/[MITgcm]/manual/s_phys_pkgs/text/obcs.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/obcs.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.3 by molod, Wed Jun 28 15:35:07 2006 UTC revision 1.12 by mlosch, Wed Mar 16 16:57:01 2011 UTC
# Line 11  Alistair Adcroft, Patrick Heimbach, Sama Line 11  Alistair Adcroft, Patrick Heimbach, Sama
11  \subsubsection{Introduction  \subsubsection{Introduction
12  \label{sec:pkg:obcs:intro}}  \label{sec:pkg:obcs:intro}}
13    
14    The OBCS-package is fundamental to regional ocean modelling with the
15    MITgcm, but there are so many details to be considered in
16    regional ocean modelling that this package cannot accomodate all
17    imaginable and possible options. Therefore, for a regional simulation
18    with very particular details, it is recommended to familiarize oneself
19    not only with the compile- and runtime-options of this package, but
20    also with the code itself. In many cases it will be necessary to adapt
21    the obcs-code (in particular \code{S/R OBCS\_CALC}) to the application
22    in question; in these cases the obcs-package (together with the
23    rbcs-package, section \ref{sec:pkg:rbcs}) is a very
24    useful infrastructure for implementing special regional models.
25    
26  %----------------------------------------------------------------------  %----------------------------------------------------------------------
27    
28  \subsubsection{OBCS configuration and compiling  \subsubsection{OBCS configuration and compiling
29  \label{sec:pkg:kpp:comp}}  \label{sec:pkg:obcs:comp}}
30    
31  As with all MITgcm packages, OBCS can be turned on or off  As with all MITgcm packages, OBCS can be turned on or off
32  at compile time  at compile time
# Line 24  at compile time Line 34  at compile time
34  \begin{itemize}  \begin{itemize}
35  %  %
36  \item  \item
37  using the \texttt{packages.conf} file by adding \texttt{obcs} to it,  using the \code{packages.conf} file by adding \code{obcs} to it,
38  %  %
39  \item  \item
40  or using \texttt{genmake2} adding  or using \code{genmake2} adding
41  \texttt{-enable=obcs} or \texttt{-disable=obcs} switches  \code{-enable=obcs} or \code{-disable=obcs} switches
42  %  %
43  \item  \item
44  \textit{Required packages and CPP options:} \\  \textit{Required packages and CPP options:} \\
# Line 37  To alternatives are available for prescr Line 47  To alternatives are available for prescr
47  which differ in the way how OB's are treated in time:  which differ in the way how OB's are treated in time:
48  A simple time-management (e.g. constant in time, or cyclic with  A simple time-management (e.g. constant in time, or cyclic with
49  fixed fequency) is provided through  fixed fequency) is provided through
50  S/R \texttt{obcs\_external\_fields\_load}.  S/R \code{obcs\_external\_fields\_load}.
51  More sophisticated ``real-time'' (i.e. calendar time) management is  More sophisticated ``real-time'' (i.e. calendar time) management is
52  available through \texttt{obcs\_prescribe\_read}.  available through \code{obcs\_prescribe\_read}.
53  The latter case requires  The latter case requires
54  packages \texttt{cal} and \texttt{exf} to be enabled.  packages \code{cal} and \code{exf} to be enabled.
55  %  %
56  \end{itemize}  \end{itemize}
57  (see also Section \ref{sect:buildingCode}).  (see also Section \ref{sec:buildingCode}).
58    
59  Parts of the OBCS code can be enabled or disabled at compile time  Parts of the OBCS code can be enabled or disabled at compile time
60  via CPP preprocessor flags. These options are set in  via CPP preprocessor flags. These options are set in
61  \texttt{OBCS\_OPTIONS.h}. Table \ref{tab:pkg:obcs:cpp} summarizes them.  \code{OBCS\_OPTIONS.h}. Table \ref{tab:pkg:obcs:cpp} summarizes them.
62    
63  \begin{table}[h!]  \begin{table}[!ht]
64  \centering  \centering
65    \label{tab:pkg:obcs:cpp}    \label{tab:pkg:obcs:cpp}
66    {\footnotesize    {\footnotesize
# Line 58  via CPP preprocessor flags. These option Line 68  via CPP preprocessor flags. These option
68        \hline        \hline
69        \textbf{CPP option}  &  \textbf{Description}  \\        \textbf{CPP option}  &  \textbf{Description}  \\
70        \hline \hline        \hline \hline
71          \texttt{ALLOW\_OBCS\_NORTH} &          \code{ALLOW\_OBCS\_NORTH} &
72            enable Northern OB \\            enable Northern OB \\
73          \texttt{ALLOW\_OBCS\_SOUTH} &          \code{ALLOW\_OBCS\_SOUTH} &
74            enable Southern OB \\            enable Southern OB \\
75          \texttt{ALLOW\_OBCS\_EAST} &          \code{ALLOW\_OBCS\_EAST} &
76            enable Eastern OB \\            enable Eastern OB \\
77          \texttt{ALLOW\_OBCS\_WEST} &          \code{ALLOW\_OBCS\_WEST} &
78            enable Western OB \\            enable Western OB \\
79        \hline        \hline
80          \texttt{ALLOW\_OBCS\_PRESCRIBE} &          \code{ALLOW\_OBCS\_PRESCRIBE} &
81            enable code for prescribing OB's \\            enable code for prescribing OB's \\
82          \texttt{ALLOW\_OBCS\_SPONGE} &          \code{ALLOW\_OBCS\_SPONGE} &
83            enable sponge layer code \\            enable sponge layer code \\
84          \texttt{ALLOW\_OBCS\_BALANCE} &          \code{ALLOW\_OBCS\_BALANCE} &
85            enable code for balancing transports through OB's \\            enable code for balancing transports through OB's \\
86          \texttt{ALLOW\_ORLANSKI} &          \code{ALLOW\_ORLANSKI} &
87            enable Orlanski radiation conditions at OB's \\            enable Orlanski radiation conditions at OB's \\
88            \code{ALLOW\_OBCS\_STEVENS} &
89              enable Stevens (1990) boundary conditions at OB's \\
90            & (currently only implemented for eastern and western \\
91            &  boundaries and NOT for ptracers) \\
92        \hline        \hline
93      \end{tabular}      \end{tabular}
94    }    }
# Line 88  via CPP preprocessor flags. These option Line 102  via CPP preprocessor flags. These option
102  \label{sec:pkg:obcs:runtime}}  \label{sec:pkg:obcs:runtime}}
103    
104  Run-time parameters are set in files  Run-time parameters are set in files
105  \texttt{data.pkg}, \texttt{data.obcs}, and \texttt{data.exf}  \code{data.pkg}, \code{data.obcs}, and \code{data.exf}
106  if ``real-time'' prescription is requested  if ``real-time'' prescription is requested
107  (i.e. package \texttt{exf} enabled).  (i.e. package \code{exf} enabled).
108  These parameter files are read in S/R  vThese parameter files are read in S/R
109  \texttt{packages\_readparms.F}, \texttt{obcs\_readparms.F}, and  \code{packages\_readparms.F}, \code{obcs\_readparms.F}, and
110  \texttt{exf\_readparms.F}, respectively.  \code{exf\_readparms.F}, respectively.
111  Run-time parameters may be broken into 3 categories:  Run-time parameters may be broken into 3 categories:
112  (i) switching on/off the package at runtime,  (i) switching on/off the package at runtime,
113  (ii) OBCS package flags and parameters,  (ii) OBCS package flags and parameters,
114  (iii) additional timing flags in \texttt{data.exf}, if selected.  (iii) additional timing flags in \code{data.exf}, if selected.
115    
116  \paragraph{Enabling the package}  \paragraph{Enabling the package}
117  ~ \\  ~ \\
118  %  %
119  The OBCS package is switched on at runtime by setting  The OBCS package is switched on at runtime by setting
120  \texttt{useOBCS = .TRUE.} in \texttt{data.pkg}.  \code{useOBCS = .TRUE.} in \code{data.pkg}.
121    
122  \paragraph{Package flags and parameters}  \paragraph{Package flags and parameters}
123  ~ \\  ~ \\
124  %  %
125  Table \ref{tab:pkg:obcs:runtime_flags} summarizes the  Table \ref{tab:pkg:obcs:runtime_flags} summarizes the
126  runtime flags that are set in \texttt{data.obcs}, and  runtime flags that are set in \code{data.obcs}, and
127  their default values.  their default values.
128    
129  \begin{table}[h!]  \begin{table}[!ht]
130  \centering  \centering
   \label{tab:pkg:obcs:runtime_flags}  
131    {\footnotesize    {\footnotesize
132      \begin{tabular}{|l|c|l|}      \begin{tabular}{|l|c|l|}
133        \hline        \hline
134        \textbf{Flag/parameter} & \textbf{default} &  \textbf{Description}  \\        \textbf{Flag/parameter} & \textbf{default} &  \textbf{Description}  \\
135        \hline \hline        \hline \hline
136           \multicolumn{3}{|c|}{\textit{basic flags \& parameters} } \\           \multicolumn{3}{|c|}{\textit{basic flags \& parameters} (OBCS\_PARM01) } \\
137           \hline           \hline
138          OB\_Jnorth & 0 &          OB\_Jnorth & 0 &
139             Nx-vector of J-indices (w.r.t. Ny) of Northern OB             Nx-vector of J-indices (w.r.t. Ny) of Northern OB
# Line 134  their default values. Line 147  their default values.
147          OB\_Iwest & 0 &          OB\_Iwest & 0 &
148             Ny-vector of I-indices (w.r.t. Nx) of Western OB             Ny-vector of I-indices (w.r.t. Nx) of Western OB
149             at each J-position (w.r.t. Ny) \\             at each J-position (w.r.t. Ny) \\
150          useOBCSprescribe & \texttt{.FALSE.} &          useOBCSprescribe & \code{.FALSE.} &
151             ~ \\             ~ \\
152          useOBCSsponge & \texttt{.FALSE.} &          useOBCSsponge & \code{.FALSE.} &
153             ~ \\             ~ \\
154          useOBCSbalance & \texttt{.FALSE.} &          useOBCSbalance & \code{.FALSE.} &
155             ~ \\             ~ \\
156               OBCS\_balanceFacN/S/E/W & 1 & factor(s) determining the details
157               of the balaning code \\
158            useOrlanskiNorth/South/EastWest & \code{.FALSE.} &
159               turn on Orlanski boundary conditions for individual boundary\\
160            useStevensNorth/South/EastWest & \code{.FALSE.} &
161               turn on Stevens boundary conditions for individual boundary\\
162          OB\textbf{X}\textbf{y}File & ~ &          OB\textbf{X}\textbf{y}File & ~ &
163             file name of OB field \\             file name of OB field \\
164          ~ & ~ &          ~ & ~ &
# Line 147  their default values. Line 166  their default values.
166                         \textbf{E}(ast), \textbf{W}(est) \\                         \textbf{E}(ast), \textbf{W}(est) \\
167          ~ & ~ &          ~ & ~ &
168             \textbf{y}: \textbf{t}(emperature), \textbf{s}(salinity),             \textbf{y}: \textbf{t}(emperature), \textbf{s}(salinity),
169             \textbf{u}(-velocity), \textbf{v}(-velocity) \\             \textbf{u}(-velocity), \textbf{v}(-velocity), \\
170            ~ & ~ &
171               \textbf{w}(-velocity), \textbf{eta}(sea surface height)\\
172            ~ & ~ &
173               \textbf{a}(sea ice area), \textbf{h}(sea ice thickness),
174               \textbf{sn}(snow thickness), \textbf{sl}(sea ice salinity)\\
175        \hline        \hline
176        \multicolumn{3}{|c|}{\textit{Orlanski parameters} } \\        \multicolumn{3}{|c|}{\textit{Orlanski parameters} (OBCS\_PARM02) } \\
177        \hline        \hline
178          cvelTimeScale & 2000 sec &          cvelTimeScale & 2000 sec &
179             averaging period for phase speed \\             averaging period for phase speed \\
# Line 157  their default values. Line 181  their default values.
181             maximum allowable phase speed-CFL for AB-II \\             maximum allowable phase speed-CFL for AB-II \\
182          CFIX & 0.8 m/s &          CFIX & 0.8 m/s &
183             fixed boundary phase speed \\             fixed boundary phase speed \\
184          useFixedCEast & .FALSE. &          useFixedCEast & \code{.FALSE.} &
185             ~ \\             ~ \\
186          useFixedCWest & .FALSE. &          useFixedCWest & \code{.FALSE.} &
187             ~ \\             ~ \\
188        \hline        \hline
189        \multicolumn{3}{|c|}{\textit{Sponge-layer parameters} } \\        \multicolumn{3}{|c|}{\textit{Sponge-layer parameters} (OBCS\_PARM03)} \\
190        \hline        \hline
191          spongeThickness & 0 &          spongeThickness & 0 &
192             sponge layer thickness (in \# grid points) \\             sponge layer thickness (in \# grid points) \\
# Line 178  their default values. Line 202  their default values.
202          Vrelaxobcsbound & 0 sec &          Vrelaxobcsbound & 0 sec &
203             relaxation time scale at the             relaxation time scale at the
204             outermost sponge layer point of a zonal OB \\             outermost sponge layer point of a zonal OB \\
205          \hline
206          \multicolumn{3}{|c|}{\textit{Stevens parameters} (OBCS\_PARM04) } \\
207          \hline
208            T/SrelaxStevens & 0~sec & relaxation time scale for
209               temperature/salinity \\
210            useStevensPhaseVel & \code{.TRUE.} & \\
211            useStevensAdvection & \code{.TRUE.} & \\
212           \hline           \hline
213        \hline        \hline
214      \end{tabular}      \end{tabular}
215    }    }
216    \caption{~}    \caption{pkg OBCS run-time parameters}
217      \label{tab:pkg:obcs:runtime_flags}
218  \end{table}  \end{table}
219    
220    
# Line 196  There are four open boundaries (OBs), a Line 228  There are four open boundaries (OBs), a
228  Northern, Southern, Eastern, and Western.  Northern, Southern, Eastern, and Western.
229  All OB locations are specified by their absolute  All OB locations are specified by their absolute
230  meridional (Northern/Southern) or zonal (Eastern/Western) indices.  meridional (Northern/Southern) or zonal (Eastern/Western) indices.
231  Thus, for each zonal position $i=1,\ldots,Nx$ a meridional index  Thus, for each zonal position $i=1,\ldots,N_x$ a meridional index
232  $j$ specifies the Northern/Southern OB position,  $j$ specifies the Northern/Southern OB position,
233  and for each meridional position $j=1,\ldots,Ny$, a zonal index  and for each meridional position $j=1,\ldots,N_y$, a zonal index
234  $i$ specifies the Eastern/Western OB position.  $i$ specifies the Eastern/Western OB position.
235  For Northern/Southern OB this defines an $Nx$-dimensional  For Northern/Southern OB this defines an $N_x$-dimensional
236  ``row'' array $\tt OB\_Jnorth(Ny)$ / $\tt OB\_Jsouth(Ny)$,  ``row'' array $\tt OB\_Jnorth(Ny)$ / $\tt OB\_Jsouth(Ny)$,
237  and an $Ny$-dimenisonal  and an $N_y$-dimenisonal
238  ``column'' array $\tt OB\_Ieast(Nx)$ / $\tt OB\_Iwest(Nx)$  ``column'' array $\tt OB\_Ieast(Nx)$ / $\tt OB\_Iwest(Nx)$.
239  Positions determined in this way allows Northern/Southern  Positions determined in this way allows Northern/Southern
240  OBs to be at variable $j$ (or $y$) positions, and Eastern/Western  OBs to be at variable $j$ (or $y$) positions, and Eastern/Western
241  OBs at variable $i$ (or $x$) positions.  OBs at variable $i$ (or $x$) positions.
# Line 212  A zero (0) element in $\tt OB\_I\ldots$, Line 244  A zero (0) element in $\tt OB\_I\ldots$,
244  means there is no corresponding OB in that column/row.  means there is no corresponding OB in that column/row.
245  For a Northern/Southern OB, the OB V point is to the South/North.  For a Northern/Southern OB, the OB V point is to the South/North.
246  For an Eastern/Western OB, the OB U point is to the West/East.  For an Eastern/Western OB, the OB U point is to the West/East.
247    For example,
248  \begin{verbatim}  \begin{tabbing}
249   For example    \code{OB\_Jnorth(3)=34} \=  means that:  \= \\
250       OB_Jnorth(3)=34  means that:    \> \code{T(3,34)} \> is a an OB point  \\
251            T( 3 ,34) is a an OB point    \> \code{U(3,34)} \> is a an OB point \\
252            U(3:4,34) is a an OB point    \> \code{V(3,34)} \> is a an OB point \\
253            V( 4 ,34) is a an OB point    \code{OB\_Jsouth(3)=1} \> means that: \\
254   while    \> \code{T(3,1)} \> is a an OB point \\
255       OB_Jsouth(3)=1  means that:    \> \code{U(3,1)} \> is a an OB point \\
256            T( 3 ,1) is a an OB point    \> \code{V(3,2)} \> is a an OB point \\
257            U(3:4,1) is a an OB point    \code{OB\_Ieast(10)=69} \>  means that:  \>  \\
258            V( 4 ,2) is a an OB point    \> \code{T(69,10)} \> is a an OB point \\
259  \end{verbatim}    \> \code{U(69,10)} \> is a an OB point \\
260      \> \code{V(69,10)} \> is a an OB point \\
261  For convenience, negative values for Jnorth/Ieast refer to    \code{OB\_Iwest(10)=1} \>  means that:  \>  \\
262      \> \code{T(1,10)} \> is a an OB point \\
263      \> \code{U(2,10)} \> is a an OB point \\
264      \> \code{V(1,10)} \> is a an OB point
265    \end{tabbing}
266    For convenience, negative values for \code{Jnorth}/\code{Ieast} refer to
267  points relative to the Northern/Eastern edges of the model  points relative to the Northern/Eastern edges of the model
268  eg. $\tt OB\_Jnorth(3)=-1$  means that the point $\tt (3,Ny)$  eg. $\tt OB\_Jnorth(3)=-1$  means that the point $\tt (3,Ny)$
269  is a northern OB.  is a northern OB.
# Line 243  see obcs\_ini\_fixed.F} Line 280  see obcs\_ini\_fixed.F}
280  \paragraph{OBCS\_READPARMS:} ~ \\  \paragraph{OBCS\_READPARMS:} ~ \\
281  Set OB positions through arrays  Set OB positions through arrays
282  {\tt OB\_Jnorth(Ny), OB\_Jsouth(Ny), OB\_Ieast(Nx), OB\_Iwest(Nx)},  {\tt OB\_Jnorth(Ny), OB\_Jsouth(Ny), OB\_Ieast(Nx), OB\_Iwest(Nx)},
283  and runtime flags see Table \ref{tab:???}.  and runtime flags (see Table \ref{tab:pkg:obcs:runtime_flags}).
284    
285  \paragraph{OBCS\_CALC:} ~ \\  \paragraph{OBCS\_CALC:} ~ \\
286  %  %
# Line 267  $T,S,U,V$ values determined via Orlanski Line 304  $T,S,U,V$ values determined via Orlanski
304  \item  \item
305  prescribed time-constant or time-varying fields (see below).  prescribed time-constant or time-varying fields (see below).
306  %  %
307    \item
308    use prescribed boundary fields to compute Stevens boundary conditions.
309  \end{itemize}  \end{itemize}
310    
311    \paragraph{ORLANSKI:} ~ \\
 \paragraph{ORLANSKI} ~ \\  
312  %  %
313  Orlanski radiation conditions  Orlanski radiation conditions \citep{orl:76}, examples can be found in
314    \code{verification/dome} and
315  \paragraph{OBCS\_PRESCRIBE\_READ} Setting OB fields and updates \\  \code{verification/tutorial\_plume\_on\_slope}
316  %  (\ref{sec:eg-gravityplume}).
317  ~  
318    \paragraph{OBCS\_PRESCRIBE\_READ:} ~ \\
319    %
320    When \code{useOBCSprescribe = .TRUE.} the model tries to read
321    temperature, salinity, u- and v-velocities from files specified in the
322    runtime parameters \code{OB[N/S/E/W][t/s/u/v]File}. These files are
323    the usual IEEE, big-endian files with dimensions of a section along an
324    open boundary:
325    \begin{itemize}
326    \item For North/South boundary files the dimensions are
327      $(N_x\times N_r\times\mbox{time levels})$, for East/West boundary
328      files the dimensions are $(N_y\times N_r\times\mbox{time levels})$.
329    \item If a non-linear free surface is used
330      (\ref{sec:nonlinear-freesurface}), additional files
331      \code{OB[N/S/E/W]etaFile} for the sea surface height $\eta$ with
332      dimension $(N_{x/y}\times\mbox{time levels})$ may be specified.
333    \item If non-hydrostatic dynamics are used
334      (\ref{sec:non-hydrostatic}), additional files
335      \code{OB[N/S/E/W]wFile} for the vertical velocity $w$ with
336      dimensions $(N_{x/y}\times N_r\times\mbox{time levels})$ can be
337      specified.
338    \item If \code{useSEAICE=.TRUE.} then additional files
339      \code{OB[N/S/E/W][a,h,sl,sn,uice,vice]} for sea ice area, thickness
340      (\code{HEFF}), seaice salinity, snow and ice velocities
341      $(N_{x/y}\times\mbox{time levels})$ can be specified.
342    \end{itemize}
343    As in \code{S/R external\_fields\_load} or the \code{exf}-package, the
344    code reads two time levels for each variable, e.g.\ \code{OBNu0} and
345    \code{OBNu1}, and interpolates linearly between these time levels to
346    obtain the value \code{OBNu} at the current model time (step). When the
347    \code{exf}-package is used, the time levels are controlled for each
348    boundary separately in the same way as the \code{exf}-fields in
349    \code{data.exf}, namelist \code{EXF\_NML\_OBCS}. The runtime flags
350    follow the above naming conventions, e.g. for the western boundary the
351    corresponding flags are \code{OBCWstartdate1/2} and
352    \code{OBCWperiod}. Sea-ice boundary values are controlled separately
353    with \code{siobWstartdate1/2} and \code{siobWperiod}.  When the
354    \code{exf}-package is not used, the time levels are controlled by the
355    runtime flags \code{externForcingPeriod} and \code{externForcingCycle}
356    in \code{data}, see \code{verification/exp4} for an example.
357    
358    \paragraph{OBCS\_CALC\_STEVENS:} ~ \\
359    (THE IMPLEMENTATION OF THESE BOUNDARY CONDITIONS IS NOT COMPLETE. SO
360    FAR ONLY EASTERN AND WESTERN BOUNDARIES ARE SUPPORTED.) \\
361    The boundary conditions following \citet{stevens:90} require the
362    vertically averaged normal velocity (originally specified as a stream
363    function along the open boundary) $\bar{u}_{ob}$ and the tracer fields
364    $\chi_{ob}$ (note: passive tracers are currently not implemented and
365    the code stops when package \code{ptracers} is used together with this
366    option). Currently, the code vertically averages the normal velocity
367    as specified in \code{OB[E,W]u} or \code{OB[N,S]v}. From these
368    prescribed values the code computes the boundary values for the next
369    timestep $n+1$ as follows (as an example, we use the notation for an
370    eastern or western boundary):
371    \begin{itemize}
372    \item $u^{n+1}(y,z) = \bar{u}_{ob}(y) + (u')^{n}(y,z)$, where $(u')^{n}$
373      is the deviation from the vertically averaged velocity at timestep
374      $n$ one grid point inward from the boundary.
375    \item If $u^{n+1}$ is directed into the model domain, the boudary
376      value for tracer $\chi$ is restored to the prescribed values:
377      \[\chi^{n+1} =   \chi^{n} + \frac{\Delta{t}}{\tau_\chi} (\chi_{ob} -
378      \chi^{n}),\] where $\tau_\chi$ is the relaxation time
379      scale \texttt{T/SrelaxStevens}. The new $\chi^{n+1}$ is then subject
380      to the advection by $u^{n+1}$.
381    \item If $u^{n+1}$ is directed out of the model domain, the tracer
382      $\chi^{n+1}$ on the boundary at timestep $n+1$ is estimated from
383      advection advected out of the domain with $u^{n+1}+c$, where $c$ is
384      a phase velocity estimated as
385      $\frac{1}{2}\frac{\partial\chi}{\partial{t}}/\frac{\partial\chi}{\partial{x}}$. The
386      numerical scheme is (as an example for an eastern boundary):
387      \[\chi_{i,j,k}^{n+1} =   \chi_{i,j,k}^{n} + \Delta{t}
388      (u^{n+1}+c)_{i_{b},j,k}\frac{\chi_{i_{b},j,k}^{n}
389        - \chi_{i_{b}-1,j,k}^{n}}{\Delta{x}_{i_{b},j}^{C}}\mbox{, if }u_{i_{b},j,k}^{n+1}>0,
390      \] where $i_{b}$ is the boundary index.
391    
392      For test purposes, the phase velocity contribution or the entire
393      advection can be turned off by setting the corresponding parameters
394      \texttt{useStevensPhaseVel} and \texttt{useStevensAdvection} to
395      \texttt{.FALSE.}.\end{itemize} See \citet{stevens:90} for details.
396    
397    \paragraph{OBCS\_BALANCE\_FLOW:} ~ \\
398    %
399    When turned on (\code{ALLOW\_OBCS\_BALANCE}
400    defined in \code{OBCS\_OPTIONS.h} and \code{useOBCSbalance=.true.} in
401    \code{data.obcs/OBCS\_PARM01}), this routine balances the net flow
402    across the open boundaries. By default the net flow across the
403    boundaries is computed and all normal velocities on boundaries are
404    adjusted to obtain zero net inflow.
405    
406    This behavior can be controlled with the runtime flags
407    \code{OBCS\_balanceFacN/S/E/W}. The values of these flags determine
408    how the net inflow is redistributed as small correction velocities
409    between the individual sections. A value ``\code{-1}'' balances an
410    individual boundary, values $>0$ determine the relative size of the
411    correction. For example, the values
412    \begin{tabbing}
413     \code{OBCS\_balanceFacE}\code{ = 1.,} \\
414     \code{OBCS\_balanceFacW}\code{ = -1.,} \\
415     \code{OBCS\_balanceFacN}\code{ = 2.,} \\
416     \code{OBCS\_balanceFacS}\code{ = 0.,}
417    \end{tabbing}
418    make the model
419    \begin{itemize}
420    \item correct Western \code{OBWu} by substracting a uniform velocity to
421    ensure zero net transport through the Western open boundary;
422    \item correct Eastern and Northern normal flow, with the Northern
423      velocity correction two times larger than the Eastern correction, but
424      \emph{not} the Southern normal flow, to ensure that the total inflow through
425      East, Northern, and Southern open boundary is balanced.
426    \end{itemize}
427    
428  \paragraph{OBCS\_BALANCE} ~ \\  The old method of balancing the net flow for all sections individually
429  %  can be recovered by setting all flags to -1. Then the normal
430  ~  velocities across each of the four boundaries are modified separately,
431    so that the net volume transport across \emph{each} boundary is
432    zero. For example, for the western boundary at $i=i_{b}$, the modified
433    velocity is:
434    \[
435    u(y,z) - \int_{\mbox{western boundary}}u\,dy\,dz \approx OBNu(j,k) - \sum_{j,k}
436    OBNu(j,k) h_{w}(i_{b},j,k)\Delta{y_G(i_{b},j)}\Delta{z(k)}.
437    \]
438    This also ensures a net total inflow of zero through all boundaries,
439    but this combination of flags is \emph{not} useful if you want to
440    simulate, say, a sector of the Southern Ocean with a strong ACC
441    entering through the western and leaving through the eastern boundary,
442    because the value of ``\code{-1}'' for these flags will make sure that
443    the strong inflow is removed. Clearly, gobal balancing with
444    \code{OBCS\_balanceFacE/W/N/S} $\ge0$ is the preferred method.
445    
446  \paragraph{OBCS\_APPLY\_*:} ~ \\  \paragraph{OBCS\_APPLY\_*:} ~ \\
447  ~  ~
448    
449  \paragraph{OBCS\_SPONGE} Setting sponge layer characteristics \\  \paragraph{OBCS\_SPONGE:} ~ \\
450  %  %
451  ~  The sponge layer code (turned on with \code{ALLOW\_OBCS\_SPONGE} and
452    \code{useOBCSsponge}) adds a relaxation term to the right-hand-side of
453    the momentum and tracer equations. The variables are relaxed towards
454    the boundary values with a relaxation time scale that increases
455    linearly with distance from the boundary
456    \[
457    G_{\chi}^{\mbox{(sponge)}} =
458    - \frac{\chi - [( L - \delta{L} ) \chi_{BC} + \delta{L}\chi]/L}
459    {[(L-\delta{L})\tau_{b}+\delta{L}\tau_{i}]/L}
460    = - \frac{\chi - [( 1 - l ) \chi_{BC} + l\chi]}
461    {[(1-l)\tau_{b}+l\tau_{i}]}
462    \]
463    where $\chi$ is the model variable (U/V/T/S) in the interior,
464    $\chi_{BC}$ the boundary value, $L$ the thickness of the sponge layer
465    (runtime parameter \code{spongeThickness} in number of grid points),
466    $\delta{L}\in[0,L]$ ($\frac{\delta{L}}{L}=l\in[0,1]$) the distance from the boundary (also in grid points), and
467    $\tau_{b}$ (runtime parameters \code{Urelaxobcsbound} and
468    \code{Vrelaxobcsbound}) and $\tau_{i}$ (runtime parameters
469    \code{Urelaxobcsinner} and \code{Vrelaxobcsinner}) the relaxation time
470    scales on the boundary and at the interior termination of the sponge
471    layer. The parameters \code{Urelaxobcsbound/inner} set the relaxation
472    time scales for the Eastern and Western boundaries,
473    \code{Vrelaxobcsbound/inner} for the Northern and Southern boundaries.
474    
475  \paragraph{OB's with nonlinear free surface} ~ \\  \paragraph{OB's with nonlinear free surface} ~ \\
476  %  %
# Line 319  Diagnostics output is available via the Line 502  Diagnostics output is available via the
502  Available output fields are summarized in  Available output fields are summarized in
503  Table \ref{tab:pkg:obcs:diagnostics}.  Table \ref{tab:pkg:obcs:diagnostics}.
504    
505  \begin{table}[h!]  \begin{table}[!ht]
506  \centering  \centering
507  \label{tab:pkg:obcs:diagnostics}  \label{tab:pkg:obcs:diagnostics}
508  {\footnotesize  {\footnotesize
# Line 336  Table \ref{tab:pkg:obcs:diagnostics}. Line 519  Table \ref{tab:pkg:obcs:diagnostics}.
519  %----------------------------------------------------------------------  %----------------------------------------------------------------------
520    
521  \subsubsection{Reference experiments}  \subsubsection{Reference experiments}
522    In the directory \code{verifcation}, the following experiments use
523    \code{obcs}:
524    \begin{itemize}
525    \item \code{exp4}: box with 4 open boundaries, simulating flow over a
526      Gaussian bump based on \citet{adcroft:97}, also tests
527      Stevens-boundary conditions;
528    \item \code{dome}: based on the project ``Dynamics of Overflow Mixing
529      and Entrainment''
530      (\url{http://www.rsmas.miami.edu/personal/tamay/DOME/dome.html}), uses
531      Orlanski-BCs;
532    \item \code{internal\_wave}: uses a heavily modified \code{S/R~OBCS\_CALC}
533    \item \code{seaice\_obcs}: simple example who to use the sea-ice
534      related code, based on \code{lab\_sea};
535    \item \code{tutorial\_plume\_on\_slope}: uses Orlanski-BCs, see also
536      section~\ref{sec:eg-gravityplume}.
537    \end{itemize}
538    
539    
540    
# Line 347  Table \ref{tab:pkg:obcs:diagnostics}. Line 546  Table \ref{tab:pkg:obcs:diagnostics}.
546  \label{sec:pkg:obcs:experiments}  \label{sec:pkg:obcs:experiments}
547    
548  \begin{itemize}  \begin{itemize}
549  \item{Ocean experiment in exp4 verification directory. }  \item \code{tutorial\_plume\_on\_slope} (section~\ref{sec:eg-gravityplume})
550  \end{itemize}  \end{itemize}
551    
552    
553    %%% Local Variables:
554    %%% mode: latex
555    %%% TeX-master: "../../manual"
556    %%% End:

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.12

  ViewVC Help
Powered by ViewVC 1.1.22