/[MITgcm]/manual/s_phys_pkgs/text/land.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/land.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (hide annotations) (download) (as text)
Tue Oct 12 18:16:03 2004 UTC (19 years, 7 months ago) by edhill
Branch: MAIN
CVS Tags: checkpoint57l_post
Changes since 1.1: +4 -0 lines
File MIME type: application/x-tex
 o add HTML reference tags so that URLs are more permanent and legible
 o update MNC

1 jmc 1.1 \section{Land package}
2 edhill 1.2 \label{sec:pkg:land}
3     \begin{rawhtml}
4     <!-- CMIREDIR:package_land: -->
5     \end{rawhtml}
6 jmc 1.1
7     This package provides a simple land model
8     based on Rong Zhang [e-mail:roz@gfdl.noaa.gov] 2 layers model
9     (see documentation below).
10    
11     It is primarily implemented for AIM (\_v23) atmospheric physics
12     but could be adapted to work with a different atmospheric physics.
13     Two subroutines ({\it aim\_aim2land.F} {\it aim\_land2aim.F}
14     in {\it pkg/aim\_v23}) are used as interface with AIM physics.
15    
16     Number of layers is a parameter ({\it land\_nLev} in {\it LAND\_SIZE.h})
17     and can be changed.
18    
19     %---------------------------------------------------------------------
20    
21     % \documentclass[12pt,thmsa]{article}
22    
23     % \begin{document}
24    
25     \begin{center}
26     {\bf Note on Land Model}\\
27     date: June 1999\\
28     author: Rong Zhang\\
29     \end{center}
30    
31     % \baselineskip19pt
32    
33     This is a simple 2-layer land model. The top layer depth $z1=0.1m$, the
34     second layer depth $z2=4m$.
35    
36     Let $T_{g1},T_{g2}$ be the temperature of each layer, $W_{1,}W_{2}$ be the
37     soil moisture of each layer. The field capacity $f_{1,}$ $f_{2}$ are the
38     maximum water amount in each layer, so $W_{i}$ is the ratio of available
39     water to field capacity. $f_{i}=\gamma z_{i},\gamma =0.24$ is the field
40     capapcity per meter soil$,$ so $f_{1}=0.024m,$ $f_{2}=0.96m.$
41    
42     The land temperature is determined by total surface downward heat flux $F,$
43    
44     \begin{equation}
45     z_{1}C_{1}\frac{dT_{g1}}{dt}=F-\lambda \frac{T_{g1}-T_{g2}}{(z_{1}+z_{2})/2}
46     \end{equation}
47    
48     \begin{center}
49     \begin{equation}
50     z_{2}C_{2}\frac{dT_{g2}}{dt}=\lambda \frac{T_{g1}-T_{g2}}{(z_{1}+z_{2})/2}
51     \end{equation}
52     \end{center}
53    
54     here $C_{1},C_{2}$ are the heat capacity of each layer , $\lambda $ is the
55     thermal conductivity, $\lambda =0.42Wm^{-1}K^{-1}.$
56    
57     \begin{center}
58     \bigskip
59     \begin{equation}
60     C_{1}=C_{w}W_{1}\gamma +C_{s}
61     \end{equation}
62    
63     \begin{equation}
64     C_{2}=C_{w}W_{2}\gamma +C_{s}
65     \end{equation}
66     \end{center}
67    
68     $C_{w},C_{s}$ are the heat capacity of water and dry soil respectively. $%
69     C_{w}=4.2\times 10^{6}Jm^{-3}K^{-1},C_{s}=1.13\times 10^{6}Jm^{-3}K^{-1}.$
70    
71     \bigskip
72    
73     The soil moisture is determined by precipitation $P(m/s)$,surface
74     evaporation $E(m/s)$ and runoff $R(m/s).$
75    
76     \begin{equation}
77     \frac{dW_{1}}{dt}=\frac{P-E-R}{f_{1}}+\frac{W_{2}-W_{1}}{\tau }
78     \end{equation}
79    
80     $\tau =2$ $days$ is the time constant for diffusion of moisture between
81     layers.
82    
83     \begin{equation}
84     \frac{dW_{2}}{dt}=\frac{f_{1}}{f_{2}}\frac{W_{1}-W_{2}}{\tau }
85     \end{equation}
86    
87     In the code, $R=0$ gives better result, $W_{1},W_{2}$ are set to be within
88     [0, 1]. If $W_{1}$ is greater than 1, then let $\delta W_{1}=W_{1}-1,W_{1}=1$
89     and $W_{2}=W_{2}+p\delta W_{1}\frac{f_{1}}{f_{2}}$, i.e. the runoff of top
90     layer is put into second layer. $p=0.5$ is the fraction of top layer runoff
91     that is put into second layer.
92    
93     The time step is 1 hour, it takes several years to reach equalibrium offline.
94    
95     \begin{center}
96     \bigskip
97     \end{center}
98    
99     \textbf{References}
100    
101     Hansen J. et al. Efficient three-dimensional global models for climate
102     studies: models I and II. \emph{Monthly Weather Review}, vol.111, no.4, pp.
103     609-62, 1983
104    
105     % \end{document}

  ViewVC Help
Powered by ViewVC 1.1.22