/[MITgcm]/manual/s_phys_pkgs/text/land.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/land.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (hide annotations) (download) (as text)
Thu Apr 6 21:35:26 2006 UTC (18 years, 1 month ago) by edhill
Branch: MAIN
Changes since 1.4: +2 -0 lines
File MIME type: application/x-tex
add footnotesize so the diagnostics lists are readable in the pdf

1 molod 1.3 \subsection{Land package}
2 edhill 1.2 \label{sec:pkg:land}
3     \begin{rawhtml}
4     <!-- CMIREDIR:package_land: -->
5     \end{rawhtml}
6 jmc 1.1
7 molod 1.4 \subsubsection{Introduction}
8 jmc 1.1 This package provides a simple land model
9     based on Rong Zhang [e-mail:roz@gfdl.noaa.gov] 2 layers model
10     (see documentation below).
11    
12     It is primarily implemented for AIM (\_v23) atmospheric physics
13     but could be adapted to work with a different atmospheric physics.
14     Two subroutines ({\it aim\_aim2land.F} {\it aim\_land2aim.F}
15     in {\it pkg/aim\_v23}) are used as interface with AIM physics.
16    
17     Number of layers is a parameter ({\it land\_nLev} in {\it LAND\_SIZE.h})
18     and can be changed.
19    
20     %---------------------------------------------------------------------
21    
22     % \documentclass[12pt,thmsa]{article}
23    
24     % \begin{document}
25    
26     \begin{center}
27     {\bf Note on Land Model}\\
28     date: June 1999\\
29     author: Rong Zhang\\
30     \end{center}
31    
32     % \baselineskip19pt
33    
34 molod 1.4 \subsubsection{Equations and Key Parameters}
35 jmc 1.1 This is a simple 2-layer land model. The top layer depth $z1=0.1m$, the
36     second layer depth $z2=4m$.
37    
38     Let $T_{g1},T_{g2}$ be the temperature of each layer, $W_{1,}W_{2}$ be the
39     soil moisture of each layer. The field capacity $f_{1,}$ $f_{2}$ are the
40     maximum water amount in each layer, so $W_{i}$ is the ratio of available
41     water to field capacity. $f_{i}=\gamma z_{i},\gamma =0.24$ is the field
42     capapcity per meter soil$,$ so $f_{1}=0.024m,$ $f_{2}=0.96m.$
43    
44     The land temperature is determined by total surface downward heat flux $F,$
45    
46     \begin{equation}
47     z_{1}C_{1}\frac{dT_{g1}}{dt}=F-\lambda \frac{T_{g1}-T_{g2}}{(z_{1}+z_{2})/2}
48     \end{equation}
49    
50     \begin{center}
51     \begin{equation}
52     z_{2}C_{2}\frac{dT_{g2}}{dt}=\lambda \frac{T_{g1}-T_{g2}}{(z_{1}+z_{2})/2}
53     \end{equation}
54     \end{center}
55    
56     here $C_{1},C_{2}$ are the heat capacity of each layer , $\lambda $ is the
57     thermal conductivity, $\lambda =0.42Wm^{-1}K^{-1}.$
58    
59     \begin{center}
60     \bigskip
61     \begin{equation}
62     C_{1}=C_{w}W_{1}\gamma +C_{s}
63     \end{equation}
64    
65     \begin{equation}
66     C_{2}=C_{w}W_{2}\gamma +C_{s}
67     \end{equation}
68     \end{center}
69    
70     $C_{w},C_{s}$ are the heat capacity of water and dry soil respectively. $%
71     C_{w}=4.2\times 10^{6}Jm^{-3}K^{-1},C_{s}=1.13\times 10^{6}Jm^{-3}K^{-1}.$
72    
73     \bigskip
74    
75     The soil moisture is determined by precipitation $P(m/s)$,surface
76     evaporation $E(m/s)$ and runoff $R(m/s).$
77    
78     \begin{equation}
79     \frac{dW_{1}}{dt}=\frac{P-E-R}{f_{1}}+\frac{W_{2}-W_{1}}{\tau }
80     \end{equation}
81    
82     $\tau =2$ $days$ is the time constant for diffusion of moisture between
83     layers.
84    
85     \begin{equation}
86     \frac{dW_{2}}{dt}=\frac{f_{1}}{f_{2}}\frac{W_{1}-W_{2}}{\tau }
87     \end{equation}
88    
89     In the code, $R=0$ gives better result, $W_{1},W_{2}$ are set to be within
90     [0, 1]. If $W_{1}$ is greater than 1, then let $\delta W_{1}=W_{1}-1,W_{1}=1$
91     and $W_{2}=W_{2}+p\delta W_{1}\frac{f_{1}}{f_{2}}$, i.e. the runoff of top
92     layer is put into second layer. $p=0.5$ is the fraction of top layer runoff
93     that is put into second layer.
94    
95     The time step is 1 hour, it takes several years to reach equalibrium offline.
96    
97 molod 1.4 \subsubsection{Land diagnostics}
98     \label{sec:pkg:land:diagnostics}
99    
100 edhill 1.5 {\footnotesize
101 molod 1.4 \begin{verbatim}
102    
103     ------------------------------------------------------------------------
104     <-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
105     ------------------------------------------------------------------------
106     GrdSurfT| 1 |SM Lg |degC |Surface Temperature over land
107     GrdTemp | 2 |SM MG |degC |Ground Temperature at each level
108     GrdEnth | 2 |SM MG |J/m3 |Ground Enthalpy at each level
109     GrdWater| 2 |SM P MG |0-1 |Ground Water (vs Field Capacity) Fraction at each level
110     LdSnowH | 1 |SM P Lg |m |Snow Thickness over land
111     LdSnwAge| 1 |SM P Lg |s |Snow Age over land
112     RUNOFF | 1 |SM L1 |m/s |Run-Off per surface unit
113     EnRunOff| 1 |SM L1 |W/m^2 |Energy flux associated with run-Off
114     landHFlx| 1 |SM Lg |W/m^2 |net surface downward Heat flux over land
115     landPmE | 1 |SM Lg |kg/m^2/s |Precipitation minus Evaporation over land
116     ldEnFxPr| 1 |SM Lg |W/m^2 |Energy flux (over land) associated with Precip (snow,rain)
117     \end{verbatim}
118 edhill 1.5 }
119 jmc 1.1
120 molod 1.4 \subsubsection{References}
121 jmc 1.1
122     Hansen J. et al. Efficient three-dimensional global models for climate
123     studies: models I and II. \emph{Monthly Weather Review}, vol.111, no.4, pp.
124     609-62, 1983
125    
126     % \end{document}

  ViewVC Help
Powered by ViewVC 1.1.22