| 233 | 
 and for each meridional position $j=1,\ldots,N_y$, a zonal index | 
 and for each meridional position $j=1,\ldots,N_y$, a zonal index | 
| 234 | 
 $i$ specifies the Eastern/Western OB position. | 
 $i$ specifies the Eastern/Western OB position. | 
| 235 | 
 For Northern/Southern OB this defines an $N_x$-dimensional | 
 For Northern/Southern OB this defines an $N_x$-dimensional | 
| 236 | 
 ``row'' array $\tt OB\_Jnorth(Ny)$ / $\tt OB\_Jsouth(Ny)$, | 
 ``row'' array $\tt OB\_Jnorth(Nx)$ / $\tt OB\_Jsouth(Nx)$, | 
| 237 | 
 and an $N_y$-dimenisonal  | 
 and an $N_y$-dimenisonal  | 
| 238 | 
 ``column'' array $\tt OB\_Ieast(Nx)$ / $\tt OB\_Iwest(Nx)$. | 
 ``column'' array $\tt OB\_Ieast(Ny)$ / $\tt OB\_Iwest(Ny)$. | 
| 239 | 
 Positions determined in this way allows Northern/Southern | 
 Positions determined in this way allows Northern/Southern | 
| 240 | 
 OBs to be at variable $j$ (or $y$) positions, and Eastern/Western | 
 OBs to be at variable $j$ (or $y$) positions, and Eastern/Western | 
| 241 | 
 OBs at variable $i$ (or $x$) positions. | 
 OBs at variable $i$ (or $x$) positions. | 
| 268 | 
 eg. $\tt OB\_Jnorth(3)=-1$  means that the point $\tt (3,Ny)$  | 
 eg. $\tt OB\_Jnorth(3)=-1$  means that the point $\tt (3,Ny)$  | 
| 269 | 
 is a northern OB. | 
 is a northern OB. | 
| 270 | 
  | 
  | 
| 271 | 
  | 
 \noindent\textbf{Simple examples:} For a model grid with $ N_{x}\times | 
| 272 | 
  | 
 N_{y} = 120\times144$ horizontal grid points with four open boundaries | 
| 273 | 
  | 
 along the four egdes of the domain, the simplest way of specifying the | 
| 274 | 
  | 
 boundary points in \code{data.obcs} is: | 
| 275 | 
  | 
 \begin{verbatim} | 
| 276 | 
  | 
   OB_Ieast = 144*-1, | 
| 277 | 
  | 
 # or OB_Ieast = 144*120, | 
| 278 | 
  | 
   OB_Iwest = 144*1, | 
| 279 | 
  | 
   OB_Jnorth = 120*-1, | 
| 280 | 
  | 
 # or OB_Jnorth = 120*144, | 
| 281 | 
  | 
   OB_Jsouth = 120*1, | 
| 282 | 
  | 
 \end{verbatim} | 
| 283 | 
  | 
 If only the first $50$ grid points of the southern boundary are | 
| 284 | 
  | 
 boundary points:  | 
| 285 | 
  | 
 \begin{verbatim} | 
| 286 | 
  | 
   OB_Jsouth(1:50) = 50*1, | 
| 287 | 
  | 
 \end{verbatim} | 
| 288 | 
  | 
  | 
| 289 | 
 \noindent | 
 \noindent | 
| 290 | 
 \textsf{Add special comments for case \#define NONLIN\_FRSURF, | 
 \textsf{Add special comments for case \#define NONLIN\_FRSURF, | 
| 291 | 
 see obcs\_ini\_fixed.F} | 
 see obcs\_ini\_fixed.F} | 
| 297 | 
  | 
  | 
| 298 | 
 \paragraph{OBCS\_READPARMS:} ~ \\ | 
 \paragraph{OBCS\_READPARMS:} ~ \\ | 
| 299 | 
 Set OB positions through arrays | 
 Set OB positions through arrays | 
| 300 | 
 {\tt OB\_Jnorth(Ny), OB\_Jsouth(Ny), OB\_Ieast(Nx), OB\_Iwest(Nx)}, | 
 {\tt OB\_Jnorth(Nx), OB\_Jsouth(Nx), OB\_Ieast(Ny), OB\_Iwest(Ny)}, | 
| 301 | 
 and runtime flags (see Table \ref{tab:pkg:obcs:runtime_flags}). | 
 and runtime flags (see Table \ref{tab:pkg:obcs:runtime_flags}). | 
| 302 | 
  | 
  | 
| 303 | 
 \paragraph{OBCS\_CALC:} ~ \\ | 
 \paragraph{OBCS\_CALC:} ~ \\ | 
| 374 | 
 in \code{data}, see \code{verification/exp4} for an example. | 
 in \code{data}, see \code{verification/exp4} for an example. | 
| 375 | 
  | 
  | 
| 376 | 
 \paragraph{OBCS\_CALC\_STEVENS:} ~ \\ | 
 \paragraph{OBCS\_CALC\_STEVENS:} ~ \\ | 
| 377 | 
 (THE IMPLEMENTATION OF THESE BOUNDARY CONDITIONS IS NOT COMPLETE. SO | 
 (THE IMPLEMENTATION OF THESE BOUNDARY CONDITIONS IS NOT | 
| 378 | 
 FAR ONLY EASTERN AND WESTERN BOUNDARIES ARE SUPPORTED.) \\ | 
 COMPLETE. PASSIVE TRACERS, SEA ICE AND NON-LINEAR FREE SURFACE ARE NOT | 
| 379 | 
  | 
 SUPPORTED PROPERLY.) \\  | 
| 380 | 
 The boundary conditions following \citet{stevens:90} require the | 
 The boundary conditions following \citet{stevens:90} require the | 
| 381 | 
 vertically averaged normal velocity (originally specified as a stream | 
 vertically averaged normal velocity (originally specified as a stream | 
| 382 | 
 function along the open boundary) $\bar{u}_{ob}$ and the tracer fields | 
 function along the open boundary) $\bar{u}_{ob}$ and the tracer fields | 
| 383 | 
 $\chi_{ob}$ (note: passive tracers are currently not implemented and | 
 $\chi_{ob}$ (note: passive tracers are currently not implemented and | 
| 384 | 
 the code stops when package \code{ptracers} is used together with this | 
 the code stops when package \code{ptracers} is used together with this | 
| 385 | 
 option). Currently, the code vertically averages the normal velocity | 
 option). Currently, the code vertically averages the normal velocity | 
| 386 | 
 as specified. From these prescribed values the code computes the | 
 as specified in \code{OB[E,W]u} or \code{OB[N,S]v}. From these | 
| 387 | 
 boundary values for the next timestep $n+1$ as follows (as an  | 
 prescribed values the code computes the boundary values for the next | 
| 388 | 
 example, we use the notation for an eastern or western boundary): | 
 timestep $n+1$ as follows (as an example, we use the notation for an | 
| 389 | 
  | 
 eastern or western boundary): | 
| 390 | 
 \begin{itemize} | 
 \begin{itemize} | 
| 391 | 
 \item $u^{n+1}(y,z) = \bar{u}_{ob}(y) + u'(y,z)$, where $u_{n}'$ is the | 
 \item $u^{n+1}(y,z) = \bar{u}_{ob}(y) + (u')^{n}(y,z)$, where | 
| 392 | 
   deviation from the vertically averaged velocity one grid point | 
   $(u')^{n}$ is the deviation from the vertically averaged velocity at | 
| 393 | 
   inward from the boundary. | 
   timestep $n$ on the boundary. $(u')^{n}$ is computed in the previous | 
| 394 | 
  | 
   time step $n$ from the intermediate velocity $u^*$ prior to the | 
| 395 | 
  | 
   correction step (see section \ref{sec:time_stepping}, e.g., | 
| 396 | 
  | 
   eq.\,(\ref{eq:ustar-backward-free-surface})). | 
| 397 | 
  | 
   % and~(\ref{eq:vstar-backward-free-surface})).  | 
| 398 | 
  | 
   (This velocity is not | 
| 399 | 
  | 
   available at the beginning of the next time step $n+1$, when | 
| 400 | 
  | 
   S/R~OBCS\_CALC/OBCS\_CALC\_STEVENS are called, therefore it needs to | 
| 401 | 
  | 
   be saved in S/R~DYNAMICS by calling S/R~OBCS\_SAVE\_UV\_N and also | 
| 402 | 
  | 
   stored in a separate restart files | 
| 403 | 
  | 
   \verb+pickup_stevens[N/S/E/W].${iteration}.data+) | 
| 404 | 
  | 
 %  Define CPP-flag OBCS\_STEVENS\_USE\_INTERIOR\_VELOCITY to use the | 
| 405 | 
  | 
 %  velocity one grid point inward from the boundary.  | 
| 406 | 
 \item If $u^{n+1}$ is directed into the model domain, the boudary | 
 \item If $u^{n+1}$ is directed into the model domain, the boudary | 
| 407 | 
   value for tracer $\chi$ is restored to the prescribed values: | 
   value for tracer $\chi$ is restored to the prescribed values: | 
| 408 | 
   \[\chi^{n+1} =   \chi^{n} + \frac{\Delta{t}}{\tau_\chi} (\chi_{ob} - | 
   \[\chi^{n+1} =   \chi^{n} + \frac{\Delta{t}}{\tau_\chi} (\chi_{ob} - | 
| 409 | 
   \chi^{n}),\] where $\tau_\chi$ is the relaxation time | 
   \chi^{n}),\] where $\tau_\chi$ is the relaxation time | 
| 410 | 
   scale \texttt{T/SrelaxStevens}. | 
   scale \texttt{T/SrelaxStevens}. The new $\chi^{n+1}$ is then subject | 
| 411 | 
 \item If $u^{n+1}$ is directed out of the model domain, the tracer is | 
   to the advection by $u^{n+1}$. | 
| 412 | 
   advected out of the domain with $u^{n+1}+c$, where $c$ is a phase | 
 \item If $u^{n+1}$ is directed out of the model domain, the tracer | 
| 413 | 
   velocity estimated as | 
   $\chi^{n+1}$ on the boundary at timestep $n+1$ is estimated from | 
| 414 | 
   $\frac{1}{2}\frac{\partial\chi}{\partial{t}}/\frac{\partial\chi}{\partial{x}}$. | 
   advection out of the domain with $u^{n+1}+c$, where $c$ is | 
| 415 | 
  | 
   a phase velocity estimated as | 
| 416 | 
  | 
   $\frac{1}{2}\frac{\partial\chi}{\partial{t}}/\frac{\partial\chi}{\partial{x}}$. The | 
| 417 | 
  | 
   numerical scheme is (as an example for an eastern boundary): | 
| 418 | 
  | 
   \[\chi_{i_{b},j,k}^{n+1} =   \chi_{i_{b},j,k}^{n} + \Delta{t}  | 
| 419 | 
  | 
   (u^{n+1}+c)_{i_{b},j,k}\frac{\chi_{i_{b},j,k}^{n} | 
| 420 | 
  | 
     - \chi_{i_{b}-1,j,k}^{n}}{\Delta{x}_{i_{b},j}^{C}}\mbox{, if }u_{i_{b},j,k}^{n+1}>0, | 
| 421 | 
  | 
   \] where $i_{b}$ is the boundary index.\\ | 
| 422 | 
   For test purposes, the phase velocity contribution or the entire | 
   For test purposes, the phase velocity contribution or the entire | 
| 423 | 
   advection can | 
   advection can be turned off by setting the corresponding parameters | 
 | 
   be turned off by setting the corresponding parameters | 
  | 
| 424 | 
   \texttt{useStevensPhaseVel} and \texttt{useStevensAdvection} to | 
   \texttt{useStevensPhaseVel} and \texttt{useStevensAdvection} to | 
| 425 | 
   \texttt{.FALSE.}.\end{itemize} See \citet{stevens:90} for details. | 
   \texttt{.FALSE.}. | 
| 426 | 
  | 
 \end{itemize}  | 
| 427 | 
  | 
 See \citet{stevens:90} for details. With this boundary condition | 
| 428 | 
  | 
 specifying the exact net transport across the open boundary is simple, | 
| 429 | 
  | 
 so that balancing the flow with (S/R~OBCS\_BALANCE\_FLOW, see next | 
| 430 | 
  | 
 paragraph) is usually not necessary. | 
| 431 | 
  | 
  | 
| 432 | 
 \paragraph{OBCS\_BALANCE\_FLOW:} ~ \\ | 
 \paragraph{OBCS\_BALANCE\_FLOW:} ~ \\ | 
| 433 | 
 % | 
 % | 
| 443 | 
 how the net inflow is redistributed as small correction velocities | 
 how the net inflow is redistributed as small correction velocities | 
| 444 | 
 between the individual sections. A value ``\code{-1}'' balances an | 
 between the individual sections. A value ``\code{-1}'' balances an | 
| 445 | 
 individual boundary, values $>0$ determine the relative size of the | 
 individual boundary, values $>0$ determine the relative size of the | 
| 446 | 
 correction. For example, with the values | 
 correction. For example, the values | 
| 447 | 
 \begin{tabbing} | 
 \begin{tabbing} | 
| 448 | 
  \code{OBCS\_balanceFac\_E}\=\code{ = 1.,} \\ | 
  \code{OBCS\_balanceFacE}\code{ = 1.,} \\ | 
| 449 | 
  \code{OBCS\_balanceFac\_W}\>\code{ = -1.,} \\ | 
  \code{OBCS\_balanceFacW}\code{ = -1.,} \\ | 
| 450 | 
  \code{OBCS\_balanceFac\_N}\>\code{ = 2.,} \\ | 
  \code{OBCS\_balanceFacN}\code{ = 2.,} \\ | 
| 451 | 
  \code{OBCS\_balanceFac\_S}\>\code{ = 0.,} | 
  \code{OBCS\_balanceFacS}\code{ = 0.,} | 
| 452 | 
 \end{tabbing} | 
 \end{tabbing} | 
| 453 | 
 will make the model | 
 make the model | 
| 454 | 
 \begin{itemize} | 
 \begin{itemize} | 
| 455 | 
 \item correct Western \code{OBWu} by substracting a uniform velocity to | 
 \item correct Western \code{OBWu} by substracting a uniform velocity to | 
| 456 | 
 ensure zero net transport through Western OB | 
 ensure zero net transport through the Western open boundary; | 
| 457 | 
 \item correct Eastern and Northern normal flow, with the Northern | 
 \item correct Eastern and Northern normal flow, with the Northern | 
| 458 | 
   velocity correction two times larger than Eastern correction, but | 
   velocity correction two times larger than the Eastern correction, but | 
| 459 | 
   not the Southern normal flow to ensure that the total inflow through | 
   \emph{not} the Southern normal flow, to ensure that the total inflow through | 
| 460 | 
   East, Northern, and Southern OB is balanced | 
   East, Northern, and Southern open boundary is balanced. | 
| 461 | 
 \end{itemize} | 
 \end{itemize} | 
| 462 | 
  | 
  | 
| 463 | 
 The old method of balancing the net flow for all sections individually | 
 The old method of balancing the net flow for all sections individually | 
| 470 | 
 u(y,z) - \int_{\mbox{western boundary}}u\,dy\,dz \approx OBNu(j,k) - \sum_{j,k} | 
 u(y,z) - \int_{\mbox{western boundary}}u\,dy\,dz \approx OBNu(j,k) - \sum_{j,k} | 
| 471 | 
 OBNu(j,k) h_{w}(i_{b},j,k)\Delta{y_G(i_{b},j)}\Delta{z(k)}. | 
 OBNu(j,k) h_{w}(i_{b},j,k)\Delta{y_G(i_{b},j)}\Delta{z(k)}. | 
| 472 | 
 \] | 
 \] | 
| 473 | 
 This also ensures a net total inflow of zero through all boundaries to | 
 This also ensures a net total inflow of zero through all boundaries, | 
| 474 | 
 make it a useful flag for preventing infinite sea-level change within | 
 but this combination of flags is \emph{not} useful if you want to | 
| 475 | 
 the domain, but this combination of flags is \emph{not} useful if you | 
 simulate, say, a sector of the Southern Ocean with a strong ACC | 
| 476 | 
 want to simulate, say, a sector of the Southern Ocean with a strong | 
 entering through the western and leaving through the eastern boundary, | 
| 477 | 
 ACC entering through the western and leaving through the eastern | 
 because the value of ``\code{-1}'' for these flags will make sure that | 
| 478 | 
 boundary, because the value of ``\code{-1}'' for these flags will make | 
 the strong inflow is removed. Clearly, gobal balancing with | 
| 479 | 
 sure that the strong inflow is removed. | 
 \code{OBCS\_balanceFacE/W/N/S} $\ge0$ is the preferred method. | 
| 480 | 
  | 
  | 
| 481 | 
 \paragraph{OBCS\_APPLY\_*:} ~ \\ | 
 \paragraph{OBCS\_APPLY\_*:} ~ \\ | 
| 482 | 
 ~ | 
 ~ | 
| 498 | 
 where $\chi$ is the model variable (U/V/T/S) in the interior, | 
 where $\chi$ is the model variable (U/V/T/S) in the interior, | 
| 499 | 
 $\chi_{BC}$ the boundary value, $L$ the thickness of the sponge layer | 
 $\chi_{BC}$ the boundary value, $L$ the thickness of the sponge layer | 
| 500 | 
 (runtime parameter \code{spongeThickness} in number of grid points), | 
 (runtime parameter \code{spongeThickness} in number of grid points), | 
| 501 | 
 $\delta{L}\in[0,L]$ ($l\in[0,1]$) the distance from the boundary (also in grid points), and | 
 $\delta{L}\in[0,L]$ ($\frac{\delta{L}}{L}=l\in[0,1]$) the distance from the boundary (also in grid points), and | 
| 502 | 
 $\tau_{b}$ (runtime parameters \code{Urelaxobcsbound} and | 
 $\tau_{b}$ (runtime parameters \code{Urelaxobcsbound} and | 
| 503 | 
 \code{Vrelaxobcsbound}) and $\tau_{i}$ (runtime parameters | 
 \code{Vrelaxobcsbound}) and $\tau_{i}$ (runtime parameters | 
| 504 | 
 \code{Urelaxobcsinner} and \code{Vrelaxobcsinner}) the relaxation time | 
 \code{Urelaxobcsinner} and \code{Vrelaxobcsinner}) the relaxation time |