| 233 | 
 and for each meridional position $j=1,\ldots,N_y$, a zonal index | 
 and for each meridional position $j=1,\ldots,N_y$, a zonal index | 
| 234 | 
 $i$ specifies the Eastern/Western OB position. | 
 $i$ specifies the Eastern/Western OB position. | 
| 235 | 
 For Northern/Southern OB this defines an $N_x$-dimensional | 
 For Northern/Southern OB this defines an $N_x$-dimensional | 
| 236 | 
 ``row'' array $\tt OB\_Jnorth(Ny)$ / $\tt OB\_Jsouth(Ny)$, | 
 ``row'' array $\tt OB\_Jnorth(Nx)$ / $\tt OB\_Jsouth(Nx)$, | 
| 237 | 
 and an $N_y$-dimenisonal  | 
 and an $N_y$-dimenisonal  | 
| 238 | 
 ``column'' array $\tt OB\_Ieast(Nx)$ / $\tt OB\_Iwest(Nx)$. | 
 ``column'' array $\tt OB\_Ieast(Ny)$ / $\tt OB\_Iwest(Ny)$. | 
| 239 | 
 Positions determined in this way allows Northern/Southern | 
 Positions determined in this way allows Northern/Southern | 
| 240 | 
 OBs to be at variable $j$ (or $y$) positions, and Eastern/Western | 
 OBs to be at variable $j$ (or $y$) positions, and Eastern/Western | 
| 241 | 
 OBs at variable $i$ (or $x$) positions. | 
 OBs at variable $i$ (or $x$) positions. | 
| 279 | 
  | 
  | 
| 280 | 
 \paragraph{OBCS\_READPARMS:} ~ \\ | 
 \paragraph{OBCS\_READPARMS:} ~ \\ | 
| 281 | 
 Set OB positions through arrays | 
 Set OB positions through arrays | 
| 282 | 
 {\tt OB\_Jnorth(Ny), OB\_Jsouth(Ny), OB\_Ieast(Nx), OB\_Iwest(Nx)}, | 
 {\tt OB\_Jnorth(Nx), OB\_Jsouth(Nx), OB\_Ieast(Ny), OB\_Iwest(Ny)}, | 
| 283 | 
 and runtime flags (see Table \ref{tab:pkg:obcs:runtime_flags}). | 
 and runtime flags (see Table \ref{tab:pkg:obcs:runtime_flags}). | 
| 284 | 
  | 
  | 
| 285 | 
 \paragraph{OBCS\_CALC:} ~ \\ | 
 \paragraph{OBCS\_CALC:} ~ \\ | 
| 356 | 
 in \code{data}, see \code{verification/exp4} for an example. | 
 in \code{data}, see \code{verification/exp4} for an example. | 
| 357 | 
  | 
  | 
| 358 | 
 \paragraph{OBCS\_CALC\_STEVENS:} ~ \\ | 
 \paragraph{OBCS\_CALC\_STEVENS:} ~ \\ | 
| 359 | 
 (THE IMPLEMENTATION OF THESE BOUNDARY CONDITIONS IS NOT COMPLETE. SO | 
 (THE IMPLEMENTATION OF THESE BOUNDARY CONDITIONS IS NOT | 
| 360 | 
 FAR ONLY EASTERN AND WESTERN BOUNDARIES ARE SUPPORTED.) \\ | 
 COMPLETE. PASSIVE TRACERS, SEA ICE AND NON-LINEAR FREE SURFACE ARE NOT | 
| 361 | 
  | 
 SUPPORTED PROPERLY.) \\  | 
| 362 | 
 The boundary conditions following \citet{stevens:90} require the | 
 The boundary conditions following \citet{stevens:90} require the | 
| 363 | 
 vertically averaged normal velocity (originally specified as a stream | 
 vertically averaged normal velocity (originally specified as a stream | 
| 364 | 
 function along the open boundary) $\bar{u}_{ob}$ and the tracer fields | 
 function along the open boundary) $\bar{u}_{ob}$ and the tracer fields | 
| 365 | 
 $\chi_{ob}$ (note: passive tracers are currently not implemented and | 
 $\chi_{ob}$ (note: passive tracers are currently not implemented and | 
| 366 | 
 the code stops when package \code{ptracers} is used together with this | 
 the code stops when package \code{ptracers} is used together with this | 
| 367 | 
 option). Currently, the code vertically averages the normal velocity | 
 option). Currently, the code vertically averages the normal velocity | 
| 368 | 
 as specified. From these prescribed values the code computes the | 
 as specified in \code{OB[E,W]u} or \code{OB[N,S]v}. From these | 
| 369 | 
 boundary values for the next timestep $n+1$ as follows (as an  | 
 prescribed values the code computes the boundary values for the next | 
| 370 | 
 example, we use the notation for an eastern or western boundary): | 
 timestep $n+1$ as follows (as an example, we use the notation for an | 
| 371 | 
  | 
 eastern or western boundary): | 
| 372 | 
 \begin{itemize} | 
 \begin{itemize} | 
| 373 | 
 \item $u^{n+1}(y,z) = \bar{u}_{ob}(y) + u'(y,z)$, where $u_{n}'$ is the | 
 \item $u^{n+1}(y,z) = \bar{u}_{ob}(y) + (u')^{n}(y,z)$, where | 
| 374 | 
   deviation from the vertically averaged velocity one grid point | 
   $(u')^{n}$ is the deviation from the vertically averaged velocity at | 
| 375 | 
   inward from the boundary. | 
   timestep $n$ on the boundary. $(u')^{n}$ is computed in the previous | 
| 376 | 
  | 
   time step $n$ from the intermediate velocity $u^*$ prior to the | 
| 377 | 
  | 
   correction step (see section \ref{sec:time_stepping}, e.g., | 
| 378 | 
  | 
   eq.\,(\ref{eq:ustar-backward-free-surface})). | 
| 379 | 
  | 
   % and~(\ref{eq:vstar-backward-free-surface})).  | 
| 380 | 
  | 
   (This velocity is not | 
| 381 | 
  | 
   available at the beginning of the next time step $n+1$, when | 
| 382 | 
  | 
   S/R~OBCS\_CALC/OBCS\_CALC\_STEVENS are called, therefore it needs to | 
| 383 | 
  | 
   be saved in S/R~DYNAMICS by calling S/R~OBCS\_SAVE\_UV\_N and also | 
| 384 | 
  | 
   stored in a separate restart files | 
| 385 | 
  | 
   \verb+pickup_stevens[N/S/E/W].${iteration}.data+) | 
| 386 | 
  | 
 %  Define CPP-flag OBCS\_STEVENS\_USE\_INTERIOR\_VELOCITY to use the | 
| 387 | 
  | 
 %  velocity one grid point inward from the boundary.  | 
| 388 | 
 \item If $u^{n+1}$ is directed into the model domain, the boudary | 
 \item If $u^{n+1}$ is directed into the model domain, the boudary | 
| 389 | 
   value for tracer $\chi$ is restored to the prescribed values: | 
   value for tracer $\chi$ is restored to the prescribed values: | 
| 390 | 
   \[\chi^{n+1} =   \chi^{n} + \frac{\Delta{t}}{\tau_\chi} (\chi_{ob} - | 
   \[\chi^{n+1} =   \chi^{n} + \frac{\Delta{t}}{\tau_\chi} (\chi_{ob} - | 
| 391 | 
   \chi^{n}),\] where $\tau_\chi$ is the relaxation time | 
   \chi^{n}),\] where $\tau_\chi$ is the relaxation time | 
| 392 | 
   scale \texttt{T/SrelaxStevens}. | 
   scale \texttt{T/SrelaxStevens}. The new $\chi^{n+1}$ is then subject | 
| 393 | 
 \item If $u^{n+1}$ is directed out of the model domain, the tracer is | 
   to the advection by $u^{n+1}$. | 
| 394 | 
   advected out of the domain with $u^{n+1}+c$, where $c$ is a phase | 
 \item If $u^{n+1}$ is directed out of the model domain, the tracer | 
| 395 | 
   velocity estimated as | 
   $\chi^{n+1}$ on the boundary at timestep $n+1$ is estimated from | 
| 396 | 
   $\frac{1}{2}\frac{\partial\chi}{\partial{t}}/\frac{\partial\chi}{\partial{x}}$. | 
   advection out of the domain with $u^{n+1}+c$, where $c$ is | 
| 397 | 
  | 
   a phase velocity estimated as | 
| 398 | 
  | 
   $\frac{1}{2}\frac{\partial\chi}{\partial{t}}/\frac{\partial\chi}{\partial{x}}$. The | 
| 399 | 
  | 
   numerical scheme is (as an example for an eastern boundary): | 
| 400 | 
  | 
   \[\chi_{i_{b},j,k}^{n+1} =   \chi_{i_{b},j,k}^{n} + \Delta{t}  | 
| 401 | 
  | 
   (u^{n+1}+c)_{i_{b},j,k}\frac{\chi_{i_{b},j,k}^{n} | 
| 402 | 
  | 
     - \chi_{i_{b}-1,j,k}^{n}}{\Delta{x}_{i_{b},j}^{C}}\mbox{, if }u_{i_{b},j,k}^{n+1}>0, | 
| 403 | 
  | 
   \] where $i_{b}$ is the boundary index.\\ | 
| 404 | 
   For test purposes, the phase velocity contribution or the entire | 
   For test purposes, the phase velocity contribution or the entire | 
| 405 | 
   advection can | 
   advection can be turned off by setting the corresponding parameters | 
 | 
   be turned off by setting the corresponding parameters | 
  | 
| 406 | 
   \texttt{useStevensPhaseVel} and \texttt{useStevensAdvection} to | 
   \texttt{useStevensPhaseVel} and \texttt{useStevensAdvection} to | 
| 407 | 
   \texttt{.FALSE.}.\end{itemize} See \citet{stevens:90} for details. | 
   \texttt{.FALSE.}. | 
| 408 | 
  | 
 \end{itemize}  | 
| 409 | 
  | 
 See \citet{stevens:90} for details. With this boundary condition | 
| 410 | 
  | 
 specifying the exact net transport across the open boundary is simple, | 
| 411 | 
  | 
 so that balancing the flow with (S/R~OBCS\_BALANCE\_FLOW, see next | 
| 412 | 
  | 
 paragraph) is usually not necessary. | 
| 413 | 
  | 
  | 
| 414 | 
 \paragraph{OBCS\_BALANCE\_FLOW:} ~ \\ | 
 \paragraph{OBCS\_BALANCE\_FLOW:} ~ \\ | 
| 415 | 
 % | 
 % |