Open boundary conditions for regional modeling}
2
3 \label{sec:pkg:obcs}
4 \begin{rawhtml}
5 <!-- CMIREDIR:package_obcs: -->
6 \end{rawhtml}
7
8 Authors:
9 Alistair Adcroft, Patrick Heimbach, Samar Katiwala, Martin Losch
10
11 \subsubsection{Introduction
12 \label{sec:pkg:obcs:intro}}
13
14 The OBCS-package is fundamental to regional ocean modelling with the
15 MITgcm, but there are so many details to be considered in
16 regional ocean modelling that this package cannot accomodate all
17 imaginable and possible options. Therefore, for a regional simulation
18 with very particular details, it is recommended to familiarize oneself
19 not only with the compile- and runtime-options of this package, but
20 also with the code itself. In many cases it will be necessary to adapt
21 the obcs-code (in particular \code{S/R OBCS\_CALC}) to the application
22 in question; in these cases the obcs-package (together with the
23 rbcs-package, section \ref{sec:pkg:rbcs}) is a very
24 useful infrastructure for implementing special regional models.
25
26 %----------------------------------------------------------------------
27
28 \subsubsection{OBCS configuration and compiling
29 \label{sec:pkg:obcs:comp}}
30
31 As with all MITgcm packages, OBCS can be turned on or off
32 at compile time
33 %
34 \begin{itemize}
35 %
36 \item
37 using the \code{packages.conf} file by adding \code{obcs} to it,
38 %
39 \item
40 or using \code{genmake2} adding
41 \code{-enable=obcs} or \code{-disable=obcs} switches
42 %
43 \item
44 \textit{Required packages and CPP options:} \\
45 %
46 To alternatives are available for prescribing open boundary values,
47 which differ in the way how OB's are treated in time:
48 A simple time-management (e.g. constant in time, or cyclic with
49 fixed fequency) is provided through
50 S/R \code{obcs\_external\_fields\_load}.
51 More sophisticated ``real-time'' (i.e. calendar time) management is
52 available through \code{obcs\_prescribe\_read}.
53 The latter case requires
54 packages \code{cal} and \code{exf} to be enabled.
55 %
56 \end{itemize}
57 (see also Section \ref{sec:buildingCode}).
58
59 Parts of the OBCS code can be enabled or disabled at compile time
60 via CPP preprocessor flags. These options are set in
61 \code{OBCS\_OPTIONS.h}. Table \ref{tab:pkg:obcs:cpp} summarizes them.
62
63 \begin{table}[!ht]
64 \centering
65 \label{tab:pkg:obcs:cpp}
66 {\footnotesize
67 \begin{tabular}{|l|l|}
68 \hline
69 \textbf{CPP option} & \textbf{Description} \\
70 \hline \hline
71 \code{ALLOW\_OBCS\_NORTH} &
72 enable Northern OB \\
73 \code{ALLOW\_OBCS\_SOUTH} &
74 enable Southern OB \\
75 \code{ALLOW\_OBCS\_EAST} &
76 enable Eastern OB \\
77 \code{ALLOW\_OBCS\_WEST} &
78 enable Western OB \\
79 \hline
80 \code{ALLOW\_OBCS\_PRESCRIBE} &
81 enable code for prescribing OB's \\
82 \code{ALLOW\_OBCS\_SPONGE} &
83 enable sponge layer code \\
84 \code{ALLOW\_OBCS\_BALANCE} &
85 enable code for balancing transports through OB's \\
86 \code{ALLOW\_ORLANSKI} &
87 enable Orlanski radiation conditions at OB's \\
88 \code{ALLOW\_OBCS\_STEVENS} &
89 enable Stevens (1990) boundary conditions at OB's \\
90 & (currently only implemented for eastern and western \\
91 & boundaries and NOT for ptracers) \\
92 \hline
93 \end{tabular}
94 }
95 \caption{~}
96 \end{table}
97
98
99 %----------------------------------------------------------------------
100
101 \subsubsection{Run-time parameters
102 \label{sec:pkg:obcs:runtime}}
103
104 Run-time parameters are set in files
105 \code{data.pkg}, \code{data.obcs}, and \code{data.exf}
106 if ``real-time'' prescription is requested
107 (i.e. package \code{exf} enabled).
108 vThese parameter files are read in S/R
109 \code{packages\_readparms.F}, \code{obcs\_readparms.F}, and
110 \code{exf\_readparms.F}, respectively.
111 Run-time parameters may be broken into 3 categories:
112 (i) switching on/off the package at runtime,
113 (ii) OBCS package flags and parameters,
114 (iii) additional timing flags in \code{data.exf}, if selected.
115
116 \paragraph{Enabling the package}
117 ~ \\
118 %
119 The OBCS package is switched on at runtime by setting
120 \code{useOBCS = .TRUE.} in \code{data.pkg}.
121
122 \paragraph{Package flags and parameters}
123 ~ \\
124 %
125 Table \ref{tab:pkg:obcs:runtime_flags} summarizes the
126 runtime flags that are set in \code{data.obcs}, and
127 their default values.
128
129 \begin{table}[!ht]
130 \centering
131 {\footnotesize
132 \begin{tabular}{|l|c|l|}
133 \hline
134 \textbf{Flag/parameter} & \textbf{default} & \textbf{Description} \\
135 \hline \hline
136 \multicolumn{3}{|c|}{\textit{basic flags \& parameters} (OBCS\_PARM01) } \\
137 \hline
138 OB\_Jnorth & 0 &
139 Nx-vector of J-indices (w.r.t. Ny) of Northern OB
140 at each I-position (w.r.t. Nx) \\
141 OB\_Jsouth & 0 &
142 Nx-vector of J-indices (w.r.t. Ny) of Southern OB
143 at each I-position (w.r.t. Nx) \\
144 OB\_Ieast & 0 &
145 Ny-vector of I-indices (w.r.t. Nx) of Eastern OB
146 at each J-position (w.r.t. Ny) \\
147 OB\_Iwest & 0 &
148 Ny-vector of I-indices (w.r.t. Nx) of Western OB
149 at each J-position (w.r.t. Ny) \\
150 useOBCSprescribe & \code{.FALSE.} &
151 ~ \\
152 useOBCSsponge & \code{.FALSE.} &
153 ~ \\
154 useOBCSbalance & \code{.FALSE.} &
155 ~ \\
156 OBCS\_balanceFacN/S/E/W & 1 & factor(s) determining the details
157 of the balaning code \\
158 useOrlanskiNorth/South/EastWest & \code{.FALSE.} &
159 turn on Orlanski boundary conditions for individual boundary\\
160 useStevensNorth/South/EastWest & \code{.FALSE.} &
161 turn on Stevens boundary conditions for individual boundary\\
162 OB\textbf{X}\textbf{y}File & ~ &
163 file name of OB field \\
164 ~ & ~ &
165 \textbf{X}: \textbf{N}(orth), \textbf{S}(outh),
166 \textbf{E}(ast), \textbf{W}(est) \\
167 ~ & ~ &
168 \textbf{y}: \textbf{t}(emperature), \textbf{s}(salinity),
169 \textbf{u}(-velocity), \textbf{v}(-velocity), \\
170 ~ & ~ &
171 \textbf{w}(-velocity), \textbf{eta}(sea surface height)\\
172 ~ & ~ &
173 \textbf{a}(sea ice area), \textbf{h}(sea ice thickness),
174 \textbf{sn}(snow thickness), \textbf{sl}(sea ice salinity)\\
175 \hline
176 \multicolumn{3}{|c|}{\textit{Orlanski parameters} (OBCS\_PARM02) } \\
177 \hline
178 cvelTimeScale & 2000 sec &
179 averaging period for phase speed \\
180 CMAX & 0.45 m/s &
181 maximum allowable phase speed-CFL for AB-II \\
182 CFIX & 0.8 m/s &
183 fixed boundary phase speed \\
184 useFixedCEast & \code{.FALSE.} &
185 ~ \\
186 useFixedCWest & \code{.FALSE.} &
187 ~ \\
188 \hline
189 \multicolumn{3}{|c|}{\textit{Sponge-layer parameters} (OBCS\_PARM03)} \\
190 \hline
191 spongeThickness & 0 &
192 sponge layer thickness (in \# grid points) \\
193 Urelaxobcsinner & 0 sec &
194 relaxation time scale at the
195 innermost sponge layer point of a meridional OB \\
196 Vrelaxobcsinner & 0 sec &
197 relaxation time scale at the
198 innermost sponge layer point of a zonal OB \\
199 Urelaxobcsbound & 0 sec &
200 relaxation time scale at the
201 outermost sponge layer point of a meridional OB \\
202 Vrelaxobcsbound & 0 sec &
203 relaxation time scale at the
204 outermost sponge layer point of a zonal OB \\
205 \hline
206 \multicolumn{3}{|c|}{\textit{Stevens parameters} (OBCS\_PARM04) } \\
207 \hline
208 T/SrelaxStevens & 0~sec & relaxation time scale for
209 temperature/salinity \\
210 useStevensPhaseVel & \code{.TRUE.} & \\
211 useStevensAdvection & \code{.TRUE.} & \\
212 \hline
213 \hline
214 \end{tabular}
215 }
216 \caption{pkg OBCS run-time parameters}
217 \label{tab:pkg:obcs:runtime_flags}
218 \end{table}
219
220
221
222 %----------------------------------------------------------------------
223
224 \subsubsection{Defining open boundary positions
225 \label{sec:pkg:obcs:defining}}
226
227 There are four open boundaries (OBs), a
228 Northern, Southern, Eastern, and Western.
229 All OB locations are specified by their absolute
230 meridional (Northern/Southern) or zonal (Eastern/Western) indices.
231 Thus, for each zonal position $i=1,\ldots,N_x$ a meridional index
232 $j$ specifies the Northern/Southern OB position,
233 and for each meridional position $j=1,\ldots,N_y$, a zonal index
234 $i$ specifies the Eastern/Western OB position.
235 For Northern/Southern OB this defines an $N_x$-dimensional
236 ``row'' array $\tt OB\_Jnorth(Ny)$ / $\tt OB\_Jsouth(Ny)$,
237 and an $N_y$-dimenisonal
238 ``column'' array $\tt OB\_Ieast(Nx)$ / $\tt OB\_Iwest(Nx)$.
239 Positions determined in this way allows Northern/Southern
240 OBs to be at variable $j$ (or $y$) positions, and Eastern/Western
241 OBs at variable $i$ (or $x$) positions.
242 Here, indices refer to tracer points on the C-grid.
243 A zero (0) element in $\tt OB\_I\ldots$, $\tt OB\_J\ldots$
244 means there is no corresponding OB in that column/row.
245 For a Northern/Southern OB, the OB V point is to the South/North.
246 For an Eastern/Western OB, the OB U point is to the West/East.
247 For example,
248 \begin{tabbing}
249 \code{OB\_Jnorth(3)=34} \= means that: \= \\
250 \> \code{T(3,34)} \> is a an OB point \\
251 \> \code{U(3,34)} \> is a an OB point \\
252 \> \code{V(3,34)} \> is a an OB point \\
253 \code{OB\_Jsouth(3)=1} \> means that: \\
254 \> \code{T(3,1)} \> is a an OB point \\
255 \> \code{U(3,1)} \> is a an OB point \\
256 \> \code{V(3,2)} \> is a an OB point \\
257 \code{OB\_Ieast(10)=69} \> means that: \> \\
258 \> \code{T(69,10)} \> is a an OB point \\
259 \> \code{U(69,10)} \> is a an OB point \\
260 \> \code{V(69,10)} \> is a an OB point \\
261 \code{OB\_Iwest(10)=1} \> means that: \> \\
262 \> \code{T(1,10)} \> is a an OB point \\
263 \> \code{U(2,10)} \> is a an OB point \\
264 \> \code{V(1,10)} \> is a an OB point
265 \end{tabbing}
266 For convenience, negative values for \code{Jnorth}/\code{Ieast} refer to
267 points relative to the Northern/Eastern edges of the model
268 eg. $\tt OB\_Jnorth(3)=-1$ means that the point $\tt (3,Ny)$
269 is a northern OB.
270
271 \noindent
272 \textsf{Add special comments for case \#define NONLIN\_FRSURF,
273 see obcs\_ini\_fixed.F}
274
275 %----------------------------------------------------------------------
276
277 \subsubsection{Equations and key routines
278 \label{sec:pkg:obcs:equations}}
279
280 \paragraph{OBCS\_READPARMS:} ~ \\
281 Set OB positions through arrays
282 {\tt OB\_Jnorth(Ny), OB\_Jsouth(Ny), OB\_Ieast(Nx), OB\_Iwest(Nx)},
283 and runtime flags (see Table \ref{tab:pkg:obcs:runtime_flags}).
284
285 \paragraph{OBCS\_CALC:} ~ \\
286 %
287 Top-level routine for filling values to be applied at OB for
288 $T,S,U,V,\eta$ into corresponding
289 ``slice'' arrays $(x,z)$, $(y,z)$ for each OB:
290 $\tt OB[N/S/E/W][t/s/u/v]$; e.g. for salinity array at
291 Southern OB, array name is $\tt OBSt$.
292 Values filled are either
293 %
294 \begin{itemize}
295 %
296 \item
297 constant vertical $T,S$ profiles as specified in file
298 {\tt data} ({\tt tRef(Nr), sRef(Nr)}) with zero velocities $U,V$,
299 %
300 \item
301 $T,S,U,V$ values determined via Orlanski radiation conditions
302 (see below),
303 %
304 \item
305 prescribed time-constant or time-varying fields (see below).
306 %
307 \item
308 use prescribed boundary fields to compute Stevens boundary conditions.
309 \end{itemize}
310
311 \paragraph{ORLANSKI:} ~ \\
312 %
313 Orlanski radiation conditions \citep{orl:76}, examples can be found in
314 \code{verification/dome} and
315 \code{verification/tutorial\_plume\_on\_slope}
316 (\ref{sec:eg-gravityplume}).
317
318 \paragraph{OBCS\_PRESCRIBE\_READ:} ~ \\
319 %
320 When \code{useOBCSprescribe = .TRUE.} the model tries to read
321 temperature, salinity, u- and v-velocities from files specified in the
322 runtime parameters \code{OB[N/S/E/W][t/s/u/v]File}. These files are
323 the usual IEEE, big-endian files with dimensions of a section along an
324 open boundary:
325 \begin{itemize}
326 \item For North/South boundary files the dimensions are
327 $(N_x\times N_r\times\mbox{time levels})$, for East/West boundary
328 files the dimensions are $(N_y\times N_r\times\mbox{time levels})$.
329 \item If a non-linear free surface is used
330 (\ref{sec:nonlinear-freesurface}), additional files
331 \code{OB[N/S/E/W]etaFile} for the sea surface height $\eta$ with
332 dimension $(N_{x/y}\times\mbox{time levels})$ may be specified.
333 \item If non-hydrostatic dynamics are used
334 (\ref{sec:non-hydrostatic}), additional files
335 \code{OB[N/S/E/W]wFile} for the vertical velocity $w$ with
336 dimensions $(N_{x/y}\times N_r\times\mbox{time levels})$ can be
337 specified.
338 \item If \code{useSEAICE=.TRUE.} then additional files
339 \code{OB[N/S/E/W][a,h,sl,sn,uice,vice]} for sea ice area, thickness
340 (\code{HEFF}), seaice salinity, snow and ice velocities
341 $(N_{x/y}\times\mbox{time levels})$ can be specified.
342 \end{itemize}
343 As in \code{S/R external\_fields\_load} or the \code{exf}-package, the
344 code reads two time levels for each variable, e.g.\ \code{OBNu0} and
345 \code{OBNu1}, and interpolates linearly between these time levels to
346 obtain the value \code{OBNu} at the current model time (step). When the
347 \code{exf}-package is used, the time levels are controlled for each
348 boundary separately in the same way as the \code{exf}-fields in
349 \code{data.exf}, namelist \code{EXF\_NML\_OBCS}. The runtime flags
350 follow the above naming conventions, e.g. for the western boundary the
351 corresponding flags are \code{OBCWstartdate1/2} and
352 \code{OBCWperiod}. Sea-ice boundary values are controlled separately
353 with \code{siobWstartdate1/2} and \code{siobWperiod}. When the
354 \code{exf}-package is not used, the time levels are controlled by the
355 runtime flags \code{externForcingPeriod} and \code{externForcingCycle}
356 in \code{data}, see \code{verification/exp4} for an example.
357
358 \paragraph{OBCS\_CALC\_STEVENS:} ~ \\
359 (THE IMPLEMENTATION OF THESE BOUNDARY CONDITIONS IS NOT
360 COMPLETE. PASSIVE TRACERS, SEA ICE AND NON-LINEAR FREE SURFACE ARE NOT
361 SUPPORTED PROPERLY.) \\
362 The boundary conditions following \citet{stevens:90} require the
363 vertically averaged normal velocity (originally specified as a stream
364 function along the open boundary) $\bar{u}_{ob}$ and the tracer fields
365 $\chi_{ob}$ (note: passive tracers are currently not implemented and
366 the code stops when package \code{ptracers} is used together with this
367 option). Currently, the code vertically averages the normal velocity
368 as specified in \code{OB[E,W]u} or \code{OB[N,S]v}. From these
369 prescribed values the code computes the boundary values for the next
370 timestep $n+1$ as follows (as an example, we use the notation for an
371 eastern or western boundary):
372 \begin{itemize}
373 \item $u^{n+1}(y,z) = \bar{u}_{ob}(y) + (u')^{n}(y,z)$, where
374 $(u')^{n}$ is the deviation from the vertically averaged velocity at
375 timestep $n$ on the boundary. $(u')^{n}$ is computed in the previous
376 time step $n$ from the intermediate velocity $u^*$ prior to the
377 correction step (see section \ref{sec:time_stepping}, e.g.,
378 eq.\,(\ref{eq:ustar-backward-free-surface})).
379 % and~(\ref{eq:vstar-backward-free-surface})).
380 (This velocity is not
381 available at the beginning of the next time step $n+1$, when
382 S/R~OBCS\_CALC/OBCS\_CALC\_STEVENS are called, therefore it needs to
383 be saved in S/R~DYNAMICS by calling S/R~OBCS\_SAVE\_UV\_N and also
384 stored in a separate restart files
385 \verb+pickup_stevens[N/S/E/W].${iteration}.data+)
386 % Define CPP-flag OBCS\_STEVENS\_USE\_INTERIOR\_VELOCITY to use the
387 % velocity one grid point inward from the boundary.
388 \item If $u^{n+1}$ is directed into the model domain, the boudary
389 value for tracer $\chi$ is restored to the prescribed values:
390 \[\chi^{n+1} = \chi^{n} + \frac{\Delta{t}}{\tau_\chi} (\chi_{ob} -
391 \chi^{n}),\] where $\tau_\chi$ is the relaxation time
392 scale \texttt{T/SrelaxStevens}. The new $\chi^{n+1}$ is then subject
393 to the advection by $u^{n+1}$.
394 \item If $u^{n+1}$ is directed out of the model domain, the tracer
395 $\chi^{n+1}$ on the boundary at timestep $n+1$ is estimated from
396 advection out of the domain with $u^{n+1}+c$, where $c$ is
397 a phase velocity estimated as
398 $\frac{1}{2}\frac{\partial\chi}{\partial{t}}/\frac{\partial\chi}{\partial{x}}$. The
399 numerical scheme is (as an example for an eastern boundary):
400 \[\chi_{i_{b},j,k}^{n+1} = \chi_{i_{b},j,k}^{n} + \Delta{t}
401 (u^{n+1}+c)_{i_{b},j,k}\frac{\chi_{i_{b},j,k}^{n}
402 - \chi_{i_{b}-1,j,k}^{n}}{\Delta{x}_{i_{b},j}^{C}}\mbox{, if }u_{i_{b},j,k}^{n+1}>0,
403 \] where $i_{b}$ is the boundary index.\\
404 For test purposes, the phase velocity contribution or the entire
405 advection can be turned off by setting the corresponding parameters
406 \texttt{useStevensPhaseVel} and \texttt{useStevensAdvection} to
407 \texttt{.FALSE.}.
408 \end{itemize}
409 See \citet{stevens:90} for details. With this boundary condition
410 specifying the exact net transport across the open boundary is simple,
411 so that balancing the flow with (S/R~OBCS\_BALANCE\_FLOW, see next
412 paragraph) is usually not necessary.
413
414 \paragraph{OBCS\_BALANCE\_FLOW:} ~ \\
415 %
416 When turned on (\code{ALLOW\_OBCS\_BALANCE}
417 defined in \code{OBCS\_OPTIONS.h} and \code{useOBCSbalance=.true.} in
418 \code{data.obcs/OBCS\_PARM01}), this routine balances the net flow
419 across the open boundaries. By default the net flow across the
420 boundaries is computed and all normal velocities on boundaries are
421 adjusted to obtain zero net inflow.
422
423 This behavior can be controlled with the runtime flags
424 \code{OBCS\_balanceFacN/S/E/W}. The values of these flags determine
425 how the net inflow is redistributed as small correction velocities
426 between the individual sections. A value ``\code{-1}'' balances an
427 individual boundary, values $>0$ determine the relative size of the
428 correction. For example, the values
429 \begin{tabbing}
430 \code{OBCS\_balanceFacE}\code{ = 1.,} \\
431 \code{OBCS\_balanceFacW}\code{ = -1.,} \\
432 \code{OBCS\_balanceFacN}\code{ = 2.,} \\
433 \code{OBCS\_balanceFacS}\code{ = 0.,}
434 \end{tabbing}
435 make the model
436 \begin{itemize}
437 \item correct Western \code{OBWu} by substracting a uniform velocity to
438 ensure zero net transport through the Western open boundary;
439 \item correct Eastern and Northern normal flow, with the Northern
440 velocity correction two times larger than the Eastern correction, but
441 \emph{not} the Southern normal flow, to ensure that the total inflow through
442 East, Northern, and Southern open boundary is balanced.
443 \end{itemize}
444
445 The old method of balancing the net flow for all sections individually
446 can be recovered by setting all flags to -1. Then the normal
447 velocities across each of the four boundaries are modified separately,
448 so that the net volume transport across \emph{each} boundary is
449 zero. For example, for the western boundary at $i=i_{b}$, the modified
450 velocity is:
451 \[
452 u(y,z) - \int_{\mbox{western boundary}}u\,dy\,dz \approx OBNu(j,k) - \sum_{j,k}
453 OBNu(j,k) h_{w}(i_{b},j,k)\Delta{y_G(i_{b},j)}\Delta{z(k)}.
454 \]
455 This also ensures a net total inflow of zero through all boundaries,
456 but this combination of flags is \emph{not} useful if you want to
457 simulate, say, a sector of the Southern Ocean with a strong ACC
458 entering through the western and leaving through the eastern boundary,
459 because the value of ``\code{-1}'' for these flags will make sure that
460 the strong inflow is removed. Clearly, gobal balancing with
461 \code{OBCS\_balanceFacE/W/N/S} $\ge0$ is the preferred method.
462
463 \paragraph{OBCS\_APPLY\_*:} ~ \\
464 ~
465
466 \paragraph{OBCS\_SPONGE:} ~ \\
467 %
468 The sponge layer code (turned on with \code{ALLOW\_OBCS\_SPONGE} and
469 \code{useOBCSsponge}) adds a relaxation term to the right-hand-side of
470 the momentum and tracer equations. The variables are relaxed towards
471 the boundary values with a relaxation time scale that increases
472 linearly with distance from the boundary
473 \[
474 G_{\chi}^{\mbox{(sponge)}} =
475 - \frac{\chi - [( L - \delta{L} ) \chi_{BC} + \delta{L}\chi]/L}
476 {[(L-\delta{L})\tau_{b}+\delta{L}\tau_{i}]/L}
477 = - \frac{\chi - [( 1 - l ) \chi_{BC} + l\chi]}
478 {[(1-l)\tau_{b}+l\tau_{i}]}
479 \]
480 where $\chi$ is the model variable (U/V/T/S) in the interior,
481 $\chi_{BC}$ the boundary value, $L$ the thickness of the sponge layer
482 (runtime parameter \code{spongeThickness} in number of grid points),
483 $\delta{L}\in[0,L]$ ($\frac{\delta{L}}{L}=l\in[0,1]$) the distance from the boundary (also in grid points), and
484 $\tau_{b}$ (runtime parameters \code{Urelaxobcsbound} and
485 \code{Vrelaxobcsbound}) and $\tau_{i}$ (runtime parameters
486 \code{Urelaxobcsinner} and \code{Vrelaxobcsinner}) the relaxation time
487 scales on the boundary and at the interior termination of the sponge
488 layer. The parameters \code{Urelaxobcsbound/inner} set the relaxation
489 time scales for the Eastern and Western boundaries,
490 \code{Vrelaxobcsbound/inner} for the Northern and Southern boundaries.
491
492 \paragraph{OB's with nonlinear free surface} ~ \\
493 %
494 ~
495
496
497 %----------------------------------------------------------------------
498
499 \subsubsection{Flow chart
500 \label{sec:pkg:obcs:flowchart}}
501
502
503 {\footnotesize
504 \begin{verbatim}
505
506 C !CALLING SEQUENCE:
507 c ...
508
509 \end{verbatim}
510 }
511
512 %----------------------------------------------------------------------
513
514 \subsubsection{OBCS diagnostics
515 \label{sec:pkg:obcs:diagnostics}}
516
517 Diagnostics output is available via the diagnostics package
518 (see Section \ref{sec:pkg:diagnostics}).
519 Available output fields are summarized in
520 Table \ref{tab:pkg:obcs:diagnostics}.
521
522 \begin{table}[!ht]
523 \centering
524 \label{tab:pkg:obcs:diagnostics}
525 {\footnotesize
526 \begin{verbatim}
527 ------------------------------------------------------
528 <-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)
529 ------------------------------------------------------
530
531 \end{verbatim}
532 }
533 \caption{~}
534 \end{table}
535
536 %----------------------------------------------------------------------
537
538 \subsubsection{Reference experiments}
539 In the directory \code{verifcation}, the following experiments use
540 \code{obcs}:
541 \begin{itemize}
542 \item \code{exp4}: box with 4 open boundaries, simulating flow over a
543 Gaussian bump based on \citet{adcroft:97}, also tests
544 Stevens-boundary conditions;
545 \item \code{dome}: based on the project ``Dynamics of Overflow Mixing
546 and Entrainment''
547 (\url{http://www.rsmas.miami.edu/personal/tamay/DOME/dome.html}), uses
548 Orlanski-BCs;
549 \item \code{internal\_wave}: uses a heavily modified \code{S/R~OBCS\_CALC}
550 \item \code{seaice\_obcs}: simple example who to use the sea-ice
551 related code, based on \code{lab\_sea};
552 \item \code{tutorial\_plume\_on\_slope}: uses Orlanski-BCs, see also
553 section~\ref{sec:eg-gravityplume}.
554 \end{itemize}
555
556
557
558 %----------------------------------------------------------------------
559
560 \subsubsection{References}
561
562 \subsubsection{Experiments and tutorials that use obcs}
563 \label{sec:pkg:obcs:experiments}
564
565 \begin{itemize}
566 \item \code{tutorial\_plume\_on\_slope} (section~\ref{sec:eg-gravityplume})
567 \end{itemize}
568
569
570 %%% Local Variables:
571 %%% mode: latex
572 %%% TeX-master: "../../manual"
573 %%% End:

  ViewVC Help
Powered by ViewVC 1.1.22