1 |
\subsection{KPP: Nonlocal K-Profile Parameterization for |
\subsection{KPP: Nonlocal K-Profile Parameterization for |
2 |
Diapycnal Mixing} |
Vertical Mixing} |
3 |
|
|
4 |
\label{sec:pkg:kpp} |
\label{sec:pkg:kpp} |
5 |
\begin{rawhtml} |
\begin{rawhtml} |
11 |
\subsubsection{Introduction |
\subsubsection{Introduction |
12 |
\label{sec:pkg:kpp:intro}} |
\label{sec:pkg:kpp:intro}} |
13 |
|
|
14 |
|
The nonlocal K-Profile Parameterization (KPP) scheme |
15 |
|
of \cite{lar-eta:94} unifies the treatment of a variety of |
16 |
|
unresolved processes involved in vertical mixing. |
17 |
|
To consider it as one mixing scheme is, in the view of the authors, |
18 |
|
somewhat misleading since it consists of several entities |
19 |
|
to deal with distinct mixing processes in the ocean's surface |
20 |
|
boundary layer, and the interior: |
21 |
|
% |
22 |
|
\begin{enumerate} |
23 |
|
% |
24 |
|
\item |
25 |
|
mixing in the interior is goverened by |
26 |
|
shear instability (modeled as function of the local gradient |
27 |
|
Richardson number), internal wave activity (assumed constant), |
28 |
|
and double-diffusion (not implemented here). |
29 |
|
% |
30 |
|
\item |
31 |
|
a boundary layer depth $h$ or \texttt{hbl} is determined |
32 |
|
at each grid point, based on a critical value of turbulent |
33 |
|
processes parameterized by a bulk Richardson number; |
34 |
|
% |
35 |
|
\item |
36 |
|
mixing is strongly enhanced in the boundary layer under the |
37 |
|
stabilizing or destabilizing influence of surface forcing |
38 |
|
(buoyancy and momentum) enabling boundary layer properties |
39 |
|
to penetrate well into the thermocline; |
40 |
|
mixing is represented through a polynomial profile whose |
41 |
|
coefficients are determined subject to several contraints; |
42 |
|
% |
43 |
|
\item |
44 |
|
the boundary-layer profile is made to agree with similarity |
45 |
|
theory of turbulence and is matched, in the asymptotic sense |
46 |
|
(function and derivative agree at the boundary), |
47 |
|
to the interior thus fixing the polynomial coefficients; |
48 |
|
matching allows for some fraction of the boundary layer mixing |
49 |
|
to affect the interior, and vice versa; |
50 |
|
% |
51 |
|
\item |
52 |
|
a ``non-local'' term $\hat{\gamma}$ or \texttt{ghat} |
53 |
|
which is independent of the vertical property gradient further |
54 |
|
enhances mixing where the water column is unstable |
55 |
|
% |
56 |
|
\end{enumerate} |
57 |
|
% |
58 |
|
The scheme has been extensively compared to observations |
59 |
|
(see e.g. \cite{lar-eta:97}) and is now coomon in many |
60 |
|
ocean models. |
61 |
|
|
62 |
|
The current code originates in the NCAR NCOM 1-D code |
63 |
|
and was kindly provided by Bill Large and Jan Morzel. |
64 |
|
It has been adapted first to the MITgcm vector code and |
65 |
|
subsequently to the current parallel code. |
66 |
|
Adjustment were mainly in conjunction with WRAPPER requirements |
67 |
|
(domain decomposition and threading capability), to enable |
68 |
|
automatic differentiation of tangent linear and adjoint code |
69 |
|
via TAMC. |
70 |
|
|
71 |
|
The following sections will describe the KPP package |
72 |
|
configuration and compiling (\ref{sec:pkg:kpp:comp}), |
73 |
|
the settings and choices of runtime parameters |
74 |
|
(\ref{sec:pkg:kpp:runtime}), |
75 |
|
more detailed description of equations to which these |
76 |
|
parameters relate (\ref{sec:pkg:kpp:equations}), |
77 |
|
and key subroutines where they are used (\ref{sec:pkg:kpp:subroutines}), |
78 |
|
and diagnostics output of KPP-derived diffusivities, viscosities |
79 |
|
and boundary-layer/mixed-layer depths. |
80 |
|
|
81 |
%---------------------------------------------------------------------- |
%---------------------------------------------------------------------- |
82 |
|
|
83 |
\subsubsection{KPP configuration and compiling} |
\subsubsection{KPP configuration and compiling |
84 |
|
\label{sec:pkg:kpp:comp}} |
85 |
|
|
86 |
As with all MITgcm packages, KPP can be turned on or off at compile time |
As with all MITgcm packages, KPP can be turned on or off at compile time |
87 |
% |
% |
94 |
or using \texttt{genmake2} adding |
or using \texttt{genmake2} adding |
95 |
\texttt{-enable=kpp} or \texttt{-disable=kpp} switches |
\texttt{-enable=kpp} or \texttt{-disable=kpp} switches |
96 |
% |
% |
97 |
|
\item |
98 |
|
\textit{Required packages and CPP options:} \\ |
99 |
|
No additional packages are required, but the MITgcm kernel flag |
100 |
|
enabling the penetration of shortwave radiation below |
101 |
|
the surface layer needs to be set in \texttt{CPP\_OPTIONS.h} |
102 |
|
as follows: \\ |
103 |
|
\texttt{\#define SHORTWAVE\_HEATING} |
104 |
|
% |
105 |
\end{itemize} |
\end{itemize} |
106 |
(see Section \ref{sect:buildingCode}). |
(see Section \ref{sect:buildingCode}). |
107 |
|
|
110 |
\texttt{KPP\_OPTIONS.h}. Table \ref{tab:pkg:kpp:cpp} summarizes them. |
\texttt{KPP\_OPTIONS.h}. Table \ref{tab:pkg:kpp:cpp} summarizes them. |
111 |
|
|
112 |
\begin{table}[h!] |
\begin{table}[h!] |
113 |
|
\centering |
114 |
\label{tab:pkg:kpp:cpp} |
\label{tab:pkg:kpp:cpp} |
115 |
{\footnotesize |
{\footnotesize |
116 |
\begin{tabular}{|l|l|} |
\begin{tabular}{|l|l|} |
146 |
\end{table} |
\end{table} |
147 |
|
|
148 |
|
|
|
|
|
149 |
%---------------------------------------------------------------------- |
%---------------------------------------------------------------------- |
150 |
|
|
151 |
\subsubsection{Run-time parameters |
\subsubsection{Run-time parameters |
180 |
\paragraph{Package flags and parameters} |
\paragraph{Package flags and parameters} |
181 |
~ \\ |
~ \\ |
182 |
% |
% |
183 |
|
Table \ref{tab:pkg:kpp:runtime_flags} summarizes the |
184 |
|
runtime flags that are set in \texttt{data.pkg}, and |
185 |
|
their default values. |
186 |
|
|
187 |
\begin{table}[h!] |
\begin{table}[h!] |
188 |
|
\centering |
189 |
\label{tab:pkg:kpp:runtime_flags} |
\label{tab:pkg:kpp:runtime_flags} |
190 |
{\footnotesize |
{\footnotesize |
191 |
\begin{tabular}{|l|c|l|} |
\begin{tabular}{|l|c|l|} |
288 |
|
|
289 |
%---------------------------------------------------------------------- |
%---------------------------------------------------------------------- |
290 |
|
|
291 |
\subsubsection{Equations |
\subsubsection{Equations and key routines |
292 |
\label{sec:pkg:kpp:equations}} |
\label{sec:pkg:kpp:equations}} |
293 |
|
|
294 |
%---------------------------------------------------------------------- |
We restrict ourselves to writing out only the essential equations |
295 |
|
that relate to main processes and parameters mentioned above. |
296 |
|
We closely follow the notation of \cite{lar-eta:94}. |
297 |
|
|
298 |
\subsubsection{Key subroutines |
\paragraph{KPP\_CALC:} Top-level routine. \\ |
299 |
\label{sec:pkg:kpp:subroutines}} |
~ |
300 |
|
|
301 |
\paragraph{kpp\_calc:} Top-level routine. \\ |
\paragraph{KPP\_MIX:} Intermediate-level routine \\ |
302 |
~ |
~ |
303 |
|
|
304 |
\paragraph{kpp\_mix:} Intermediate-level routine \\ |
\paragraph{BLMIX: Mixing in the boundary layer} ~ \\ |
305 |
|
% |
306 |
~ |
~ |
307 |
|
|
308 |
\paragraph{ri\_iwmix:} ~ \\ |
The vertical fluxes $\overline{wx}$ |
309 |
|
of momentum and tracer properties $X$ |
310 |
|
is composed of a gradient-flux term (proportional to |
311 |
|
the vertical property divergence $\partial_z X$), and |
312 |
|
a ``nonlocal'' term $\gamma_x$ that enhances the |
313 |
|
gradient-flux mixing coefficient $K_x$ |
314 |
|
% |
315 |
|
\begin{equation} |
316 |
|
\overline{wx}(d) \, = \, -K_x \left( |
317 |
|
\frac{\partial X}{\partial z} \, - \, \gamma_x \right) |
318 |
|
\end{equation} |
319 |
|
|
320 |
|
\begin{itemize} |
321 |
|
% |
322 |
|
\item |
323 |
|
\textit{Boundary layer mixing profile} \\ |
324 |
|
% |
325 |
|
It is expressed as the product of the boundary layer depth $h$, |
326 |
|
a depth-dependent turbulent velocity scale $w_x(\sigma)$ and a |
327 |
|
non-dimensional shape function $G(\sigma)$ |
328 |
|
% |
329 |
|
\begin{equation} |
330 |
|
K_x(\sigma) \, = \, h \, w_x(\sigma) \, G(\sigma) |
331 |
|
\end{equation} |
332 |
|
% |
333 |
|
with dimensionless vertical coordinate $\sigma = d/h$. |
334 |
|
For details of $ w_x(\sigma)$ and $G(\sigma)$ we refer to |
335 |
|
\cite{lar-eta:94}. |
336 |
|
|
337 |
|
% |
338 |
|
\item |
339 |
|
\textit{Nonlocal mixing term} \\ |
340 |
|
% |
341 |
|
The nonlocal transport term $\gamma$ is nonzero only for |
342 |
|
tracers in unstable (convective) forcing conditions. |
343 |
|
Thus, depending on the stability parameter $\zeta = d/L$ |
344 |
|
(with depth $d$, Monin-Obukhov length scale $L$) |
345 |
|
it has the following form: |
346 |
|
% |
347 |
|
\begin{eqnarray} |
348 |
|
\begin{array}{cl} |
349 |
|
\gamma_x \, = \, 0 & \zeta \, \ge \, 0 \\ |
350 |
|
~ & ~ \\ |
351 |
|
\left. |
352 |
|
\begin{array}{c} |
353 |
|
\gamma_m \, = \, 0 \\ |
354 |
|
~ \\ |
355 |
|
\gamma_s \, = \, C_s |
356 |
|
\frac{\overline{w s_0}}{w_s(\sigma) h} \\ |
357 |
|
~ \\ |
358 |
|
\gamma_{\theta} \, = \, C_s |
359 |
|
\frac{\overline{w \theta_0}+\overline{w \theta_R}}{w_s(\sigma) h} \\ |
360 |
|
\end{array} |
361 |
|
\right\} |
362 |
|
& |
363 |
|
\zeta \, < \, 0 \\ |
364 |
|
\end{array} |
365 |
|
\end{eqnarray} |
366 |
|
|
367 |
|
\end{itemize} |
368 |
|
|
369 |
|
In practice, the routine peforms the following tasks: |
370 |
|
% |
371 |
|
\begin{enumerate} |
372 |
|
% |
373 |
|
\item |
374 |
|
compute velocity scales at hbl |
375 |
|
% |
376 |
|
\item |
377 |
|
find the interior viscosities and derivatives at hbl |
378 |
|
% |
379 |
|
\item |
380 |
|
compute turbulent velocity scales on the interfaces |
381 |
|
% |
382 |
|
\item |
383 |
|
compute the dimensionless shape functions at the interfaces |
384 |
|
% |
385 |
|
\item |
386 |
|
compute boundary layer diffusivities at the interfaces |
387 |
|
% |
388 |
|
\item |
389 |
|
compute nonlocal transport term |
390 |
|
% |
391 |
|
\item |
392 |
|
find diffusivities at kbl-1 grid level |
393 |
|
% |
394 |
|
\end{enumerate} |
395 |
|
|
396 |
|
\paragraph{RI\_IWMIX: Mixing in the interior} ~ \\ |
397 |
% |
% |
398 |
Compute interior viscosity and diffusivity coefficients due to |
Compute interior viscosity and diffusivity coefficients due to |
399 |
% |
% |
406 |
to background internal wave activity, and |
to background internal wave activity, and |
407 |
% |
% |
408 |
\item |
\item |
409 |
to static instability (local Richardson number < 0). |
to static instability (local Richardson number $<$ 0). |
410 |
% |
% |
411 |
\end{itemize} |
\end{itemize} |
412 |
|
|
413 |
|
TO BE CONTINUED. |
414 |
|
|
415 |
\paragraph{bldepth:} ~ \\ |
\paragraph{BLDEPTH: Boundary layer depth calculation:} ~ \\ |
416 |
% |
% |
417 |
The oceanic planetary boundary layer depth, \texttt{hbl}, is determined as |
The oceanic planetary boundary layer depth, \texttt{hbl}, is determined as |
418 |
the shallowest depth where the bulk Richardson number is |
the shallowest depth where the bulk Richardson number is |
435 |
to grid points (caseA), so that conditional branches can be |
to grid points (caseA), so that conditional branches can be |
436 |
avoided in later subroutines. |
avoided in later subroutines. |
437 |
|
|
438 |
\paragraph{blmix:} ~ \\ |
TO BE CONTINUED. |
|
% |
|
|
Compute boundary layer mixing coefficients. |
|
|
Mixing coefficients within boundary layer depend on surface |
|
|
forcing and the magnitude and gradient of interior mixing below |
|
|
the boundary layer ("matching"). |
|
|
% |
|
|
\begin{enumerate} |
|
|
% |
|
|
\item |
|
|
compute velocity scales at hbl |
|
|
% |
|
|
\item |
|
|
find the interior viscosities and derivatives at hbl |
|
|
% |
|
|
\item |
|
|
compute turbulent velocity scales on the interfaces |
|
|
% |
|
|
\item |
|
|
compute the dimensionless shape functions at the interfaces |
|
|
% |
|
|
\item |
|
|
compute boundary layer diffusivities at the interfaces |
|
|
% |
|
|
\item |
|
|
compute nonlocal transport term |
|
|
% |
|
|
\item |
|
|
find diffusivities at kbl-1 grid level |
|
|
% |
|
|
\end{enumerate} |
|
439 |
|
|
440 |
\paragraph{kpp\_calc\_diff\_t/s, kpp\_calc\_visc:} ~ \\ |
\paragraph{KPP\_CALC\_DIFF\_T/\_S, KPP\_CALC\_VISC:} ~ \\ |
441 |
% |
% |
442 |
Add contribution to net diffusivity/viscosity from |
Add contribution to net diffusivity/viscosity from |
443 |
KPP diffusivity/viscosity. |
KPP diffusivity/viscosity. |
444 |
|
|
445 |
\paragraph{kpp\_transport\_t/s/ptr:} ~ \\ |
TO BE CONTINUED. |
446 |
|
|
447 |
|
\paragraph{KPP\_TRANSPORT\_T/\_S/\_PTR:} ~ \\ |
448 |
% |
% |
449 |
Add non local KPP transport term (ghat) to diffusive |
Add non local KPP transport term (ghat) to diffusive |
450 |
temperature/salinity/passive tracer flux. |
temperature/salinity/passive tracer flux. |
451 |
The nonlocal transport term is nonzero only for scalars |
The nonlocal transport term is nonzero only for scalars |
452 |
in unstable (convective) forcing conditions. |
in unstable (convective) forcing conditions. |
453 |
|
|
454 |
|
TO BE CONTINUED. |
455 |
|
|
456 |
|
\paragraph{Implicit time integration} ~ \\ |
457 |
|
% |
458 |
|
TO BE CONTINUED. |
459 |
|
|
460 |
|
|
461 |
|
\paragraph{Penetration of shortwave radiation} ~ \\ |
462 |
|
% |
463 |
|
TO BE CONTINUED. |
464 |
|
|
465 |
|
|
466 |
|
%---------------------------------------------------------------------- |
467 |
|
|
468 |
|
\subsubsection{Flow chart |
469 |
|
\label{sec:pkg:kpp:flowchart}} |
470 |
|
|
471 |
|
|
472 |
{\footnotesize |
{\footnotesize |
473 |
\begin{verbatim} |
\begin{verbatim} |
474 |
|
|
504 |
|
|
505 |
Diagnostics output is available via the diagnostics package |
Diagnostics output is available via the diagnostics package |
506 |
(see Section \ref{sec:pkg:diagnostics}). |
(see Section \ref{sec:pkg:diagnostics}). |
507 |
Available output fields are summarized in |
Available output fields are summarized here: |
|
Table \ref{tab:pkg:kpp:diagnostics}. |
|
508 |
|
|
|
\begin{table}[h!] |
|
|
\label{tab:pkg:kpp:diagnostics} |
|
|
{\footnotesize |
|
509 |
\begin{verbatim} |
\begin{verbatim} |
510 |
------------------------------------------------------ |
------------------------------------------------------ |
511 |
<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c) |
<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c) |
518 |
KPPmld | 1 |SM |m |Mixed layer depth, dT=.8degC density criterion |
KPPmld | 1 |SM |m |Mixed layer depth, dT=.8degC density criterion |
519 |
KPPfrac | 1 |SM | |Short-wave flux fraction penetrating mixing layer |
KPPfrac | 1 |SM | |Short-wave flux fraction penetrating mixing layer |
520 |
\end{verbatim} |
\end{verbatim} |
|
} |
|
|
\caption{~} |
|
|
\end{table} |
|
521 |
|
|
522 |
%---------------------------------------------------------------------- |
%---------------------------------------------------------------------- |
523 |
|
|
530 |
%---------------------------------------------------------------------- |
%---------------------------------------------------------------------- |
531 |
|
|
532 |
\subsubsection{References} |
\subsubsection{References} |
533 |
|
|
534 |
|
\subsubsection{Experiments and tutorials that use kpp} |
535 |
|
\label{sec:pkg:kpp:experiments} |
536 |
|
|
537 |
|
\begin{itemize} |
538 |
|
\item{Labrador Sea experiment, in lab\_sea verification directory } |
539 |
|
\end{itemize} |