/[MITgcm]/manual/s_phys_pkgs/text/kpp.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/kpp.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.6 by heimbach, Mon Aug 1 22:31:36 2005 UTC revision 1.7 by heimbach, Tue Aug 2 22:26:58 2005 UTC
# Line 1  Line 1 
1  \subsection{KPP: Nonlocal K-Profile Parameterization for  \subsection{KPP: Nonlocal K-Profile Parameterization for
2  Diapycnal Mixing}  Vertical Mixing}
3    
4  \label{sec:pkg:kpp}  \label{sec:pkg:kpp}
5  \begin{rawhtml}  \begin{rawhtml}
# Line 11  Authors: Dimitris Menemenlis and Patrick Line 11  Authors: Dimitris Menemenlis and Patrick
11  \subsubsection{Introduction  \subsubsection{Introduction
12  \label{sec:pkg:kpp:intro}}  \label{sec:pkg:kpp:intro}}
13    
14    The nonlocal K-Profile Parameterization (KPP) scheme
15    of \cite{lar-eta:94} unifies the treatment of a variety of
16    unresolved processes involved in vertical mixing.
17    To consider it as one mixing scheme is, in the view of the authors,
18    somewhat misleading since it consists of several entities
19    to deal with distinct mixing processes in the ocean's surface
20    boundary layer, and the interior:
21    %
22    \begin{enumerate}
23    %
24    \item
25    mixing in the interior is goverened by
26    shear instability (modeled as function of the local gradient
27    Richardson number), internal wave activity (assumed constant),
28    and double-diffusion (not implemented here).
29    %
30    \item
31    a boundary layer depth $h$ or \texttt{hbl} is determined
32    at each grid point, based on a critical value of turbulent
33    processes parameterized by a bulk Richardson number;
34    %
35    \item
36    mixing is strongly enhanced in the boundary layer under the
37    stabilizing or destabilizing influence of surface forcing
38    (buoyancy and momentum) enabling boundary layer properties
39    to penetrate well into the thermocline;
40    mixing is represented through a polynomial profile whose
41    coefficients are determined subject to several contraints;
42    %
43    \item
44    the boundary-layer profile is made to agree with similarity
45    theory of turbulence and is matched, in the asymptotic sense
46    (function and derivative agree at the boundary),
47    to the interior thus fixing the polynomial coefficients;
48    matching allows for some fraction of the boundary layer mixing
49    to affect the interior, and vice versa;
50    %
51    \item
52    a ``non-local'' term $\hat{\gamma}$ or \texttt{ghat}
53    which is independent of the vertical property gradient further
54    enhances mixing where the water column is unstable
55    %
56    \end{enumerate}
57    %
58    The scheme has been extensively compared to observations
59    (see e.g. \cite{lar-eta:97}) and is now coomon in many
60    ocean models.
61    
62    The following sections will describe the KPP package
63    configuration and compiling (\ref{sec:pkg:kpp:comp}),
64    the settings and choices of runtime parameters
65    (\ref{sec:pkg:kpp:runtime}),
66    more detailed description of equations to which these
67    parameters relate (\ref{sec:pkg:kpp:equations}),
68    and key subroutines where they are used (\ref{sec:pkg:kpp:subroutines}),
69    and diagnostics output of KPP-derived diffusivities, viscosities
70    and boundary-layer/mixed-layer depths.
71    
72  %----------------------------------------------------------------------  %----------------------------------------------------------------------
73    
74  \subsubsection{KPP configuration and compiling}  \subsubsection{KPP configuration and compiling
75    \label{sec:pkg:kpp:comp}}
76    
77  As with all MITgcm packages, KPP can be turned on or off at compile time  As with all MITgcm packages, KPP can be turned on or off at compile time
78  %  %
# Line 34  via CPP preprocessor flags. These option Line 93  via CPP preprocessor flags. These option
93  \texttt{KPP\_OPTIONS.h}. Table \ref{tab:pkg:kpp:cpp} summarizes them.  \texttt{KPP\_OPTIONS.h}. Table \ref{tab:pkg:kpp:cpp} summarizes them.
94    
95  \begin{table}[h!]  \begin{table}[h!]
96    \centering
97    \label{tab:pkg:kpp:cpp}    \label{tab:pkg:kpp:cpp}
98    {\footnotesize    {\footnotesize
99      \begin{tabular}{|l|l|}      \begin{tabular}{|l|l|}
# Line 69  via CPP preprocessor flags. These option Line 129  via CPP preprocessor flags. These option
129  \end{table}  \end{table}
130    
131    
   
132  %----------------------------------------------------------------------  %----------------------------------------------------------------------
133    
134  \subsubsection{Run-time parameters  \subsubsection{Run-time parameters
# Line 104  kernel need to be set in conjunction wit Line 163  kernel need to be set in conjunction wit
163  \paragraph{Package flags and parameters}  \paragraph{Package flags and parameters}
164  ~ \\  ~ \\
165  %  %
166    Table \ref{tab:pkg:kpp:runtime_flags} summarizes the
167    runtime flags that are set in \texttt{data.pkg}, and
168    their default values.
169    
170  \begin{table}[h!]  \begin{table}[h!]
171    \centering
172    \label{tab:pkg:kpp:runtime_flags}    \label{tab:pkg:kpp:runtime_flags}
173    {\footnotesize    {\footnotesize
174      \begin{tabular}{|l|c|l|}      \begin{tabular}{|l|c|l|}
# Line 210  kernel need to be set in conjunction wit Line 274  kernel need to be set in conjunction wit
274  \subsubsection{Equations  \subsubsection{Equations
275  \label{sec:pkg:kpp:equations}}  \label{sec:pkg:kpp:equations}}
276    
277    We restrict ourselves to writing out only the essential equations
278    that relate to main processes and parameters mentioned above.
279    We closely follow the notation of \cite{lar-eta:94}.
280    
281    \paragraph{Mixing in the boundary layer} ~ \\
282    %
283    ~
284    
285    The vertical fluxes $\overline{wx}$
286    of momentum and tracer properties $X$
287    is composed of a gradient-flux term (proportional to
288    the vertical property divergence $\partial_z X$), and
289    a ``nonlocal'' term $\gamma_x$ that enhances the
290    gradient-flux mixing coefficient $K_x$
291    %
292    \begin{equation}
293    \overline{wx}(d) \, = \, -K_x \left(
294    \frac{\partial X}{\partial z} \, - \, \gamma_x \right)
295    \end{equation}
296    
297    \begin{itemize}
298    %
299    \item
300    \textit{Boundary layer mixing profile} \\
301    %
302    It is expressed as the product of the boundary layer depth $h$,
303    a depth-dependent turbulent velocity scale $w_x(\sigma)$ and a
304    non-dimensional shape function $G(\sigma)$
305    %
306    \begin{equation}
307    K_x(\sigma) \, = \, h \, w_x(\sigma) \, G(\sigma)
308    \end{equation}
309    %
310    with dimensionless vertical coordinate $\sigma = d/h$.
311    For details of $ w_x(\sigma)$ and $G(\sigma)$ we refer to
312    \cite{lar-eta:94}.
313    
314    %
315    \item
316    \textit{Nonlocal mixing term} \\
317    %
318    The nonlocal transport term $\gamma$ is nonzero only for
319    tracers in unstable (convective) forcing conditions.
320    Thus, depending on the  stability parameter $\zeta = d/L$
321    (with depth $d$, Monin-Obukhov length scale $L$)
322    it has the following form:
323    %
324    \begin{eqnarray}
325    \begin{array}{cl}
326    \gamma_x \, = \, 0 & \zeta \, \ge \, 0 \\
327    ~ & ~ \\
328    \left.
329    \begin{array}{c}
330    \gamma_m \, = \, 0 \\
331     ~ \\
332    \gamma_s \, = \, C_s
333    \frac{\overline{w s_0}}{w_s(\sigma) h} \\
334     ~ \\
335    \gamma_{\theta} \, = \, C_s
336    \frac{\overline{w \theta_0}+\overline{w \theta_R}}{w_s(\sigma) h} \\
337    \end{array}
338    \right\}
339    &
340    \zeta \, < \, 0 \\
341    \end{array}
342    \end{eqnarray}
343    
344    \end{itemize}
345    
346    
347    \paragraph{Mixing in the interior} ~ \\
348    %
349    ~
350    
351    \paragraph{Implicit time integration} ~ \\
352    %
353    ~
354    
355  %----------------------------------------------------------------------  %----------------------------------------------------------------------
356    
357  \subsubsection{Key subroutines  \subsubsection{Key subroutines
# Line 294  find diffusivities at kbl-1 grid level Line 436  find diffusivities at kbl-1 grid level
436  %  %
437  \end{enumerate}  \end{enumerate}
438    
439  \paragraph{kpp\_calc\_diff\_t/s, kpp\_calc\_visc:} ~  \\  \paragraph{kpp\_calc\_diff\_t/\_s, kpp\_calc\_visc:} ~  \\
440  %  %
441  Add contribution to net diffusivity/viscosity from  Add contribution to net diffusivity/viscosity from
442  KPP diffusivity/viscosity.  KPP diffusivity/viscosity.
443    
444  \paragraph{kpp\_transport\_t/s/ptr:} ~ \\  \paragraph{kpp\_transport\_t/\_s/\_ptr:} ~ \\
445  %  %
446  Add non local KPP transport term (ghat) to diffusive  Add non local KPP transport term (ghat) to diffusive
447  temperature/salinity/passive tracer flux.  temperature/salinity/passive tracer flux.
448  The nonlocal transport term is nonzero only for scalars  The nonlocal transport term is nonzero only for scalars
449  in unstable (convective) forcing conditions.  in unstable (convective) forcing conditions.
450    
451    \paragraph{Flow chart:} ~ \\
452    %
453  {\footnotesize  {\footnotesize
454  \begin{verbatim}  \begin{verbatim}
455    
# Line 345  Available output fields are summarized i Line 489  Available output fields are summarized i
489  Table \ref{tab:pkg:kpp:diagnostics}.  Table \ref{tab:pkg:kpp:diagnostics}.
490    
491  \begin{table}[h!]  \begin{table}[h!]
492    \centering
493  \label{tab:pkg:kpp:diagnostics}  \label{tab:pkg:kpp:diagnostics}
494  {\footnotesize  {\footnotesize
495  \begin{verbatim}  \begin{verbatim}
# Line 374  natl\_box: Line 519  natl\_box:
519  %----------------------------------------------------------------------  %----------------------------------------------------------------------
520    
521  \subsubsection{References}  \subsubsection{References}
522    

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.7

  ViewVC Help
Powered by ViewVC 1.1.22