| 1 |
\subsection{KPP: Nonlocal K-Profile Parameterization for |
\subsection{KPP: Nonlocal K-Profile Parameterization for |
| 2 |
Diapycnal Mixing} |
Vertical Mixing} |
| 3 |
|
|
| 4 |
\label{sec:pkg:kpp} |
\label{sec:pkg:kpp} |
| 5 |
\begin{rawhtml} |
\begin{rawhtml} |
| 11 |
\subsubsection{Introduction |
\subsubsection{Introduction |
| 12 |
\label{sec:pkg:kpp:intro}} |
\label{sec:pkg:kpp:intro}} |
| 13 |
|
|
| 14 |
|
The nonlocal K-Profile Parameterization (KPP) scheme |
| 15 |
|
of \cite{lar-eta:94} unifies the treatment of a variety of |
| 16 |
|
unresolved processes involved in vertical mixing. |
| 17 |
|
To consider it as one mixing scheme is, in the view of the authors, |
| 18 |
|
somewhat misleading since it consists of several entities |
| 19 |
|
to deal with distinct mixing processes in the ocean's surface |
| 20 |
|
boundary layer, and the interior: |
| 21 |
|
% |
| 22 |
|
\begin{enumerate} |
| 23 |
|
% |
| 24 |
|
\item |
| 25 |
|
mixing in the interior is goverened by |
| 26 |
|
shear instability (modeled as function of the local gradient |
| 27 |
|
Richardson number), internal wave activity (assumed constant), |
| 28 |
|
and double-diffusion (not implemented here). |
| 29 |
|
% |
| 30 |
|
\item |
| 31 |
|
a boundary layer depth $h$ or \texttt{hbl} is determined |
| 32 |
|
at each grid point, based on a critical value of turbulent |
| 33 |
|
processes parameterized by a bulk Richardson number; |
| 34 |
|
% |
| 35 |
|
\item |
| 36 |
|
mixing is strongly enhanced in the boundary layer under the |
| 37 |
|
stabilizing or destabilizing influence of surface forcing |
| 38 |
|
(buoyancy and momentum) enabling boundary layer properties |
| 39 |
|
to penetrate well into the thermocline; |
| 40 |
|
mixing is represented through a polynomial profile whose |
| 41 |
|
coefficients are determined subject to several contraints; |
| 42 |
|
% |
| 43 |
|
\item |
| 44 |
|
the boundary-layer profile is made to agree with similarity |
| 45 |
|
theory of turbulence and is matched, in the asymptotic sense |
| 46 |
|
(function and derivative agree at the boundary), |
| 47 |
|
to the interior thus fixing the polynomial coefficients; |
| 48 |
|
matching allows for some fraction of the boundary layer mixing |
| 49 |
|
to affect the interior, and vice versa; |
| 50 |
|
% |
| 51 |
|
\item |
| 52 |
|
a ``non-local'' term $\hat{\gamma}$ or \texttt{ghat} |
| 53 |
|
which is independent of the vertical property gradient further |
| 54 |
|
enhances mixing where the water column is unstable |
| 55 |
|
% |
| 56 |
|
\end{enumerate} |
| 57 |
|
% |
| 58 |
|
The scheme has been extensively compared to observations |
| 59 |
|
(see e.g. \cite{lar-eta:97}) and is now coomon in many |
| 60 |
|
ocean models. |
| 61 |
|
|
| 62 |
|
The following sections will describe the KPP package |
| 63 |
|
configuration and compiling (\ref{sec:pkg:kpp:comp}), |
| 64 |
|
the settings and choices of runtime parameters |
| 65 |
|
(\ref{sec:pkg:kpp:runtime}), |
| 66 |
|
more detailed description of equations to which these |
| 67 |
|
parameters relate (\ref{sec:pkg:kpp:equations}), |
| 68 |
|
and key subroutines where they are used (\ref{sec:pkg:kpp:subroutines}), |
| 69 |
|
and diagnostics output of KPP-derived diffusivities, viscosities |
| 70 |
|
and boundary-layer/mixed-layer depths. |
| 71 |
|
|
| 72 |
%---------------------------------------------------------------------- |
%---------------------------------------------------------------------- |
| 73 |
|
|
| 74 |
\subsubsection{KPP configuration and compiling} |
\subsubsection{KPP configuration and compiling |
| 75 |
|
\label{sec:pkg:kpp:comp}} |
| 76 |
|
|
| 77 |
As with all MITgcm packages, KPP can be turned on or off at compile time |
As with all MITgcm packages, KPP can be turned on or off at compile time |
| 78 |
% |
% |
| 93 |
\texttt{KPP\_OPTIONS.h}. Table \ref{tab:pkg:kpp:cpp} summarizes them. |
\texttt{KPP\_OPTIONS.h}. Table \ref{tab:pkg:kpp:cpp} summarizes them. |
| 94 |
|
|
| 95 |
\begin{table}[h!] |
\begin{table}[h!] |
| 96 |
|
\centering |
| 97 |
\label{tab:pkg:kpp:cpp} |
\label{tab:pkg:kpp:cpp} |
| 98 |
{\footnotesize |
{\footnotesize |
| 99 |
\begin{tabular}{|l|l|} |
\begin{tabular}{|l|l|} |
| 129 |
\end{table} |
\end{table} |
| 130 |
|
|
| 131 |
|
|
|
|
|
| 132 |
%---------------------------------------------------------------------- |
%---------------------------------------------------------------------- |
| 133 |
|
|
| 134 |
\subsubsection{Run-time parameters |
\subsubsection{Run-time parameters |
| 163 |
\paragraph{Package flags and parameters} |
\paragraph{Package flags and parameters} |
| 164 |
~ \\ |
~ \\ |
| 165 |
% |
% |
| 166 |
|
Table \ref{tab:pkg:kpp:runtime_flags} summarizes the |
| 167 |
|
runtime flags that are set in \texttt{data.pkg}, and |
| 168 |
|
their default values. |
| 169 |
|
|
| 170 |
\begin{table}[h!] |
\begin{table}[h!] |
| 171 |
|
\centering |
| 172 |
\label{tab:pkg:kpp:runtime_flags} |
\label{tab:pkg:kpp:runtime_flags} |
| 173 |
{\footnotesize |
{\footnotesize |
| 174 |
\begin{tabular}{|l|c|l|} |
\begin{tabular}{|l|c|l|} |
| 274 |
\subsubsection{Equations |
\subsubsection{Equations |
| 275 |
\label{sec:pkg:kpp:equations}} |
\label{sec:pkg:kpp:equations}} |
| 276 |
|
|
| 277 |
|
We restrict ourselves to writing out only the essential equations |
| 278 |
|
that relate to main processes and parameters mentioned above. |
| 279 |
|
We closely follow the notation of \cite{lar-eta:94}. |
| 280 |
|
|
| 281 |
|
\paragraph{Mixing in the boundary layer} ~ \\ |
| 282 |
|
% |
| 283 |
|
~ |
| 284 |
|
|
| 285 |
|
The vertical fluxes $\overline{wx}$ |
| 286 |
|
of momentum and tracer properties $X$ |
| 287 |
|
is composed of a gradient-flux term (proportional to |
| 288 |
|
the vertical property divergence $\partial_z X$), and |
| 289 |
|
a ``nonlocal'' term $\gamma_x$ that enhances the |
| 290 |
|
gradient-flux mixing coefficient $K_x$ |
| 291 |
|
% |
| 292 |
|
\begin{equation} |
| 293 |
|
\overline{wx}(d) \, = \, -K_x \left( |
| 294 |
|
\frac{\partial X}{\partial z} \, - \, \gamma_x \right) |
| 295 |
|
\end{equation} |
| 296 |
|
|
| 297 |
|
\begin{itemize} |
| 298 |
|
% |
| 299 |
|
\item |
| 300 |
|
\textit{Boundary layer mixing profile} \\ |
| 301 |
|
% |
| 302 |
|
It is expressed as the product of the boundary layer depth $h$, |
| 303 |
|
a depth-dependent turbulent velocity scale $w_x(\sigma)$ and a |
| 304 |
|
non-dimensional shape function $G(\sigma)$ |
| 305 |
|
% |
| 306 |
|
\begin{equation} |
| 307 |
|
K_x(\sigma) \, = \, h \, w_x(\sigma) \, G(\sigma) |
| 308 |
|
\end{equation} |
| 309 |
|
% |
| 310 |
|
with dimensionless vertical coordinate $\sigma = d/h$. |
| 311 |
|
For details of $ w_x(\sigma)$ and $G(\sigma)$ we refer to |
| 312 |
|
\cite{lar-eta:94}. |
| 313 |
|
|
| 314 |
|
% |
| 315 |
|
\item |
| 316 |
|
\textit{Nonlocal mixing term} \\ |
| 317 |
|
% |
| 318 |
|
The nonlocal transport term $\gamma$ is nonzero only for |
| 319 |
|
tracers in unstable (convective) forcing conditions. |
| 320 |
|
Thus, depending on the stability parameter $\zeta = d/L$ |
| 321 |
|
(with depth $d$, Monin-Obukhov length scale $L$) |
| 322 |
|
it has the following form: |
| 323 |
|
% |
| 324 |
|
\begin{eqnarray} |
| 325 |
|
\begin{array}{cl} |
| 326 |
|
\gamma_x \, = \, 0 & \zeta \, \ge \, 0 \\ |
| 327 |
|
~ & ~ \\ |
| 328 |
|
\left. |
| 329 |
|
\begin{array}{c} |
| 330 |
|
\gamma_m \, = \, 0 \\ |
| 331 |
|
~ \\ |
| 332 |
|
\gamma_s \, = \, C_s |
| 333 |
|
\frac{\overline{w s_0}}{w_s(\sigma) h} \\ |
| 334 |
|
~ \\ |
| 335 |
|
\gamma_{\theta} \, = \, C_s |
| 336 |
|
\frac{\overline{w \theta_0}+\overline{w \theta_R}}{w_s(\sigma) h} \\ |
| 337 |
|
\end{array} |
| 338 |
|
\right\} |
| 339 |
|
& |
| 340 |
|
\zeta \, < \, 0 \\ |
| 341 |
|
\end{array} |
| 342 |
|
\end{eqnarray} |
| 343 |
|
|
| 344 |
|
\end{itemize} |
| 345 |
|
|
| 346 |
|
|
| 347 |
|
\paragraph{Mixing in the interior} ~ \\ |
| 348 |
|
% |
| 349 |
|
~ |
| 350 |
|
|
| 351 |
|
\paragraph{Implicit time integration} ~ \\ |
| 352 |
|
% |
| 353 |
|
~ |
| 354 |
|
|
| 355 |
%---------------------------------------------------------------------- |
%---------------------------------------------------------------------- |
| 356 |
|
|
| 357 |
\subsubsection{Key subroutines |
\subsubsection{Key subroutines |
| 436 |
% |
% |
| 437 |
\end{enumerate} |
\end{enumerate} |
| 438 |
|
|
| 439 |
\paragraph{kpp\_calc\_diff\_t/s, kpp\_calc\_visc:} ~ \\ |
\paragraph{kpp\_calc\_diff\_t/\_s, kpp\_calc\_visc:} ~ \\ |
| 440 |
% |
% |
| 441 |
Add contribution to net diffusivity/viscosity from |
Add contribution to net diffusivity/viscosity from |
| 442 |
KPP diffusivity/viscosity. |
KPP diffusivity/viscosity. |
| 443 |
|
|
| 444 |
\paragraph{kpp\_transport\_t/s/ptr:} ~ \\ |
\paragraph{kpp\_transport\_t/\_s/\_ptr:} ~ \\ |
| 445 |
% |
% |
| 446 |
Add non local KPP transport term (ghat) to diffusive |
Add non local KPP transport term (ghat) to diffusive |
| 447 |
temperature/salinity/passive tracer flux. |
temperature/salinity/passive tracer flux. |
| 448 |
The nonlocal transport term is nonzero only for scalars |
The nonlocal transport term is nonzero only for scalars |
| 449 |
in unstable (convective) forcing conditions. |
in unstable (convective) forcing conditions. |
| 450 |
|
|
| 451 |
|
\paragraph{Flow chart:} ~ \\ |
| 452 |
|
% |
| 453 |
{\footnotesize |
{\footnotesize |
| 454 |
\begin{verbatim} |
\begin{verbatim} |
| 455 |
|
|
| 489 |
Table \ref{tab:pkg:kpp:diagnostics}. |
Table \ref{tab:pkg:kpp:diagnostics}. |
| 490 |
|
|
| 491 |
\begin{table}[h!] |
\begin{table}[h!] |
| 492 |
|
\centering |
| 493 |
\label{tab:pkg:kpp:diagnostics} |
\label{tab:pkg:kpp:diagnostics} |
| 494 |
{\footnotesize |
{\footnotesize |
| 495 |
\begin{verbatim} |
\begin{verbatim} |
| 519 |
%---------------------------------------------------------------------- |
%---------------------------------------------------------------------- |
| 520 |
|
|
| 521 |
\subsubsection{References} |
\subsubsection{References} |
| 522 |
|
|