/[MITgcm]/manual/s_phys_pkgs/text/land.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/text/land.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (show annotations) (download) (as text)
Mon Jul 18 20:45:27 2005 UTC (18 years, 11 months ago) by molod
Branch: MAIN
Changes since 1.2: +1 -1 lines
File MIME type: application/x-tex
Reorganization of chap 6 and 7 -- move some tex files, demote many
sections in section hierarchy

1 \subsection{Land package}
2 \label{sec:pkg:land}
3 \begin{rawhtml}
4 <!-- CMIREDIR:package_land: -->
5 \end{rawhtml}
6
7 This package provides a simple land model
8 based on Rong Zhang [e-mail:roz@gfdl.noaa.gov] 2 layers model
9 (see documentation below).
10
11 It is primarily implemented for AIM (\_v23) atmospheric physics
12 but could be adapted to work with a different atmospheric physics.
13 Two subroutines ({\it aim\_aim2land.F} {\it aim\_land2aim.F}
14 in {\it pkg/aim\_v23}) are used as interface with AIM physics.
15
16 Number of layers is a parameter ({\it land\_nLev} in {\it LAND\_SIZE.h})
17 and can be changed.
18
19 %---------------------------------------------------------------------
20
21 % \documentclass[12pt,thmsa]{article}
22
23 % \begin{document}
24
25 \begin{center}
26 {\bf Note on Land Model}\\
27 date: June 1999\\
28 author: Rong Zhang\\
29 \end{center}
30
31 % \baselineskip19pt
32
33 This is a simple 2-layer land model. The top layer depth $z1=0.1m$, the
34 second layer depth $z2=4m$.
35
36 Let $T_{g1},T_{g2}$ be the temperature of each layer, $W_{1,}W_{2}$ be the
37 soil moisture of each layer. The field capacity $f_{1,}$ $f_{2}$ are the
38 maximum water amount in each layer, so $W_{i}$ is the ratio of available
39 water to field capacity. $f_{i}=\gamma z_{i},\gamma =0.24$ is the field
40 capapcity per meter soil$,$ so $f_{1}=0.024m,$ $f_{2}=0.96m.$
41
42 The land temperature is determined by total surface downward heat flux $F,$
43
44 \begin{equation}
45 z_{1}C_{1}\frac{dT_{g1}}{dt}=F-\lambda \frac{T_{g1}-T_{g2}}{(z_{1}+z_{2})/2}
46 \end{equation}
47
48 \begin{center}
49 \begin{equation}
50 z_{2}C_{2}\frac{dT_{g2}}{dt}=\lambda \frac{T_{g1}-T_{g2}}{(z_{1}+z_{2})/2}
51 \end{equation}
52 \end{center}
53
54 here $C_{1},C_{2}$ are the heat capacity of each layer , $\lambda $ is the
55 thermal conductivity, $\lambda =0.42Wm^{-1}K^{-1}.$
56
57 \begin{center}
58 \bigskip
59 \begin{equation}
60 C_{1}=C_{w}W_{1}\gamma +C_{s}
61 \end{equation}
62
63 \begin{equation}
64 C_{2}=C_{w}W_{2}\gamma +C_{s}
65 \end{equation}
66 \end{center}
67
68 $C_{w},C_{s}$ are the heat capacity of water and dry soil respectively. $%
69 C_{w}=4.2\times 10^{6}Jm^{-3}K^{-1},C_{s}=1.13\times 10^{6}Jm^{-3}K^{-1}.$
70
71 \bigskip
72
73 The soil moisture is determined by precipitation $P(m/s)$,surface
74 evaporation $E(m/s)$ and runoff $R(m/s).$
75
76 \begin{equation}
77 \frac{dW_{1}}{dt}=\frac{P-E-R}{f_{1}}+\frac{W_{2}-W_{1}}{\tau }
78 \end{equation}
79
80 $\tau =2$ $days$ is the time constant for diffusion of moisture between
81 layers.
82
83 \begin{equation}
84 \frac{dW_{2}}{dt}=\frac{f_{1}}{f_{2}}\frac{W_{1}-W_{2}}{\tau }
85 \end{equation}
86
87 In the code, $R=0$ gives better result, $W_{1},W_{2}$ are set to be within
88 [0, 1]. If $W_{1}$ is greater than 1, then let $\delta W_{1}=W_{1}-1,W_{1}=1$
89 and $W_{2}=W_{2}+p\delta W_{1}\frac{f_{1}}{f_{2}}$, i.e. the runoff of top
90 layer is put into second layer. $p=0.5$ is the fraction of top layer runoff
91 that is put into second layer.
92
93 The time step is 1 hour, it takes several years to reach equalibrium offline.
94
95 \begin{center}
96 \bigskip
97 \end{center}
98
99 \textbf{References}
100
101 Hansen J. et al. Efficient three-dimensional global models for climate
102 studies: models I and II. \emph{Monthly Weather Review}, vol.111, no.4, pp.
103 609-62, 1983
104
105 % \end{document}

  ViewVC Help
Powered by ViewVC 1.1.22