| 1 |
\subsection{KPP: Nonlocal K-Profile Parameterization for |
\subsection{KPP: Nonlocal K-Profile Parameterization for |
| 2 |
Diapycnal Mixing} |
Vertical Mixing} |
| 3 |
|
|
| 4 |
\label{sec:pkg:kpp} |
\label{sec:pkg:kpp} |
| 5 |
\begin{rawhtml} |
\begin{rawhtml} |
| 11 |
\subsubsection{Introduction |
\subsubsection{Introduction |
| 12 |
\label{sec:pkg:kpp:intro}} |
\label{sec:pkg:kpp:intro}} |
| 13 |
|
|
| 14 |
|
The nonlocal K-Profile Parameterization (KPP) scheme |
| 15 |
|
of \cite{lar-eta:94} unifies the treatment of a variety of |
| 16 |
|
unresolved processes involved in vertical mixing. |
| 17 |
|
To consider it as one mixing scheme is, in the view of the authors, |
| 18 |
|
somewhat misleading since it consists of several entities |
| 19 |
|
to deal with distinct mixing processes in the ocean's surface |
| 20 |
|
boundary layer, and the interior: |
| 21 |
|
% |
| 22 |
|
\begin{enumerate} |
| 23 |
|
% |
| 24 |
|
\item |
| 25 |
|
mixing in the interior is goverened by |
| 26 |
|
shear instability (modeled as function of the local gradient |
| 27 |
|
Richardson number), internal wave activity (assumed constant), |
| 28 |
|
and double-diffusion (not implemented here). |
| 29 |
|
% |
| 30 |
|
\item |
| 31 |
|
a boundary layer depth $h$ or \texttt{hbl} is determined |
| 32 |
|
at each grid point, based on a critical value of turbulent |
| 33 |
|
processes parameterized by a bulk Richardson number; |
| 34 |
|
% |
| 35 |
|
\item |
| 36 |
|
mixing is strongly enhanced in the boundary layer under the |
| 37 |
|
stabilizing or destabilizing influence of surface forcing |
| 38 |
|
(buoyancy and momentum) enabling boundary layer properties |
| 39 |
|
to penetrate well into the thermocline; |
| 40 |
|
mixing is represented through a polynomial profile whose |
| 41 |
|
coefficients are determined subject to several contraints; |
| 42 |
|
% |
| 43 |
|
\item |
| 44 |
|
the boundary-layer profile is made to agree with similarity |
| 45 |
|
theory of turbulence and is matched, in the asymptotic sense |
| 46 |
|
(function and derivative agree at the boundary), |
| 47 |
|
to the interior thus fixing the polynomial coefficients; |
| 48 |
|
matching allows for some fraction of the boundary layer mixing |
| 49 |
|
to affect the interior, and vice versa; |
| 50 |
|
% |
| 51 |
|
\item |
| 52 |
|
a ``non-local'' term $\hat{\gamma}$ or \texttt{ghat} |
| 53 |
|
which is independent of the vertical property gradient further |
| 54 |
|
enhances mixing where the water column is unstable |
| 55 |
|
% |
| 56 |
|
\end{enumerate} |
| 57 |
|
% |
| 58 |
|
The scheme has been extensively compared to observations |
| 59 |
|
(see e.g. \cite{lar-eta:97}) and is now coomon in many |
| 60 |
|
ocean models. |
| 61 |
|
|
| 62 |
|
The current code originates in the NCAR NCOM 1-D code |
| 63 |
|
and was kindly provided by Bill Large and Jan Morzel. |
| 64 |
|
It has been adapted first to the MITgcm vector code and |
| 65 |
|
subsequently to the current parallel code. |
| 66 |
|
Adjustment were mainly in conjunction with WRAPPER requirements |
| 67 |
|
(domain decomposition and threading capability), to enable |
| 68 |
|
automatic differentiation of tangent linear and adjoint code |
| 69 |
|
via TAMC. |
| 70 |
|
|
| 71 |
|
The following sections will describe the KPP package |
| 72 |
|
configuration and compiling (\ref{sec:pkg:kpp:comp}), |
| 73 |
|
the settings and choices of runtime parameters |
| 74 |
|
(\ref{sec:pkg:kpp:runtime}), |
| 75 |
|
more detailed description of equations to which these |
| 76 |
|
parameters relate (\ref{sec:pkg:kpp:equations}), |
| 77 |
|
and key subroutines where they are used %(\ref{sec:pkg:kpp:subroutines}), |
| 78 |
|
(\ref{sec:pkg:kpp:flowchart}), |
| 79 |
|
and diagnostics output of KPP-derived diffusivities, viscosities |
| 80 |
|
and boundary-layer/mixed-layer depths |
| 81 |
|
(\ref{sec:pkg:kpp:diagnostics}). |
| 82 |
|
|
| 83 |
%---------------------------------------------------------------------- |
%---------------------------------------------------------------------- |
| 84 |
|
|
| 85 |
\subsubsection{KPP configuration and compiling} |
\subsubsection{KPP configuration and compiling |
| 86 |
|
\label{sec:pkg:kpp:comp}} |
| 87 |
|
|
| 88 |
As with all MITgcm packages, KPP can be turned on or off at compile time |
As with all MITgcm packages, KPP can be turned on or off at compile time |
| 89 |
% |
% |
| 96 |
or using \texttt{genmake2} adding |
or using \texttt{genmake2} adding |
| 97 |
\texttt{-enable=kpp} or \texttt{-disable=kpp} switches |
\texttt{-enable=kpp} or \texttt{-disable=kpp} switches |
| 98 |
% |
% |
| 99 |
|
\item |
| 100 |
|
\textit{Required packages and CPP options:} \\ |
| 101 |
|
No additional packages are required, but the MITgcm kernel flag |
| 102 |
|
enabling the penetration of shortwave radiation below |
| 103 |
|
the surface layer needs to be set in \texttt{CPP\_OPTIONS.h} |
| 104 |
|
as follows: \\ |
| 105 |
|
\texttt{\#define SHORTWAVE\_HEATING} |
| 106 |
|
% |
| 107 |
\end{itemize} |
\end{itemize} |
| 108 |
(see Section \ref{sect:buildingCode}). |
(see Section \ref{sec:buildingCode}). |
| 109 |
|
|
| 110 |
Parts of the KPP code can be enabled or disabled at compile time |
Parts of the KPP code can be enabled or disabled at compile time |
| 111 |
via CPP preprocessor flags. These options are set in |
via CPP preprocessor flags. These options are set in |
| 112 |
\texttt{KPP\_OPTIONS.h}. Table \ref{tab:pkg:kpp:cpp} summarizes them. |
\texttt{KPP\_OPTIONS.h}. Table \ref{tab:pkg:kpp:cpp} summarizes them. |
| 113 |
|
|
| 114 |
\begin{table}[h!] |
\begin{table}[!ht] |
| 115 |
|
\centering |
| 116 |
\label{tab:pkg:kpp:cpp} |
\label{tab:pkg:kpp:cpp} |
| 117 |
{\footnotesize |
{\footnotesize |
| 118 |
\begin{tabular}{|l|l|} |
\begin{tabular}{|l|l|} |
| 148 |
\end{table} |
\end{table} |
| 149 |
|
|
| 150 |
|
|
|
|
|
| 151 |
%---------------------------------------------------------------------- |
%---------------------------------------------------------------------- |
| 152 |
|
|
| 153 |
\subsubsection{Run-time parameters |
\subsubsection{Run-time parameters |
| 182 |
\paragraph{Package flags and parameters} |
\paragraph{Package flags and parameters} |
| 183 |
~ \\ |
~ \\ |
| 184 |
% |
% |
| 185 |
\begin{table}[h!] |
Table \ref{tab:pkg:kpp:runtime_flags} summarizes the |
| 186 |
|
runtime flags that are set in \texttt{data.pkg}, and |
| 187 |
|
their default values. |
| 188 |
|
|
| 189 |
|
\begin{table}[!ht] |
| 190 |
|
\centering |
| 191 |
\label{tab:pkg:kpp:runtime_flags} |
\label{tab:pkg:kpp:runtime_flags} |
| 192 |
{\footnotesize |
{\footnotesize |
| 193 |
\begin{tabular}{|l|c|l|} |
\begin{tabular}{|l|c|l|} |
| 290 |
|
|
| 291 |
%---------------------------------------------------------------------- |
%---------------------------------------------------------------------- |
| 292 |
|
|
| 293 |
\subsubsection{Equations |
\subsubsection{Equations and key routines |
| 294 |
\label{sec:pkg:kpp:equations}} |
\label{sec:pkg:kpp:equations}} |
| 295 |
|
|
| 296 |
%---------------------------------------------------------------------- |
We restrict ourselves to writing out only the essential equations |
| 297 |
|
that relate to main processes and parameters mentioned above. |
| 298 |
|
We closely follow the notation of \cite{lar-eta:94}. |
| 299 |
|
|
| 300 |
\subsubsection{Key subroutines |
\paragraph{KPP\_CALC:} Top-level routine. \\ |
| 301 |
\label{sec:pkg:kpp:subroutines}} |
~ |
| 302 |
|
|
| 303 |
\paragraph{kpp\_calc:} Top-level routine. \\ |
\paragraph{KPP\_MIX:} Intermediate-level routine \\ |
| 304 |
~ |
~ |
| 305 |
|
|
| 306 |
\paragraph{kpp\_mix:} Intermediate-level routine \\ |
\paragraph{BLMIX: Mixing in the boundary layer} ~ \\ |
| 307 |
|
% |
| 308 |
~ |
~ |
| 309 |
|
|
| 310 |
\paragraph{ri\_iwmix:} ~ \\ |
The vertical fluxes $\overline{wx}$ |
| 311 |
|
of momentum and tracer properties $X$ |
| 312 |
|
is composed of a gradient-flux term (proportional to |
| 313 |
|
the vertical property divergence $\partial_z X$), and |
| 314 |
|
a ``nonlocal'' term $\gamma_x$ that enhances the |
| 315 |
|
gradient-flux mixing coefficient $K_x$ |
| 316 |
|
% |
| 317 |
|
\begin{equation} |
| 318 |
|
\overline{wx}(d) \, = \, -K_x \left( |
| 319 |
|
\frac{\partial X}{\partial z} \, - \, \gamma_x \right) |
| 320 |
|
\end{equation} |
| 321 |
|
|
| 322 |
|
\begin{itemize} |
| 323 |
|
% |
| 324 |
|
\item |
| 325 |
|
\textit{Boundary layer mixing profile} \\ |
| 326 |
|
% |
| 327 |
|
It is expressed as the product of the boundary layer depth $h$, |
| 328 |
|
a depth-dependent turbulent velocity scale $w_x(\sigma)$ and a |
| 329 |
|
non-dimensional shape function $G(\sigma)$ |
| 330 |
|
% |
| 331 |
|
\begin{equation} |
| 332 |
|
K_x(\sigma) \, = \, h \, w_x(\sigma) \, G(\sigma) |
| 333 |
|
\end{equation} |
| 334 |
|
% |
| 335 |
|
with dimensionless vertical coordinate $\sigma = d/h$. |
| 336 |
|
For details of $ w_x(\sigma)$ and $G(\sigma)$ we refer to |
| 337 |
|
\cite{lar-eta:94}. |
| 338 |
|
|
| 339 |
|
% |
| 340 |
|
\item |
| 341 |
|
\textit{Nonlocal mixing term} \\ |
| 342 |
|
% |
| 343 |
|
The nonlocal transport term $\gamma$ is nonzero only for |
| 344 |
|
tracers in unstable (convective) forcing conditions. |
| 345 |
|
Thus, depending on the stability parameter $\zeta = d/L$ |
| 346 |
|
(with depth $d$, Monin-Obukhov length scale $L$) |
| 347 |
|
it has the following form: |
| 348 |
|
% |
| 349 |
|
\begin{eqnarray} |
| 350 |
|
\begin{array}{cl} |
| 351 |
|
\gamma_x \, = \, 0 & \zeta \, \ge \, 0 \\ |
| 352 |
|
~ & ~ \\ |
| 353 |
|
\left. |
| 354 |
|
\begin{array}{c} |
| 355 |
|
\gamma_m \, = \, 0 \\ |
| 356 |
|
~ \\ |
| 357 |
|
\gamma_s \, = \, C_s |
| 358 |
|
\frac{\overline{w s_0}}{w_s(\sigma) h} \\ |
| 359 |
|
~ \\ |
| 360 |
|
\gamma_{\theta} \, = \, C_s |
| 361 |
|
\frac{\overline{w \theta_0}+\overline{w \theta_R}}{w_s(\sigma) h} \\ |
| 362 |
|
\end{array} |
| 363 |
|
\right\} |
| 364 |
|
& |
| 365 |
|
\zeta \, < \, 0 \\ |
| 366 |
|
\end{array} |
| 367 |
|
\end{eqnarray} |
| 368 |
|
|
| 369 |
|
\end{itemize} |
| 370 |
|
|
| 371 |
|
In practice, the routine peforms the following tasks: |
| 372 |
|
% |
| 373 |
|
\begin{enumerate} |
| 374 |
|
% |
| 375 |
|
\item |
| 376 |
|
compute velocity scales at hbl |
| 377 |
|
% |
| 378 |
|
\item |
| 379 |
|
find the interior viscosities and derivatives at hbl |
| 380 |
|
% |
| 381 |
|
\item |
| 382 |
|
compute turbulent velocity scales on the interfaces |
| 383 |
|
% |
| 384 |
|
\item |
| 385 |
|
compute the dimensionless shape functions at the interfaces |
| 386 |
|
% |
| 387 |
|
\item |
| 388 |
|
compute boundary layer diffusivities at the interfaces |
| 389 |
|
% |
| 390 |
|
\item |
| 391 |
|
compute nonlocal transport term |
| 392 |
|
% |
| 393 |
|
\item |
| 394 |
|
find diffusivities at kbl-1 grid level |
| 395 |
|
% |
| 396 |
|
\end{enumerate} |
| 397 |
|
|
| 398 |
|
\paragraph{RI\_IWMIX: Mixing in the interior} ~ \\ |
| 399 |
% |
% |
| 400 |
Compute interior viscosity and diffusivity coefficients due to |
Compute interior viscosity and diffusivity coefficients due to |
| 401 |
% |
% |
| 408 |
to background internal wave activity, and |
to background internal wave activity, and |
| 409 |
% |
% |
| 410 |
\item |
\item |
| 411 |
to static instability (local Richardson number < 0). |
to static instability (local Richardson number $<$ 0). |
| 412 |
% |
% |
| 413 |
\end{itemize} |
\end{itemize} |
| 414 |
|
|
| 415 |
|
TO BE CONTINUED. |
| 416 |
|
|
| 417 |
\paragraph{bldepth:} ~ \\ |
\paragraph{BLDEPTH: Boundary layer depth calculation:} ~ \\ |
| 418 |
% |
% |
| 419 |
The oceanic planetary boundary layer depth, \texttt{hbl}, is determined as |
The oceanic planetary boundary layer depth, \texttt{hbl}, is determined as |
| 420 |
the shallowest depth where the bulk Richardson number is |
the shallowest depth where the bulk Richardson number is |
| 437 |
to grid points (caseA), so that conditional branches can be |
to grid points (caseA), so that conditional branches can be |
| 438 |
avoided in later subroutines. |
avoided in later subroutines. |
| 439 |
|
|
| 440 |
\paragraph{blmix:} ~ \\ |
TO BE CONTINUED. |
|
% |
|
|
Compute boundary layer mixing coefficients. |
|
|
Mixing coefficients within boundary layer depend on surface |
|
|
forcing and the magnitude and gradient of interior mixing below |
|
|
the boundary layer ("matching"). |
|
|
% |
|
|
\begin{enumerate} |
|
|
% |
|
|
\item |
|
|
compute velocity scales at hbl |
|
|
% |
|
|
\item |
|
|
find the interior viscosities and derivatives at hbl |
|
|
% |
|
|
\item |
|
|
compute turbulent velocity scales on the interfaces |
|
|
% |
|
|
\item |
|
|
compute the dimensionless shape functions at the interfaces |
|
|
% |
|
|
\item |
|
|
compute boundary layer diffusivities at the interfaces |
|
|
% |
|
|
\item |
|
|
compute nonlocal transport term |
|
|
% |
|
|
\item |
|
|
find diffusivities at kbl-1 grid level |
|
|
% |
|
|
\end{enumerate} |
|
| 441 |
|
|
| 442 |
\paragraph{kpp\_calc\_diff\_t/s, kpp\_calc\_visc:} ~ \\ |
\paragraph{KPP\_CALC\_DIFF\_T/\_S, KPP\_CALC\_VISC:} ~ \\ |
| 443 |
% |
% |
| 444 |
Add contribution to net diffusivity/viscosity from |
Add contribution to net diffusivity/viscosity from |
| 445 |
KPP diffusivity/viscosity. |
KPP diffusivity/viscosity. |
| 446 |
|
|
| 447 |
\paragraph{kpp\_transport\_t/s/ptr:} ~ \\ |
TO BE CONTINUED. |
| 448 |
|
|
| 449 |
|
\paragraph{KPP\_TRANSPORT\_T/\_S/\_PTR:} ~ \\ |
| 450 |
% |
% |
| 451 |
Add non local KPP transport term (ghat) to diffusive |
Add non local KPP transport term (ghat) to diffusive |
| 452 |
temperature/salinity/passive tracer flux. |
temperature/salinity/passive tracer flux. |
| 453 |
The nonlocal transport term is nonzero only for scalars |
The nonlocal transport term is nonzero only for scalars |
| 454 |
in unstable (convective) forcing conditions. |
in unstable (convective) forcing conditions. |
| 455 |
|
|
| 456 |
|
TO BE CONTINUED. |
| 457 |
|
|
| 458 |
|
\paragraph{Implicit time integration} ~ \\ |
| 459 |
|
% |
| 460 |
|
TO BE CONTINUED. |
| 461 |
|
|
| 462 |
|
|
| 463 |
|
\paragraph{Penetration of shortwave radiation} ~ \\ |
| 464 |
|
% |
| 465 |
|
TO BE CONTINUED. |
| 466 |
|
|
| 467 |
|
|
| 468 |
|
%---------------------------------------------------------------------- |
| 469 |
|
|
| 470 |
|
\subsubsection{Flow chart |
| 471 |
|
\label{sec:pkg:kpp:flowchart}} |
| 472 |
|
|
| 473 |
|
|
| 474 |
{\footnotesize |
{\footnotesize |
| 475 |
\begin{verbatim} |
\begin{verbatim} |
| 476 |
|
|
| 506 |
|
|
| 507 |
Diagnostics output is available via the diagnostics package |
Diagnostics output is available via the diagnostics package |
| 508 |
(see Section \ref{sec:pkg:diagnostics}). |
(see Section \ref{sec:pkg:diagnostics}). |
| 509 |
Available output fields are summarized in |
Available output fields are summarized here: |
|
Table \ref{tab:pkg:kpp:diagnostics}. |
|
| 510 |
|
|
|
\begin{table}[h!] |
|
|
\label{tab:pkg:kpp:diagnostics} |
|
|
{\footnotesize |
|
| 511 |
\begin{verbatim} |
\begin{verbatim} |
| 512 |
------------------------------------------------------ |
------------------------------------------------------ |
| 513 |
<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c) |
<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c) |
| 520 |
KPPmld | 1 |SM |m |Mixed layer depth, dT=.8degC density criterion |
KPPmld | 1 |SM |m |Mixed layer depth, dT=.8degC density criterion |
| 521 |
KPPfrac | 1 |SM | |Short-wave flux fraction penetrating mixing layer |
KPPfrac | 1 |SM | |Short-wave flux fraction penetrating mixing layer |
| 522 |
\end{verbatim} |
\end{verbatim} |
|
} |
|
|
\caption{~} |
|
|
\end{table} |
|
| 523 |
|
|
| 524 |
%---------------------------------------------------------------------- |
%---------------------------------------------------------------------- |
| 525 |
|
|
| 532 |
%---------------------------------------------------------------------- |
%---------------------------------------------------------------------- |
| 533 |
|
|
| 534 |
\subsubsection{References} |
\subsubsection{References} |
| 535 |
|
|
| 536 |
|
\subsubsection{Experiments and tutorials that use kpp} |
| 537 |
|
\label{sec:pkg:kpp:experiments} |
| 538 |
|
|
| 539 |
|
\begin{itemize} |
| 540 |
|
\item{Labrador Sea experiment, in lab\_sea verification directory } |
| 541 |
|
\end{itemize} |