| 1 | 
\subsection{OBCS: Open boundary conditions for regional modeling} | 
| 2 | 
 | 
| 3 | 
\label{sec:pkg:obcs} | 
| 4 | 
\begin{rawhtml} | 
| 5 | 
<!-- CMIREDIR:package_obcs: --> | 
| 6 | 
\end{rawhtml} | 
| 7 | 
 | 
| 8 | 
Authors:  | 
| 9 | 
Alistair Adcroft, Patrick Heimbach, Samar Katiwala, Martin Losch | 
| 10 | 
 | 
| 11 | 
\subsubsection{Introduction | 
| 12 | 
\label{sec:pkg:obcs:intro}} | 
| 13 | 
 | 
| 14 | 
The OBCS-package is fundamental to regional ocean modelling with the | 
| 15 | 
MITgcm, but there are so many details to be considered in | 
| 16 | 
regional ocean modelling that this package cannot accomodate all | 
| 17 | 
imaginable and possible options. Therefore, for a regional simulation | 
| 18 | 
with very particular details, it is recommended to familiarize oneself | 
| 19 | 
not only with the compile- and runtime-options of this package, but | 
| 20 | 
also with the code itself. In many cases it will be necessary to adapt | 
| 21 | 
the obcs-code (in particular \code{S/R OBCS\_CALC}) to the application | 
| 22 | 
in question; in these cases the obcs-package (together with the | 
| 23 | 
rbcs-package, section \ref{sec:pkg:rbcs}) is a very | 
| 24 | 
useful infrastructure for implementing special regional models. | 
| 25 | 
 | 
| 26 | 
%---------------------------------------------------------------------- | 
| 27 | 
 | 
| 28 | 
\subsubsection{OBCS configuration and compiling | 
| 29 | 
\label{sec:pkg:obcs:comp}} | 
| 30 | 
 | 
| 31 | 
As with all MITgcm packages, OBCS can be turned on or off  | 
| 32 | 
at compile time | 
| 33 | 
% | 
| 34 | 
\begin{itemize} | 
| 35 | 
% | 
| 36 | 
\item | 
| 37 | 
using the \code{packages.conf} file by adding \code{obcs} to it, | 
| 38 | 
% | 
| 39 | 
\item | 
| 40 | 
or using \code{genmake2} adding | 
| 41 | 
\code{-enable=obcs} or \code{-disable=obcs} switches | 
| 42 | 
% | 
| 43 | 
\item | 
| 44 | 
\textit{Required packages and CPP options:} \\ | 
| 45 | 
% | 
| 46 | 
To alternatives are available for prescribing open boundary values, | 
| 47 | 
which differ in the way how OB's are treated in time: | 
| 48 | 
A simple time-management (e.g. constant in time, or cyclic with | 
| 49 | 
fixed fequency) is provided through  | 
| 50 | 
S/R \code{obcs\_external\_fields\_load}. | 
| 51 | 
More sophisticated ``real-time'' (i.e. calendar time) management is | 
| 52 | 
available through \code{obcs\_prescribe\_read}.  | 
| 53 | 
The latter case requires | 
| 54 | 
packages \code{cal} and \code{exf} to be enabled. | 
| 55 | 
% | 
| 56 | 
\end{itemize} | 
| 57 | 
(see also Section \ref{sec:buildingCode}). | 
| 58 | 
 | 
| 59 | 
Parts of the OBCS code can be enabled or disabled at compile time | 
| 60 | 
via CPP preprocessor flags. These options are set in | 
| 61 | 
\code{OBCS\_OPTIONS.h}. Table \ref{tab:pkg:obcs:cpp} summarizes them. | 
| 62 | 
 | 
| 63 | 
\begin{table}[!ht] | 
| 64 | 
\centering | 
| 65 | 
  \label{tab:pkg:obcs:cpp} | 
| 66 | 
  {\footnotesize | 
| 67 | 
    \begin{tabular}{|l|l|} | 
| 68 | 
      \hline  | 
| 69 | 
      \textbf{CPP option}  &  \textbf{Description}  \\ | 
| 70 | 
      \hline \hline | 
| 71 | 
        \code{ALLOW\_OBCS\_NORTH} &  | 
| 72 | 
          enable Northern OB \\ | 
| 73 | 
        \code{ALLOW\_OBCS\_SOUTH} &  | 
| 74 | 
          enable Southern OB \\ | 
| 75 | 
        \code{ALLOW\_OBCS\_EAST} &  | 
| 76 | 
          enable Eastern OB \\ | 
| 77 | 
        \code{ALLOW\_OBCS\_WEST} &  | 
| 78 | 
          enable Western OB \\ | 
| 79 | 
      \hline | 
| 80 | 
        \code{ALLOW\_OBCS\_PRESCRIBE} &  | 
| 81 | 
          enable code for prescribing OB's \\ | 
| 82 | 
        \code{ALLOW\_OBCS\_SPONGE} &  | 
| 83 | 
          enable sponge layer code \\ | 
| 84 | 
        \code{ALLOW\_OBCS\_BALANCE} &  | 
| 85 | 
          enable code for balancing transports through OB's \\ | 
| 86 | 
        \code{ALLOW\_ORLANSKI} &  | 
| 87 | 
          enable Orlanski radiation conditions at OB's \\ | 
| 88 | 
        \code{ALLOW\_OBCS\_STEVENS} &  | 
| 89 | 
          enable Stevens (1990) boundary conditions at OB's \\ | 
| 90 | 
        & (currently only implemented for eastern and western \\ | 
| 91 | 
        &  boundaries and NOT for ptracers) \\ | 
| 92 | 
      \hline | 
| 93 | 
    \end{tabular} | 
| 94 | 
  } | 
| 95 | 
  \caption{~} | 
| 96 | 
\end{table} | 
| 97 | 
 | 
| 98 | 
 | 
| 99 | 
%---------------------------------------------------------------------- | 
| 100 | 
 | 
| 101 | 
\subsubsection{Run-time parameters | 
| 102 | 
\label{sec:pkg:obcs:runtime}} | 
| 103 | 
 | 
| 104 | 
Run-time parameters are set in files  | 
| 105 | 
\code{data.pkg}, \code{data.obcs}, and \code{data.exf}  | 
| 106 | 
if ``real-time'' prescription is requested  | 
| 107 | 
(i.e. package \code{exf} enabled). | 
| 108 | 
vThese parameter files are read in S/R | 
| 109 | 
\code{packages\_readparms.F}, \code{obcs\_readparms.F}, and | 
| 110 | 
\code{exf\_readparms.F}, respectively. | 
| 111 | 
Run-time parameters may be broken into 3 categories: | 
| 112 | 
(i) switching on/off the package at runtime, | 
| 113 | 
(ii) OBCS package flags and parameters, | 
| 114 | 
(iii) additional timing flags in \code{data.exf}, if selected. | 
| 115 | 
 | 
| 116 | 
\paragraph{Enabling the package} | 
| 117 | 
~ \\ | 
| 118 | 
% | 
| 119 | 
The OBCS package is switched on at runtime by setting | 
| 120 | 
\code{useOBCS = .TRUE.} in \code{data.pkg}. | 
| 121 | 
 | 
| 122 | 
\paragraph{Package flags and parameters} | 
| 123 | 
~ \\ | 
| 124 | 
% | 
| 125 | 
Table \ref{tab:pkg:obcs:runtime_flags} summarizes the | 
| 126 | 
runtime flags that are set in \code{data.obcs}, and | 
| 127 | 
their default values. | 
| 128 | 
 | 
| 129 | 
\begin{table}[!ht] | 
| 130 | 
\centering | 
| 131 | 
  {\footnotesize | 
| 132 | 
    \begin{tabular}{|l|c|l|} | 
| 133 | 
      \hline  | 
| 134 | 
      \textbf{Flag/parameter} & \textbf{default} &  \textbf{Description}  \\ | 
| 135 | 
      \hline \hline | 
| 136 | 
         \multicolumn{3}{|c|}{\textit{basic flags \& parameters} (OBCS\_PARM01) } \\ | 
| 137 | 
         \hline | 
| 138 | 
        OB\_Jnorth & 0 &  | 
| 139 | 
           Nx-vector of J-indices (w.r.t. Ny) of Northern OB | 
| 140 | 
           at each I-position (w.r.t. Nx) \\ | 
| 141 | 
        OB\_Jsouth & 0 &  | 
| 142 | 
           Nx-vector of J-indices (w.r.t. Ny) of Southern OB | 
| 143 | 
           at each I-position (w.r.t. Nx) \\ | 
| 144 | 
        OB\_Ieast & 0 &  | 
| 145 | 
           Ny-vector of I-indices (w.r.t. Nx) of Eastern OB | 
| 146 | 
           at each J-position (w.r.t. Ny) \\ | 
| 147 | 
        OB\_Iwest & 0 &  | 
| 148 | 
           Ny-vector of I-indices (w.r.t. Nx) of Western OB | 
| 149 | 
           at each J-position (w.r.t. Ny) \\ | 
| 150 | 
        useOBCSprescribe & \code{.FALSE.} &  | 
| 151 | 
           ~ \\ | 
| 152 | 
        useOBCSsponge & \code{.FALSE.} &  | 
| 153 | 
           ~ \\ | 
| 154 | 
        useOBCSbalance & \code{.FALSE.} &  | 
| 155 | 
           ~ \\ | 
| 156 | 
           OBCS\_balanceFacN/S/E/W & 1 & factor(s) determining the details | 
| 157 | 
           of the balaning code \\ | 
| 158 | 
        useOrlanskiNorth/South/EastWest & \code{.FALSE.} &  | 
| 159 | 
           turn on Orlanski boundary conditions for individual boundary\\ | 
| 160 | 
        useStevensNorth/South/EastWest & \code{.FALSE.} &  | 
| 161 | 
           turn on Stevens boundary conditions for individual boundary\\ | 
| 162 | 
        OB\textbf{X}\textbf{y}File & ~ &  | 
| 163 | 
           file name of OB field \\ | 
| 164 | 
        ~ & ~ &  | 
| 165 | 
           \textbf{X}: \textbf{N}(orth), \textbf{S}(outh),  | 
| 166 | 
                       \textbf{E}(ast), \textbf{W}(est) \\ | 
| 167 | 
        ~ & ~ &  | 
| 168 | 
           \textbf{y}: \textbf{t}(emperature), \textbf{s}(salinity),  | 
| 169 | 
           \textbf{u}(-velocity), \textbf{v}(-velocity), \\ | 
| 170 | 
        ~ & ~ &  | 
| 171 | 
           \textbf{w}(-velocity), \textbf{eta}(sea surface height)\\ | 
| 172 | 
        ~ & ~ &  | 
| 173 | 
           \textbf{a}(sea ice area), \textbf{h}(sea ice thickness), | 
| 174 | 
           \textbf{sn}(snow thickness), \textbf{sl}(sea ice salinity)\\ | 
| 175 | 
      \hline | 
| 176 | 
      \multicolumn{3}{|c|}{\textit{Orlanski parameters} (OBCS\_PARM02) } \\ | 
| 177 | 
      \hline | 
| 178 | 
        cvelTimeScale & 2000 sec &  | 
| 179 | 
           averaging period for phase speed \\ | 
| 180 | 
        CMAX & 0.45 m/s &  | 
| 181 | 
           maximum allowable phase speed-CFL for AB-II \\ | 
| 182 | 
        CFIX & 0.8 m/s &  | 
| 183 | 
           fixed boundary phase speed \\ | 
| 184 | 
        useFixedCEast & \code{.FALSE.} &  | 
| 185 | 
           ~ \\ | 
| 186 | 
        useFixedCWest & \code{.FALSE.} &  | 
| 187 | 
           ~ \\ | 
| 188 | 
      \hline | 
| 189 | 
      \multicolumn{3}{|c|}{\textit{Sponge-layer parameters} (OBCS\_PARM03)} \\ | 
| 190 | 
      \hline | 
| 191 | 
        spongeThickness & 0 &  | 
| 192 | 
           sponge layer thickness (in \# grid points) \\ | 
| 193 | 
        Urelaxobcsinner & 0 sec &  | 
| 194 | 
           relaxation time scale at the  | 
| 195 | 
           innermost sponge layer point of a meridional OB \\ | 
| 196 | 
        Vrelaxobcsinner & 0 sec &  | 
| 197 | 
           relaxation time scale at the  | 
| 198 | 
           innermost sponge layer point of a zonal OB \\ | 
| 199 | 
        Urelaxobcsbound & 0 sec &  | 
| 200 | 
           relaxation time scale at the  | 
| 201 | 
           outermost sponge layer point of a meridional OB \\ | 
| 202 | 
        Vrelaxobcsbound & 0 sec &  | 
| 203 | 
           relaxation time scale at the  | 
| 204 | 
           outermost sponge layer point of a zonal OB \\ | 
| 205 | 
      \hline | 
| 206 | 
      \multicolumn{3}{|c|}{\textit{Stevens parameters} (OBCS\_PARM04) } \\ | 
| 207 | 
      \hline | 
| 208 | 
        T/SrelaxStevens & 0~sec & relaxation time scale for | 
| 209 | 
           temperature/salinity \\ | 
| 210 | 
        useStevensPhaseVel & \code{.TRUE.} & \\ | 
| 211 | 
        useStevensAdvection & \code{.TRUE.} & \\ | 
| 212 | 
         \hline | 
| 213 | 
      \hline | 
| 214 | 
    \end{tabular} | 
| 215 | 
  } | 
| 216 | 
  \caption{pkg OBCS run-time parameters} | 
| 217 | 
  \label{tab:pkg:obcs:runtime_flags} | 
| 218 | 
\end{table} | 
| 219 | 
 | 
| 220 | 
 | 
| 221 | 
 | 
| 222 | 
%---------------------------------------------------------------------- | 
| 223 | 
 | 
| 224 | 
\subsubsection{Defining open boundary positions | 
| 225 | 
\label{sec:pkg:obcs:defining}} | 
| 226 | 
 | 
| 227 | 
There are four open boundaries (OBs), a  | 
| 228 | 
Northern, Southern, Eastern, and Western. | 
| 229 | 
All OB locations are specified by their absolute | 
| 230 | 
meridional (Northern/Southern) or zonal (Eastern/Western) indices. | 
| 231 | 
Thus, for each zonal position $i=1,\ldots,N_x$ a meridional index | 
| 232 | 
$j$ specifies the Northern/Southern OB position, | 
| 233 | 
and for each meridional position $j=1,\ldots,N_y$, a zonal index | 
| 234 | 
$i$ specifies the Eastern/Western OB position. | 
| 235 | 
For Northern/Southern OB this defines an $N_x$-dimensional | 
| 236 | 
``row'' array $\tt OB\_Jnorth(Nx)$ / $\tt OB\_Jsouth(Nx)$, | 
| 237 | 
and an $N_y$-dimenisonal  | 
| 238 | 
``column'' array $\tt OB\_Ieast(Ny)$ / $\tt OB\_Iwest(Ny)$. | 
| 239 | 
Positions determined in this way allows Northern/Southern | 
| 240 | 
OBs to be at variable $j$ (or $y$) positions, and Eastern/Western | 
| 241 | 
OBs at variable $i$ (or $x$) positions. | 
| 242 | 
Here, indices refer to tracer points on the C-grid. | 
| 243 | 
A zero (0) element in $\tt OB\_I\ldots$, $\tt OB\_J\ldots$ | 
| 244 | 
means there is no corresponding OB in that column/row. | 
| 245 | 
For a Northern/Southern OB, the OB V point is to the South/North. | 
| 246 | 
For an Eastern/Western OB, the OB U point is to the West/East. | 
| 247 | 
For example, | 
| 248 | 
\begin{tabbing} | 
| 249 | 
  \code{OB\_Jnorth(3)=34} \=  means that:  \= \\ | 
| 250 | 
  \> \code{T(3,34)} \> is a an OB point  \\ | 
| 251 | 
  \> \code{U(3,34)} \> is a an OB point \\ | 
| 252 | 
  \> \code{V(3,34)} \> is a an OB point \\ | 
| 253 | 
  \code{OB\_Jsouth(3)=1} \> means that: \\ | 
| 254 | 
  \> \code{T(3,1)} \> is a an OB point \\ | 
| 255 | 
  \> \code{U(3,1)} \> is a an OB point \\  | 
| 256 | 
  \> \code{V(3,2)} \> is a an OB point \\ | 
| 257 | 
  \code{OB\_Ieast(10)=69} \>  means that:  \>  \\ | 
| 258 | 
  \> \code{T(69,10)} \> is a an OB point \\ | 
| 259 | 
  \> \code{U(69,10)} \> is a an OB point \\ | 
| 260 | 
  \> \code{V(69,10)} \> is a an OB point \\ | 
| 261 | 
  \code{OB\_Iwest(10)=1} \>  means that:  \>  \\ | 
| 262 | 
  \> \code{T(1,10)} \> is a an OB point \\ | 
| 263 | 
  \> \code{U(2,10)} \> is a an OB point \\ | 
| 264 | 
  \> \code{V(1,10)} \> is a an OB point | 
| 265 | 
\end{tabbing} | 
| 266 | 
For convenience, negative values for \code{Jnorth}/\code{Ieast} refer to | 
| 267 | 
points relative to the Northern/Eastern edges of the model | 
| 268 | 
eg. $\tt OB\_Jnorth(3)=-1$  means that the point $\tt (3,Ny)$  | 
| 269 | 
is a northern OB. | 
| 270 | 
 | 
| 271 | 
\noindent | 
| 272 | 
\textsf{Add special comments for case \#define NONLIN\_FRSURF, | 
| 273 | 
see obcs\_ini\_fixed.F} | 
| 274 | 
 | 
| 275 | 
%---------------------------------------------------------------------- | 
| 276 | 
 | 
| 277 | 
\subsubsection{Equations and key routines | 
| 278 | 
\label{sec:pkg:obcs:equations}} | 
| 279 | 
 | 
| 280 | 
\paragraph{OBCS\_READPARMS:} ~ \\ | 
| 281 | 
Set OB positions through arrays | 
| 282 | 
{\tt OB\_Jnorth(Ny), OB\_Jsouth(Ny), OB\_Ieast(Nx), OB\_Iwest(Nx)}, | 
| 283 | 
and runtime flags (see Table \ref{tab:pkg:obcs:runtime_flags}). | 
| 284 | 
 | 
| 285 | 
\paragraph{OBCS\_CALC:} ~ \\ | 
| 286 | 
% | 
| 287 | 
Top-level routine for filling values to be applied at OB for  | 
| 288 | 
$T,S,U,V,\eta$ into corresponding  | 
| 289 | 
``slice'' arrays $(x,z)$, $(y,z)$ for each OB: | 
| 290 | 
$\tt OB[N/S/E/W][t/s/u/v]$; e.g. for salinity array at | 
| 291 | 
Southern OB, array name is $\tt OBSt$. | 
| 292 | 
Values filled are either | 
| 293 | 
% | 
| 294 | 
\begin{itemize} | 
| 295 | 
% | 
| 296 | 
\item | 
| 297 | 
constant vertical $T,S$ profiles as specified in file | 
| 298 | 
{\tt data} ({\tt tRef(Nr), sRef(Nr)}) with zero velocities $U,V$, | 
| 299 | 
% | 
| 300 | 
\item | 
| 301 | 
$T,S,U,V$ values determined via Orlanski radiation conditions | 
| 302 | 
(see below), | 
| 303 | 
% | 
| 304 | 
\item | 
| 305 | 
prescribed time-constant or time-varying fields (see below). | 
| 306 | 
% | 
| 307 | 
\item  | 
| 308 | 
use prescribed boundary fields to compute Stevens boundary conditions. | 
| 309 | 
\end{itemize} | 
| 310 | 
 | 
| 311 | 
\paragraph{ORLANSKI:} ~ \\ | 
| 312 | 
% | 
| 313 | 
Orlanski radiation conditions \citep{orl:76}, examples can be found in | 
| 314 | 
\code{verification/dome} and | 
| 315 | 
\code{verification/tutorial\_plume\_on\_slope} | 
| 316 | 
(\ref{sec:eg-gravityplume}). | 
| 317 | 
 | 
| 318 | 
\paragraph{OBCS\_PRESCRIBE\_READ:} ~ \\ | 
| 319 | 
% | 
| 320 | 
When \code{useOBCSprescribe = .TRUE.} the model tries to read | 
| 321 | 
temperature, salinity, u- and v-velocities from files specified in the | 
| 322 | 
runtime parameters \code{OB[N/S/E/W][t/s/u/v]File}. These files are | 
| 323 | 
the usual IEEE, big-endian files with dimensions of a section along an | 
| 324 | 
open boundary: | 
| 325 | 
\begin{itemize} | 
| 326 | 
\item For North/South boundary files the dimensions are | 
| 327 | 
  $(N_x\times N_r\times\mbox{time levels})$, for East/West boundary | 
| 328 | 
  files the dimensions are $(N_y\times N_r\times\mbox{time levels})$. | 
| 329 | 
\item If a non-linear free surface is used | 
| 330 | 
  (\ref{sec:nonlinear-freesurface}), additional files | 
| 331 | 
  \code{OB[N/S/E/W]etaFile} for the sea surface height $\eta$ with | 
| 332 | 
  dimension $(N_{x/y}\times\mbox{time levels})$ may be specified. | 
| 333 | 
\item If non-hydrostatic dynamics are used | 
| 334 | 
  (\ref{sec:non-hydrostatic}), additional files | 
| 335 | 
  \code{OB[N/S/E/W]wFile} for the vertical velocity $w$ with | 
| 336 | 
  dimensions $(N_{x/y}\times N_r\times\mbox{time levels})$ can be | 
| 337 | 
  specified. | 
| 338 | 
\item If \code{useSEAICE=.TRUE.} then additional files | 
| 339 | 
  \code{OB[N/S/E/W][a,h,sl,sn,uice,vice]} for sea ice area, thickness | 
| 340 | 
  (\code{HEFF}), seaice salinity, snow and ice velocities | 
| 341 | 
  $(N_{x/y}\times\mbox{time levels})$ can be specified. | 
| 342 | 
\end{itemize} | 
| 343 | 
As in \code{S/R external\_fields\_load} or the \code{exf}-package, the | 
| 344 | 
code reads two time levels for each variable, e.g.\ \code{OBNu0} and | 
| 345 | 
\code{OBNu1}, and interpolates linearly between these time levels to | 
| 346 | 
obtain the value \code{OBNu} at the current model time (step). When the | 
| 347 | 
\code{exf}-package is used, the time levels are controlled for each | 
| 348 | 
boundary separately in the same way as the \code{exf}-fields in | 
| 349 | 
\code{data.exf}, namelist \code{EXF\_NML\_OBCS}. The runtime flags | 
| 350 | 
follow the above naming conventions, e.g. for the western boundary the | 
| 351 | 
corresponding flags are \code{OBCWstartdate1/2} and | 
| 352 | 
\code{OBCWperiod}. Sea-ice boundary values are controlled separately | 
| 353 | 
with \code{siobWstartdate1/2} and \code{siobWperiod}.  When the | 
| 354 | 
\code{exf}-package is not used, the time levels are controlled by the | 
| 355 | 
runtime flags \code{externForcingPeriod} and \code{externForcingCycle} | 
| 356 | 
in \code{data}, see \code{verification/exp4} for an example. | 
| 357 | 
 | 
| 358 | 
\paragraph{OBCS\_CALC\_STEVENS:} ~ \\ | 
| 359 | 
(THE IMPLEMENTATION OF THESE BOUNDARY CONDITIONS IS NOT | 
| 360 | 
COMPLETE. PASSIVE TRACERS, SEA ICE AND NON-LINEAR FREE SURFACE ARE NOT | 
| 361 | 
SUPPORTED PROPERLY.) \\  | 
| 362 | 
The boundary conditions following \citet{stevens:90} require the | 
| 363 | 
vertically averaged normal velocity (originally specified as a stream | 
| 364 | 
function along the open boundary) $\bar{u}_{ob}$ and the tracer fields | 
| 365 | 
$\chi_{ob}$ (note: passive tracers are currently not implemented and | 
| 366 | 
the code stops when package \code{ptracers} is used together with this | 
| 367 | 
option). Currently, the code vertically averages the normal velocity | 
| 368 | 
as specified in \code{OB[E,W]u} or \code{OB[N,S]v}. From these | 
| 369 | 
prescribed values the code computes the boundary values for the next | 
| 370 | 
timestep $n+1$ as follows (as an example, we use the notation for an | 
| 371 | 
eastern or western boundary): | 
| 372 | 
\begin{itemize} | 
| 373 | 
\item $u^{n+1}(y,z) = \bar{u}_{ob}(y) + (u')^{n}(y,z)$, where | 
| 374 | 
  $(u')^{n}$ is the deviation from the vertically averaged velocity at | 
| 375 | 
  timestep $n$ on the boundary. $(u')^{n}$ is computed in the previous | 
| 376 | 
  time step $n$ from the intermediate velocity $u^*$ prior to the | 
| 377 | 
  correction step (see section \ref{sec:time_stepping}, e.g., | 
| 378 | 
  eq.\,(\ref{eq:ustar-backward-free-surface})). | 
| 379 | 
  % and~(\ref{eq:vstar-backward-free-surface})).  | 
| 380 | 
  (This velocity is not | 
| 381 | 
  available at the beginning of the next time step $n+1$, when | 
| 382 | 
  S/R~OBCS\_CALC/OBCS\_CALC\_STEVENS are called, therefore it needs to | 
| 383 | 
  be saved in S/R~DYNAMICS by calling S/R~OBCS\_SAVE\_UV\_N and also | 
| 384 | 
  stored in a separate restart files | 
| 385 | 
  \verb+pickup_stevens[N/S/E/W].${iteration}.data+) | 
| 386 | 
%  Define CPP-flag OBCS\_STEVENS\_USE\_INTERIOR\_VELOCITY to use the | 
| 387 | 
%  velocity one grid point inward from the boundary.  | 
| 388 | 
\item If $u^{n+1}$ is directed into the model domain, the boudary | 
| 389 | 
  value for tracer $\chi$ is restored to the prescribed values: | 
| 390 | 
  \[\chi^{n+1} =   \chi^{n} + \frac{\Delta{t}}{\tau_\chi} (\chi_{ob} - | 
| 391 | 
  \chi^{n}),\] where $\tau_\chi$ is the relaxation time | 
| 392 | 
  scale \texttt{T/SrelaxStevens}. The new $\chi^{n+1}$ is then subject | 
| 393 | 
  to the advection by $u^{n+1}$. | 
| 394 | 
\item If $u^{n+1}$ is directed out of the model domain, the tracer | 
| 395 | 
  $\chi^{n+1}$ on the boundary at timestep $n+1$ is estimated from | 
| 396 | 
  advection out of the domain with $u^{n+1}+c$, where $c$ is | 
| 397 | 
  a phase velocity estimated as | 
| 398 | 
  $\frac{1}{2}\frac{\partial\chi}{\partial{t}}/\frac{\partial\chi}{\partial{x}}$. The | 
| 399 | 
  numerical scheme is (as an example for an eastern boundary): | 
| 400 | 
  \[\chi_{i_{b},j,k}^{n+1} =   \chi_{i_{b},j,k}^{n} + \Delta{t}  | 
| 401 | 
  (u^{n+1}+c)_{i_{b},j,k}\frac{\chi_{i_{b},j,k}^{n} | 
| 402 | 
    - \chi_{i_{b}-1,j,k}^{n}}{\Delta{x}_{i_{b},j}^{C}}\mbox{, if }u_{i_{b},j,k}^{n+1}>0, | 
| 403 | 
  \] where $i_{b}$ is the boundary index.\\ | 
| 404 | 
  For test purposes, the phase velocity contribution or the entire | 
| 405 | 
  advection can be turned off by setting the corresponding parameters | 
| 406 | 
  \texttt{useStevensPhaseVel} and \texttt{useStevensAdvection} to | 
| 407 | 
  \texttt{.FALSE.}. | 
| 408 | 
\end{itemize}  | 
| 409 | 
See \citet{stevens:90} for details. With this boundary condition | 
| 410 | 
specifying the exact net transport across the open boundary is simple, | 
| 411 | 
so that balancing the flow with (S/R~OBCS\_BALANCE\_FLOW, see next | 
| 412 | 
paragraph) is usually not necessary. | 
| 413 | 
 | 
| 414 | 
\paragraph{OBCS\_BALANCE\_FLOW:} ~ \\ | 
| 415 | 
% | 
| 416 | 
When turned on (\code{ALLOW\_OBCS\_BALANCE} | 
| 417 | 
defined in \code{OBCS\_OPTIONS.h} and \code{useOBCSbalance=.true.} in | 
| 418 | 
\code{data.obcs/OBCS\_PARM01}), this routine balances the net flow | 
| 419 | 
across the open boundaries. By default the net flow across the | 
| 420 | 
boundaries is computed and all normal velocities on boundaries are | 
| 421 | 
adjusted to obtain zero net inflow. | 
| 422 | 
 | 
| 423 | 
This behavior can be controlled with the runtime flags | 
| 424 | 
\code{OBCS\_balanceFacN/S/E/W}. The values of these flags determine | 
| 425 | 
how the net inflow is redistributed as small correction velocities | 
| 426 | 
between the individual sections. A value ``\code{-1}'' balances an | 
| 427 | 
individual boundary, values $>0$ determine the relative size of the | 
| 428 | 
correction. For example, the values | 
| 429 | 
\begin{tabbing} | 
| 430 | 
 \code{OBCS\_balanceFacE}\code{ = 1.,} \\ | 
| 431 | 
 \code{OBCS\_balanceFacW}\code{ = -1.,} \\ | 
| 432 | 
 \code{OBCS\_balanceFacN}\code{ = 2.,} \\ | 
| 433 | 
 \code{OBCS\_balanceFacS}\code{ = 0.,} | 
| 434 | 
\end{tabbing} | 
| 435 | 
make the model | 
| 436 | 
\begin{itemize} | 
| 437 | 
\item correct Western \code{OBWu} by substracting a uniform velocity to | 
| 438 | 
ensure zero net transport through the Western open boundary; | 
| 439 | 
\item correct Eastern and Northern normal flow, with the Northern | 
| 440 | 
  velocity correction two times larger than the Eastern correction, but | 
| 441 | 
  \emph{not} the Southern normal flow, to ensure that the total inflow through | 
| 442 | 
  East, Northern, and Southern open boundary is balanced. | 
| 443 | 
\end{itemize} | 
| 444 | 
 | 
| 445 | 
The old method of balancing the net flow for all sections individually | 
| 446 | 
can be recovered by setting all flags to -1. Then the normal | 
| 447 | 
velocities across each of the four boundaries are modified separately, | 
| 448 | 
so that the net volume transport across \emph{each} boundary is | 
| 449 | 
zero. For example, for the western boundary at $i=i_{b}$, the modified | 
| 450 | 
velocity is: | 
| 451 | 
\[ | 
| 452 | 
u(y,z) - \int_{\mbox{western boundary}}u\,dy\,dz \approx OBNu(j,k) - \sum_{j,k} | 
| 453 | 
OBNu(j,k) h_{w}(i_{b},j,k)\Delta{y_G(i_{b},j)}\Delta{z(k)}. | 
| 454 | 
\] | 
| 455 | 
This also ensures a net total inflow of zero through all boundaries, | 
| 456 | 
but this combination of flags is \emph{not} useful if you want to | 
| 457 | 
simulate, say, a sector of the Southern Ocean with a strong ACC | 
| 458 | 
entering through the western and leaving through the eastern boundary, | 
| 459 | 
because the value of ``\code{-1}'' for these flags will make sure that | 
| 460 | 
the strong inflow is removed. Clearly, gobal balancing with | 
| 461 | 
\code{OBCS\_balanceFacE/W/N/S} $\ge0$ is the preferred method. | 
| 462 | 
 | 
| 463 | 
\paragraph{OBCS\_APPLY\_*:} ~ \\ | 
| 464 | 
~ | 
| 465 | 
 | 
| 466 | 
\paragraph{OBCS\_SPONGE:} ~ \\ | 
| 467 | 
% | 
| 468 | 
The sponge layer code (turned on with \code{ALLOW\_OBCS\_SPONGE} and | 
| 469 | 
\code{useOBCSsponge}) adds a relaxation term to the right-hand-side of | 
| 470 | 
the momentum and tracer equations. The variables are relaxed towards | 
| 471 | 
the boundary values with a relaxation time scale that increases | 
| 472 | 
linearly with distance from the boundary | 
| 473 | 
\[ | 
| 474 | 
G_{\chi}^{\mbox{(sponge)}} =  | 
| 475 | 
- \frac{\chi - [( L - \delta{L} ) \chi_{BC} + \delta{L}\chi]/L} | 
| 476 | 
{[(L-\delta{L})\tau_{b}+\delta{L}\tau_{i}]/L}  | 
| 477 | 
= - \frac{\chi - [( 1 - l ) \chi_{BC} + l\chi]} | 
| 478 | 
{[(1-l)\tau_{b}+l\tau_{i}]} | 
| 479 | 
\] | 
| 480 | 
where $\chi$ is the model variable (U/V/T/S) in the interior, | 
| 481 | 
$\chi_{BC}$ the boundary value, $L$ the thickness of the sponge layer | 
| 482 | 
(runtime parameter \code{spongeThickness} in number of grid points), | 
| 483 | 
$\delta{L}\in[0,L]$ ($\frac{\delta{L}}{L}=l\in[0,1]$) the distance from the boundary (also in grid points), and | 
| 484 | 
$\tau_{b}$ (runtime parameters \code{Urelaxobcsbound} and | 
| 485 | 
\code{Vrelaxobcsbound}) and $\tau_{i}$ (runtime parameters | 
| 486 | 
\code{Urelaxobcsinner} and \code{Vrelaxobcsinner}) the relaxation time | 
| 487 | 
scales on the boundary and at the interior termination of the sponge | 
| 488 | 
layer. The parameters \code{Urelaxobcsbound/inner} set the relaxation | 
| 489 | 
time scales for the Eastern and Western boundaries, | 
| 490 | 
\code{Vrelaxobcsbound/inner} for the Northern and Southern boundaries. | 
| 491 | 
 | 
| 492 | 
\paragraph{OB's with nonlinear free surface} ~ \\ | 
| 493 | 
% | 
| 494 | 
~ | 
| 495 | 
 | 
| 496 | 
 | 
| 497 | 
%---------------------------------------------------------------------- | 
| 498 | 
 | 
| 499 | 
\subsubsection{Flow chart | 
| 500 | 
\label{sec:pkg:obcs:flowchart}} | 
| 501 | 
 | 
| 502 | 
 | 
| 503 | 
{\footnotesize | 
| 504 | 
\begin{verbatim} | 
| 505 | 
 | 
| 506 | 
C     !CALLING SEQUENCE: | 
| 507 | 
c ... | 
| 508 | 
 | 
| 509 | 
\end{verbatim} | 
| 510 | 
} | 
| 511 | 
 | 
| 512 | 
%---------------------------------------------------------------------- | 
| 513 | 
 | 
| 514 | 
\subsubsection{OBCS diagnostics | 
| 515 | 
\label{sec:pkg:obcs:diagnostics}} | 
| 516 | 
 | 
| 517 | 
Diagnostics output is available via the diagnostics package | 
| 518 | 
(see Section \ref{sec:pkg:diagnostics}). | 
| 519 | 
Available output fields are summarized in  | 
| 520 | 
Table \ref{tab:pkg:obcs:diagnostics}. | 
| 521 | 
 | 
| 522 | 
\begin{table}[!ht] | 
| 523 | 
\centering | 
| 524 | 
\label{tab:pkg:obcs:diagnostics} | 
| 525 | 
{\footnotesize | 
| 526 | 
\begin{verbatim} | 
| 527 | 
------------------------------------------------------ | 
| 528 | 
 <-Name->|Levs|grid|<--  Units   -->|<- Tile (max=80c) | 
| 529 | 
------------------------------------------------------ | 
| 530 | 
 | 
| 531 | 
\end{verbatim} | 
| 532 | 
} | 
| 533 | 
\caption{~} | 
| 534 | 
\end{table} | 
| 535 | 
 | 
| 536 | 
%---------------------------------------------------------------------- | 
| 537 | 
 | 
| 538 | 
\subsubsection{Reference experiments} | 
| 539 | 
In the directory \code{verifcation}, the following experiments use | 
| 540 | 
\code{obcs}:  | 
| 541 | 
\begin{itemize} | 
| 542 | 
\item \code{exp4}: box with 4 open boundaries, simulating flow over a | 
| 543 | 
  Gaussian bump based on \citet{adcroft:97}, also tests | 
| 544 | 
  Stevens-boundary conditions; | 
| 545 | 
\item \code{dome}: based on the project ``Dynamics of Overflow Mixing | 
| 546 | 
  and Entrainment'' | 
| 547 | 
  (\url{http://www.rsmas.miami.edu/personal/tamay/DOME/dome.html}), uses | 
| 548 | 
  Orlanski-BCs; | 
| 549 | 
\item \code{internal\_wave}: uses a heavily modified \code{S/R~OBCS\_CALC} | 
| 550 | 
\item \code{seaice\_obcs}: simple example who to use the sea-ice | 
| 551 | 
  related code, based on \code{lab\_sea}; | 
| 552 | 
\item \code{tutorial\_plume\_on\_slope}: uses Orlanski-BCs, see also | 
| 553 | 
  section~\ref{sec:eg-gravityplume}. | 
| 554 | 
\end{itemize} | 
| 555 | 
 | 
| 556 | 
 | 
| 557 | 
 | 
| 558 | 
%---------------------------------------------------------------------- | 
| 559 | 
 | 
| 560 | 
\subsubsection{References} | 
| 561 | 
 | 
| 562 | 
\subsubsection{Experiments and tutorials that use obcs} | 
| 563 | 
\label{sec:pkg:obcs:experiments} | 
| 564 | 
 | 
| 565 | 
\begin{itemize} | 
| 566 | 
\item \code{tutorial\_plume\_on\_slope} (section~\ref{sec:eg-gravityplume}) | 
| 567 | 
\end{itemize} | 
| 568 | 
 | 
| 569 | 
 | 
| 570 | 
%%% Local Variables:  | 
| 571 | 
%%% mode: latex | 
| 572 | 
%%% TeX-master: "../../manual" | 
| 573 | 
%%% End:  |