/[MITgcm]/manual/s_phys_pkgs/text/kpp.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/kpp.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.6 by heimbach, Mon Aug 1 22:31:36 2005 UTC revision 1.10 by molod, Wed Jun 28 15:35:07 2006 UTC
# Line 1  Line 1 
1  \subsection{KPP: Nonlocal K-Profile Parameterization for  \subsection{KPP: Nonlocal K-Profile Parameterization for
2  Diapycnal Mixing}  Vertical Mixing}
3    
4  \label{sec:pkg:kpp}  \label{sec:pkg:kpp}
5  \begin{rawhtml}  \begin{rawhtml}
# Line 11  Authors: Dimitris Menemenlis and Patrick Line 11  Authors: Dimitris Menemenlis and Patrick
11  \subsubsection{Introduction  \subsubsection{Introduction
12  \label{sec:pkg:kpp:intro}}  \label{sec:pkg:kpp:intro}}
13    
14    The nonlocal K-Profile Parameterization (KPP) scheme
15    of \cite{lar-eta:94} unifies the treatment of a variety of
16    unresolved processes involved in vertical mixing.
17    To consider it as one mixing scheme is, in the view of the authors,
18    somewhat misleading since it consists of several entities
19    to deal with distinct mixing processes in the ocean's surface
20    boundary layer, and the interior:
21    %
22    \begin{enumerate}
23    %
24    \item
25    mixing in the interior is goverened by
26    shear instability (modeled as function of the local gradient
27    Richardson number), internal wave activity (assumed constant),
28    and double-diffusion (not implemented here).
29    %
30    \item
31    a boundary layer depth $h$ or \texttt{hbl} is determined
32    at each grid point, based on a critical value of turbulent
33    processes parameterized by a bulk Richardson number;
34    %
35    \item
36    mixing is strongly enhanced in the boundary layer under the
37    stabilizing or destabilizing influence of surface forcing
38    (buoyancy and momentum) enabling boundary layer properties
39    to penetrate well into the thermocline;
40    mixing is represented through a polynomial profile whose
41    coefficients are determined subject to several contraints;
42    %
43    \item
44    the boundary-layer profile is made to agree with similarity
45    theory of turbulence and is matched, in the asymptotic sense
46    (function and derivative agree at the boundary),
47    to the interior thus fixing the polynomial coefficients;
48    matching allows for some fraction of the boundary layer mixing
49    to affect the interior, and vice versa;
50    %
51    \item
52    a ``non-local'' term $\hat{\gamma}$ or \texttt{ghat}
53    which is independent of the vertical property gradient further
54    enhances mixing where the water column is unstable
55    %
56    \end{enumerate}
57    %
58    The scheme has been extensively compared to observations
59    (see e.g. \cite{lar-eta:97}) and is now coomon in many
60    ocean models.
61    
62    The current code originates in the NCAR NCOM 1-D code
63    and was kindly provided by Bill Large and Jan Morzel.
64    It has been adapted first to the MITgcm vector code and
65    subsequently to the current parallel code.
66    Adjustment were mainly in conjunction with WRAPPER requirements
67    (domain decomposition and threading capability), to enable
68    automatic differentiation of tangent linear and adjoint code
69    via TAMC.
70    
71    The following sections will describe the KPP package
72    configuration and compiling (\ref{sec:pkg:kpp:comp}),
73    the settings and choices of runtime parameters
74    (\ref{sec:pkg:kpp:runtime}),
75    more detailed description of equations to which these
76    parameters relate (\ref{sec:pkg:kpp:equations}),
77    and key subroutines where they are used (\ref{sec:pkg:kpp:subroutines}),
78    and diagnostics output of KPP-derived diffusivities, viscosities
79    and boundary-layer/mixed-layer depths.
80    
81  %----------------------------------------------------------------------  %----------------------------------------------------------------------
82    
83  \subsubsection{KPP configuration and compiling}  \subsubsection{KPP configuration and compiling
84    \label{sec:pkg:kpp:comp}}
85    
86  As with all MITgcm packages, KPP can be turned on or off at compile time  As with all MITgcm packages, KPP can be turned on or off at compile time
87  %  %
# Line 26  using the \texttt{packages.conf} file by Line 94  using the \texttt{packages.conf} file by
94  or using \texttt{genmake2} adding  or using \texttt{genmake2} adding
95  \texttt{-enable=kpp} or \texttt{-disable=kpp} switches  \texttt{-enable=kpp} or \texttt{-disable=kpp} switches
96  %  %
97    \item
98    \textit{Required packages and CPP options:} \\
99    No additional packages are required, but the MITgcm kernel flag
100    enabling the penetration of shortwave radiation below
101    the surface layer needs to be set in \texttt{CPP\_OPTIONS.h}
102    as follows: \\
103    \texttt{\#define SHORTWAVE\_HEATING}
104    %
105  \end{itemize}  \end{itemize}
106  (see Section \ref{sect:buildingCode}).  (see Section \ref{sect:buildingCode}).
107    
# Line 34  via CPP preprocessor flags. These option Line 110  via CPP preprocessor flags. These option
110  \texttt{KPP\_OPTIONS.h}. Table \ref{tab:pkg:kpp:cpp} summarizes them.  \texttt{KPP\_OPTIONS.h}. Table \ref{tab:pkg:kpp:cpp} summarizes them.
111    
112  \begin{table}[h!]  \begin{table}[h!]
113    \centering
114    \label{tab:pkg:kpp:cpp}    \label{tab:pkg:kpp:cpp}
115    {\footnotesize    {\footnotesize
116      \begin{tabular}{|l|l|}      \begin{tabular}{|l|l|}
# Line 69  via CPP preprocessor flags. These option Line 146  via CPP preprocessor flags. These option
146  \end{table}  \end{table}
147    
148    
   
149  %----------------------------------------------------------------------  %----------------------------------------------------------------------
150    
151  \subsubsection{Run-time parameters  \subsubsection{Run-time parameters
# Line 104  kernel need to be set in conjunction wit Line 180  kernel need to be set in conjunction wit
180  \paragraph{Package flags and parameters}  \paragraph{Package flags and parameters}
181  ~ \\  ~ \\
182  %  %
183    Table \ref{tab:pkg:kpp:runtime_flags} summarizes the
184    runtime flags that are set in \texttt{data.pkg}, and
185    their default values.
186    
187  \begin{table}[h!]  \begin{table}[h!]
188    \centering
189    \label{tab:pkg:kpp:runtime_flags}    \label{tab:pkg:kpp:runtime_flags}
190    {\footnotesize    {\footnotesize
191      \begin{tabular}{|l|c|l|}      \begin{tabular}{|l|c|l|}
# Line 207  kernel need to be set in conjunction wit Line 288  kernel need to be set in conjunction wit
288    
289  %----------------------------------------------------------------------  %----------------------------------------------------------------------
290    
291  \subsubsection{Equations  \subsubsection{Equations and key routines
292  \label{sec:pkg:kpp:equations}}  \label{sec:pkg:kpp:equations}}
293    
294  %----------------------------------------------------------------------  We restrict ourselves to writing out only the essential equations
295    that relate to main processes and parameters mentioned above.
296    We closely follow the notation of \cite{lar-eta:94}.
297    
298  \subsubsection{Key subroutines  \paragraph{KPP\_CALC:} Top-level routine. \\
299  \label{sec:pkg:kpp:subroutines}}  ~
300    
301  \paragraph{kpp\_calc:} Top-level routine. \\  \paragraph{KPP\_MIX:} Intermediate-level routine \\
302  ~  ~
303    
304  \paragraph{kpp\_mix:} Intermediate-level routine \\  \paragraph{BLMIX: Mixing in the boundary layer} ~ \\
305    %
306  ~  ~
307    
308  \paragraph{ri\_iwmix:} ~ \\  The vertical fluxes $\overline{wx}$
309    of momentum and tracer properties $X$
310    is composed of a gradient-flux term (proportional to
311    the vertical property divergence $\partial_z X$), and
312    a ``nonlocal'' term $\gamma_x$ that enhances the
313    gradient-flux mixing coefficient $K_x$
314    %
315    \begin{equation}
316    \overline{wx}(d) \, = \, -K_x \left(
317    \frac{\partial X}{\partial z} \, - \, \gamma_x \right)
318    \end{equation}
319    
320    \begin{itemize}
321    %
322    \item
323    \textit{Boundary layer mixing profile} \\
324    %
325    It is expressed as the product of the boundary layer depth $h$,
326    a depth-dependent turbulent velocity scale $w_x(\sigma)$ and a
327    non-dimensional shape function $G(\sigma)$
328    %
329    \begin{equation}
330    K_x(\sigma) \, = \, h \, w_x(\sigma) \, G(\sigma)
331    \end{equation}
332    %
333    with dimensionless vertical coordinate $\sigma = d/h$.
334    For details of $ w_x(\sigma)$ and $G(\sigma)$ we refer to
335    \cite{lar-eta:94}.
336    
337    %
338    \item
339    \textit{Nonlocal mixing term} \\
340    %
341    The nonlocal transport term $\gamma$ is nonzero only for
342    tracers in unstable (convective) forcing conditions.
343    Thus, depending on the  stability parameter $\zeta = d/L$
344    (with depth $d$, Monin-Obukhov length scale $L$)
345    it has the following form:
346    %
347    \begin{eqnarray}
348    \begin{array}{cl}
349    \gamma_x \, = \, 0 & \zeta \, \ge \, 0 \\
350    ~ & ~ \\
351    \left.
352    \begin{array}{c}
353    \gamma_m \, = \, 0 \\
354     ~ \\
355    \gamma_s \, = \, C_s
356    \frac{\overline{w s_0}}{w_s(\sigma) h} \\
357     ~ \\
358    \gamma_{\theta} \, = \, C_s
359    \frac{\overline{w \theta_0}+\overline{w \theta_R}}{w_s(\sigma) h} \\
360    \end{array}
361    \right\}
362    &
363    \zeta \, < \, 0 \\
364    \end{array}
365    \end{eqnarray}
366    
367    \end{itemize}
368    
369    In practice, the routine peforms the following tasks:
370    %
371    \begin{enumerate}
372    %
373    \item
374    compute velocity scales at hbl
375    %
376    \item
377    find the interior viscosities and derivatives at hbl
378    %
379    \item
380    compute turbulent velocity scales on the interfaces
381    %
382    \item
383    compute the dimensionless shape functions at the interfaces
384    %
385    \item
386    compute boundary layer diffusivities at the interfaces
387    %
388    \item
389    compute nonlocal transport term
390    %
391    \item
392    find diffusivities at kbl-1 grid level
393    %
394    \end{enumerate}
395    
396    \paragraph{RI\_IWMIX: Mixing in the interior} ~ \\
397  %  %
398  Compute interior viscosity and diffusivity coefficients due to  Compute interior viscosity and diffusivity coefficients due to
399  %  %
# Line 234  shear instability (dependent on a local Line 406  shear instability (dependent on a local
406  to background internal wave activity, and  to background internal wave activity, and
407  %  %
408  \item  \item
409  to static instability (local Richardson number < 0).  to static instability (local Richardson number $<$ 0).
410  %  %
411  \end{itemize}  \end{itemize}
412    
413    TO BE CONTINUED.
414    
415  \paragraph{bldepth:} ~ \\  \paragraph{BLDEPTH: Boundary layer depth calculation:} ~ \\
416  %  %
417  The oceanic planetary boundary layer depth, \texttt{hbl}, is determined as  The oceanic planetary boundary layer depth, \texttt{hbl}, is determined as
418  the shallowest depth where the bulk Richardson number is  the shallowest depth where the bulk Richardson number is
# Line 262  stable/ustable forcing conditions, and w Line 435  stable/ustable forcing conditions, and w
435  to grid points (caseA), so that conditional branches can be  to grid points (caseA), so that conditional branches can be
436  avoided in later subroutines.  avoided in later subroutines.
437    
438  \paragraph{blmix:} ~ \\  TO BE CONTINUED.
 %  
 Compute boundary layer mixing coefficients.  
 Mixing coefficients within boundary layer depend on surface  
 forcing and the magnitude and gradient of interior mixing below  
 the boundary layer ("matching").  
 %  
 \begin{enumerate}  
 %  
 \item  
 compute velocity scales at hbl  
 %  
 \item  
 find the interior viscosities and derivatives at hbl  
 %  
 \item  
 compute turbulent velocity scales on the interfaces  
 %  
 \item  
 compute the dimensionless shape functions at the interfaces  
 %  
 \item  
 compute boundary layer diffusivities at the interfaces  
 %  
 \item  
 compute nonlocal transport term  
 %  
 \item  
 find diffusivities at kbl-1 grid level  
 %  
 \end{enumerate}  
439    
440  \paragraph{kpp\_calc\_diff\_t/s, kpp\_calc\_visc:} ~  \\  \paragraph{KPP\_CALC\_DIFF\_T/\_S, KPP\_CALC\_VISC:} ~  \\
441  %  %
442  Add contribution to net diffusivity/viscosity from  Add contribution to net diffusivity/viscosity from
443  KPP diffusivity/viscosity.  KPP diffusivity/viscosity.
444    
445  \paragraph{kpp\_transport\_t/s/ptr:} ~ \\  TO BE CONTINUED.
446    
447    \paragraph{KPP\_TRANSPORT\_T/\_S/\_PTR:} ~ \\
448  %  %
449  Add non local KPP transport term (ghat) to diffusive  Add non local KPP transport term (ghat) to diffusive
450  temperature/salinity/passive tracer flux.  temperature/salinity/passive tracer flux.
451  The nonlocal transport term is nonzero only for scalars  The nonlocal transport term is nonzero only for scalars
452  in unstable (convective) forcing conditions.  in unstable (convective) forcing conditions.
453    
454    TO BE CONTINUED.
455    
456    \paragraph{Implicit time integration} ~ \\
457    %
458    TO BE CONTINUED.
459    
460    
461    \paragraph{Penetration of shortwave radiation} ~ \\
462    %
463    TO BE CONTINUED.
464    
465    
466    %----------------------------------------------------------------------
467    
468    \subsubsection{Flow chart
469    \label{sec:pkg:kpp:flowchart}}
470    
471    
472  {\footnotesize  {\footnotesize
473  \begin{verbatim}  \begin{verbatim}
474    
# Line 341  c  o Line 504  c  o
504    
505  Diagnostics output is available via the diagnostics package  Diagnostics output is available via the diagnostics package
506  (see Section \ref{sec:pkg:diagnostics}).  (see Section \ref{sec:pkg:diagnostics}).
507  Available output fields are summarized in  Available output fields are summarized here:
 Table \ref{tab:pkg:kpp:diagnostics}.  
508    
 \begin{table}[h!]  
 \label{tab:pkg:kpp:diagnostics}  
 {\footnotesize  
509  \begin{verbatim}  \begin{verbatim}
510  ------------------------------------------------------  ------------------------------------------------------
511   <-Name->|Levs|grid|<--  Units   -->|<- Tile (max=80c)   <-Name->|Levs|grid|<--  Units   -->|<- Tile (max=80c)
# Line 359  Table \ref{tab:pkg:kpp:diagnostics}. Line 518  Table \ref{tab:pkg:kpp:diagnostics}.
518   KPPmld  |  1 |SM  |m               |Mixed layer depth, dT=.8degC density criterion   KPPmld  |  1 |SM  |m               |Mixed layer depth, dT=.8degC density criterion
519   KPPfrac |  1 |SM  |                |Short-wave flux fraction penetrating mixing layer   KPPfrac |  1 |SM  |                |Short-wave flux fraction penetrating mixing layer
520  \end{verbatim}  \end{verbatim}
 }  
 \caption{~}  
 \end{table}  
521    
522  %----------------------------------------------------------------------  %----------------------------------------------------------------------
523    
# Line 374  natl\_box: Line 530  natl\_box:
530  %----------------------------------------------------------------------  %----------------------------------------------------------------------
531    
532  \subsubsection{References}  \subsubsection{References}
533    
534    \subsubsection{Experiments and tutorials that use kpp}
535    \label{sec:pkg:kpp:experiments}
536    
537    \begin{itemize}
538    \item{Labrador Sea experiment, in lab\_sea verification directory }
539    \end{itemize}

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.10

  ViewVC Help
Powered by ViewVC 1.1.22