/[MITgcm]/manual/s_phys_pkgs/text/land.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/text/land.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (show annotations) (download) (as text)
Thu Apr 6 21:35:26 2006 UTC (18 years, 1 month ago) by edhill
Branch: MAIN
Changes since 1.4: +2 -0 lines
File MIME type: application/x-tex
add footnotesize so the diagnostics lists are readable in the pdf

1 \subsection{Land package}
2 \label{sec:pkg:land}
3 \begin{rawhtml}
4 <!-- CMIREDIR:package_land: -->
5 \end{rawhtml}
6
7 \subsubsection{Introduction}
8 This package provides a simple land model
9 based on Rong Zhang [e-mail:roz@gfdl.noaa.gov] 2 layers model
10 (see documentation below).
11
12 It is primarily implemented for AIM (\_v23) atmospheric physics
13 but could be adapted to work with a different atmospheric physics.
14 Two subroutines ({\it aim\_aim2land.F} {\it aim\_land2aim.F}
15 in {\it pkg/aim\_v23}) are used as interface with AIM physics.
16
17 Number of layers is a parameter ({\it land\_nLev} in {\it LAND\_SIZE.h})
18 and can be changed.
19
20 %---------------------------------------------------------------------
21
22 % \documentclass[12pt,thmsa]{article}
23
24 % \begin{document}
25
26 \begin{center}
27 {\bf Note on Land Model}\\
28 date: June 1999\\
29 author: Rong Zhang\\
30 \end{center}
31
32 % \baselineskip19pt
33
34 \subsubsection{Equations and Key Parameters}
35 This is a simple 2-layer land model. The top layer depth $z1=0.1m$, the
36 second layer depth $z2=4m$.
37
38 Let $T_{g1},T_{g2}$ be the temperature of each layer, $W_{1,}W_{2}$ be the
39 soil moisture of each layer. The field capacity $f_{1,}$ $f_{2}$ are the
40 maximum water amount in each layer, so $W_{i}$ is the ratio of available
41 water to field capacity. $f_{i}=\gamma z_{i},\gamma =0.24$ is the field
42 capapcity per meter soil$,$ so $f_{1}=0.024m,$ $f_{2}=0.96m.$
43
44 The land temperature is determined by total surface downward heat flux $F,$
45
46 \begin{equation}
47 z_{1}C_{1}\frac{dT_{g1}}{dt}=F-\lambda \frac{T_{g1}-T_{g2}}{(z_{1}+z_{2})/2}
48 \end{equation}
49
50 \begin{center}
51 \begin{equation}
52 z_{2}C_{2}\frac{dT_{g2}}{dt}=\lambda \frac{T_{g1}-T_{g2}}{(z_{1}+z_{2})/2}
53 \end{equation}
54 \end{center}
55
56 here $C_{1},C_{2}$ are the heat capacity of each layer , $\lambda $ is the
57 thermal conductivity, $\lambda =0.42Wm^{-1}K^{-1}.$
58
59 \begin{center}
60 \bigskip
61 \begin{equation}
62 C_{1}=C_{w}W_{1}\gamma +C_{s}
63 \end{equation}
64
65 \begin{equation}
66 C_{2}=C_{w}W_{2}\gamma +C_{s}
67 \end{equation}
68 \end{center}
69
70 $C_{w},C_{s}$ are the heat capacity of water and dry soil respectively. $%
71 C_{w}=4.2\times 10^{6}Jm^{-3}K^{-1},C_{s}=1.13\times 10^{6}Jm^{-3}K^{-1}.$
72
73 \bigskip
74
75 The soil moisture is determined by precipitation $P(m/s)$,surface
76 evaporation $E(m/s)$ and runoff $R(m/s).$
77
78 \begin{equation}
79 \frac{dW_{1}}{dt}=\frac{P-E-R}{f_{1}}+\frac{W_{2}-W_{1}}{\tau }
80 \end{equation}
81
82 $\tau =2$ $days$ is the time constant for diffusion of moisture between
83 layers.
84
85 \begin{equation}
86 \frac{dW_{2}}{dt}=\frac{f_{1}}{f_{2}}\frac{W_{1}-W_{2}}{\tau }
87 \end{equation}
88
89 In the code, $R=0$ gives better result, $W_{1},W_{2}$ are set to be within
90 [0, 1]. If $W_{1}$ is greater than 1, then let $\delta W_{1}=W_{1}-1,W_{1}=1$
91 and $W_{2}=W_{2}+p\delta W_{1}\frac{f_{1}}{f_{2}}$, i.e. the runoff of top
92 layer is put into second layer. $p=0.5$ is the fraction of top layer runoff
93 that is put into second layer.
94
95 The time step is 1 hour, it takes several years to reach equalibrium offline.
96
97 \subsubsection{Land diagnostics}
98 \label{sec:pkg:land:diagnostics}
99
100 {\footnotesize
101 \begin{verbatim}
102
103 ------------------------------------------------------------------------
104 <-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
105 ------------------------------------------------------------------------
106 GrdSurfT| 1 |SM Lg |degC |Surface Temperature over land
107 GrdTemp | 2 |SM MG |degC |Ground Temperature at each level
108 GrdEnth | 2 |SM MG |J/m3 |Ground Enthalpy at each level
109 GrdWater| 2 |SM P MG |0-1 |Ground Water (vs Field Capacity) Fraction at each level
110 LdSnowH | 1 |SM P Lg |m |Snow Thickness over land
111 LdSnwAge| 1 |SM P Lg |s |Snow Age over land
112 RUNOFF | 1 |SM L1 |m/s |Run-Off per surface unit
113 EnRunOff| 1 |SM L1 |W/m^2 |Energy flux associated with run-Off
114 landHFlx| 1 |SM Lg |W/m^2 |net surface downward Heat flux over land
115 landPmE | 1 |SM Lg |kg/m^2/s |Precipitation minus Evaporation over land
116 ldEnFxPr| 1 |SM Lg |W/m^2 |Energy flux (over land) associated with Precip (snow,rain)
117 \end{verbatim}
118 }
119
120 \subsubsection{References}
121
122 Hansen J. et al. Efficient three-dimensional global models for climate
123 studies: models I and II. \emph{Monthly Weather Review}, vol.111, no.4, pp.
124 609-62, 1983
125
126 % \end{document}

  ViewVC Help
Powered by ViewVC 1.1.22