--- manual/s_phys_pkgs/text/kpp.tex 2005/08/01 22:31:36 1.6 +++ manual/s_phys_pkgs/text/kpp.tex 2005/08/02 22:26:58 1.7 @@ -1,5 +1,5 @@ \subsection{KPP: Nonlocal K-Profile Parameterization for -Diapycnal Mixing} +Vertical Mixing} \label{sec:pkg:kpp} \begin{rawhtml} @@ -11,9 +11,68 @@ \subsubsection{Introduction \label{sec:pkg:kpp:intro}} +The nonlocal K-Profile Parameterization (KPP) scheme +of \cite{lar-eta:94} unifies the treatment of a variety of +unresolved processes involved in vertical mixing. +To consider it as one mixing scheme is, in the view of the authors, +somewhat misleading since it consists of several entities +to deal with distinct mixing processes in the ocean's surface +boundary layer, and the interior: +% +\begin{enumerate} +% +\item +mixing in the interior is goverened by +shear instability (modeled as function of the local gradient +Richardson number), internal wave activity (assumed constant), +and double-diffusion (not implemented here). +% +\item +a boundary layer depth $h$ or \texttt{hbl} is determined +at each grid point, based on a critical value of turbulent +processes parameterized by a bulk Richardson number; +% +\item +mixing is strongly enhanced in the boundary layer under the +stabilizing or destabilizing influence of surface forcing +(buoyancy and momentum) enabling boundary layer properties +to penetrate well into the thermocline; +mixing is represented through a polynomial profile whose +coefficients are determined subject to several contraints; +% +\item +the boundary-layer profile is made to agree with similarity +theory of turbulence and is matched, in the asymptotic sense +(function and derivative agree at the boundary), +to the interior thus fixing the polynomial coefficients; +matching allows for some fraction of the boundary layer mixing +to affect the interior, and vice versa; +% +\item +a ``non-local'' term $\hat{\gamma}$ or \texttt{ghat} +which is independent of the vertical property gradient further +enhances mixing where the water column is unstable +% +\end{enumerate} +% +The scheme has been extensively compared to observations +(see e.g. \cite{lar-eta:97}) and is now coomon in many +ocean models. + +The following sections will describe the KPP package +configuration and compiling (\ref{sec:pkg:kpp:comp}), +the settings and choices of runtime parameters +(\ref{sec:pkg:kpp:runtime}), +more detailed description of equations to which these +parameters relate (\ref{sec:pkg:kpp:equations}), +and key subroutines where they are used (\ref{sec:pkg:kpp:subroutines}), +and diagnostics output of KPP-derived diffusivities, viscosities +and boundary-layer/mixed-layer depths. + %---------------------------------------------------------------------- -\subsubsection{KPP configuration and compiling} +\subsubsection{KPP configuration and compiling +\label{sec:pkg:kpp:comp}} As with all MITgcm packages, KPP can be turned on or off at compile time % @@ -34,6 +93,7 @@ \texttt{KPP\_OPTIONS.h}. Table \ref{tab:pkg:kpp:cpp} summarizes them. \begin{table}[h!] +\centering \label{tab:pkg:kpp:cpp} {\footnotesize \begin{tabular}{|l|l|} @@ -69,7 +129,6 @@ \end{table} - %---------------------------------------------------------------------- \subsubsection{Run-time parameters @@ -104,7 +163,12 @@ \paragraph{Package flags and parameters} ~ \\ % +Table \ref{tab:pkg:kpp:runtime_flags} summarizes the +runtime flags that are set in \texttt{data.pkg}, and +their default values. + \begin{table}[h!] +\centering \label{tab:pkg:kpp:runtime_flags} {\footnotesize \begin{tabular}{|l|c|l|} @@ -210,6 +274,84 @@ \subsubsection{Equations \label{sec:pkg:kpp:equations}} +We restrict ourselves to writing out only the essential equations +that relate to main processes and parameters mentioned above. +We closely follow the notation of \cite{lar-eta:94}. + +\paragraph{Mixing in the boundary layer} ~ \\ +% +~ + +The vertical fluxes $\overline{wx}$ +of momentum and tracer properties $X$ +is composed of a gradient-flux term (proportional to +the vertical property divergence $\partial_z X$), and +a ``nonlocal'' term $\gamma_x$ that enhances the +gradient-flux mixing coefficient $K_x$ +% +\begin{equation} +\overline{wx}(d) \, = \, -K_x \left( +\frac{\partial X}{\partial z} \, - \, \gamma_x \right) +\end{equation} + +\begin{itemize} +% +\item +\textit{Boundary layer mixing profile} \\ +% +It is expressed as the product of the boundary layer depth $h$, +a depth-dependent turbulent velocity scale $w_x(\sigma)$ and a +non-dimensional shape function $G(\sigma)$ +% +\begin{equation} +K_x(\sigma) \, = \, h \, w_x(\sigma) \, G(\sigma) +\end{equation} +% +with dimensionless vertical coordinate $\sigma = d/h$. +For details of $ w_x(\sigma)$ and $G(\sigma)$ we refer to +\cite{lar-eta:94}. + +% +\item +\textit{Nonlocal mixing term} \\ +% +The nonlocal transport term $\gamma$ is nonzero only for +tracers in unstable (convective) forcing conditions. +Thus, depending on the stability parameter $\zeta = d/L$ +(with depth $d$, Monin-Obukhov length scale $L$) +it has the following form: +% +\begin{eqnarray} +\begin{array}{cl} +\gamma_x \, = \, 0 & \zeta \, \ge \, 0 \\ +~ & ~ \\ +\left. +\begin{array}{c} +\gamma_m \, = \, 0 \\ + ~ \\ +\gamma_s \, = \, C_s +\frac{\overline{w s_0}}{w_s(\sigma) h} \\ + ~ \\ +\gamma_{\theta} \, = \, C_s +\frac{\overline{w \theta_0}+\overline{w \theta_R}}{w_s(\sigma) h} \\ +\end{array} +\right\} +& +\zeta \, < \, 0 \\ +\end{array} +\end{eqnarray} + +\end{itemize} + + +\paragraph{Mixing in the interior} ~ \\ +% +~ + +\paragraph{Implicit time integration} ~ \\ +% +~ + %---------------------------------------------------------------------- \subsubsection{Key subroutines @@ -294,18 +436,20 @@ % \end{enumerate} -\paragraph{kpp\_calc\_diff\_t/s, kpp\_calc\_visc:} ~ \\ +\paragraph{kpp\_calc\_diff\_t/\_s, kpp\_calc\_visc:} ~ \\ % Add contribution to net diffusivity/viscosity from KPP diffusivity/viscosity. -\paragraph{kpp\_transport\_t/s/ptr:} ~ \\ +\paragraph{kpp\_transport\_t/\_s/\_ptr:} ~ \\ % Add non local KPP transport term (ghat) to diffusive temperature/salinity/passive tracer flux. The nonlocal transport term is nonzero only for scalars in unstable (convective) forcing conditions. +\paragraph{Flow chart:} ~ \\ +% {\footnotesize \begin{verbatim} @@ -345,6 +489,7 @@ Table \ref{tab:pkg:kpp:diagnostics}. \begin{table}[h!] +\centering \label{tab:pkg:kpp:diagnostics} {\footnotesize \begin{verbatim} @@ -374,3 +519,4 @@ %---------------------------------------------------------------------- \subsubsection{References} +