1 |
heimbach |
1.6 |
\subsection{KPP: Nonlocal K-Profile Parameterization for |
2 |
heimbach |
1.7 |
Vertical Mixing} |
3 |
heimbach |
1.1 |
|
4 |
edhill |
1.3 |
\label{sec:pkg:kpp} |
5 |
|
|
\begin{rawhtml} |
6 |
|
|
<!-- CMIREDIR:package_kpp: --> |
7 |
|
|
\end{rawhtml} |
8 |
heimbach |
1.6 |
|
9 |
|
|
Authors: Dimitris Menemenlis and Patrick Heimbach |
10 |
|
|
|
11 |
|
|
\subsubsection{Introduction |
12 |
|
|
\label{sec:pkg:kpp:intro}} |
13 |
|
|
|
14 |
heimbach |
1.7 |
The nonlocal K-Profile Parameterization (KPP) scheme |
15 |
|
|
of \cite{lar-eta:94} unifies the treatment of a variety of |
16 |
|
|
unresolved processes involved in vertical mixing. |
17 |
|
|
To consider it as one mixing scheme is, in the view of the authors, |
18 |
|
|
somewhat misleading since it consists of several entities |
19 |
|
|
to deal with distinct mixing processes in the ocean's surface |
20 |
|
|
boundary layer, and the interior: |
21 |
|
|
% |
22 |
|
|
\begin{enumerate} |
23 |
|
|
% |
24 |
|
|
\item |
25 |
|
|
mixing in the interior is goverened by |
26 |
|
|
shear instability (modeled as function of the local gradient |
27 |
|
|
Richardson number), internal wave activity (assumed constant), |
28 |
|
|
and double-diffusion (not implemented here). |
29 |
|
|
% |
30 |
|
|
\item |
31 |
|
|
a boundary layer depth $h$ or \texttt{hbl} is determined |
32 |
|
|
at each grid point, based on a critical value of turbulent |
33 |
|
|
processes parameterized by a bulk Richardson number; |
34 |
|
|
% |
35 |
|
|
\item |
36 |
|
|
mixing is strongly enhanced in the boundary layer under the |
37 |
|
|
stabilizing or destabilizing influence of surface forcing |
38 |
|
|
(buoyancy and momentum) enabling boundary layer properties |
39 |
|
|
to penetrate well into the thermocline; |
40 |
|
|
mixing is represented through a polynomial profile whose |
41 |
|
|
coefficients are determined subject to several contraints; |
42 |
|
|
% |
43 |
|
|
\item |
44 |
|
|
the boundary-layer profile is made to agree with similarity |
45 |
|
|
theory of turbulence and is matched, in the asymptotic sense |
46 |
|
|
(function and derivative agree at the boundary), |
47 |
|
|
to the interior thus fixing the polynomial coefficients; |
48 |
|
|
matching allows for some fraction of the boundary layer mixing |
49 |
|
|
to affect the interior, and vice versa; |
50 |
|
|
% |
51 |
|
|
\item |
52 |
|
|
a ``non-local'' term $\hat{\gamma}$ or \texttt{ghat} |
53 |
|
|
which is independent of the vertical property gradient further |
54 |
|
|
enhances mixing where the water column is unstable |
55 |
|
|
% |
56 |
|
|
\end{enumerate} |
57 |
|
|
% |
58 |
|
|
The scheme has been extensively compared to observations |
59 |
|
|
(see e.g. \cite{lar-eta:97}) and is now coomon in many |
60 |
|
|
ocean models. |
61 |
|
|
|
62 |
|
|
The following sections will describe the KPP package |
63 |
|
|
configuration and compiling (\ref{sec:pkg:kpp:comp}), |
64 |
|
|
the settings and choices of runtime parameters |
65 |
|
|
(\ref{sec:pkg:kpp:runtime}), |
66 |
|
|
more detailed description of equations to which these |
67 |
|
|
parameters relate (\ref{sec:pkg:kpp:equations}), |
68 |
|
|
and key subroutines where they are used (\ref{sec:pkg:kpp:subroutines}), |
69 |
|
|
and diagnostics output of KPP-derived diffusivities, viscosities |
70 |
|
|
and boundary-layer/mixed-layer depths. |
71 |
|
|
|
72 |
heimbach |
1.6 |
%---------------------------------------------------------------------- |
73 |
|
|
|
74 |
heimbach |
1.7 |
\subsubsection{KPP configuration and compiling |
75 |
|
|
\label{sec:pkg:kpp:comp}} |
76 |
heimbach |
1.6 |
|
77 |
|
|
As with all MITgcm packages, KPP can be turned on or off at compile time |
78 |
|
|
% |
79 |
|
|
\begin{itemize} |
80 |
|
|
% |
81 |
|
|
\item |
82 |
|
|
using the \texttt{packages.conf} file by adding \texttt{kpp} to it, |
83 |
|
|
% |
84 |
|
|
\item |
85 |
|
|
or using \texttt{genmake2} adding |
86 |
|
|
\texttt{-enable=kpp} or \texttt{-disable=kpp} switches |
87 |
|
|
% |
88 |
|
|
\end{itemize} |
89 |
|
|
(see Section \ref{sect:buildingCode}). |
90 |
|
|
|
91 |
|
|
Parts of the KPP code can be enabled or disabled at compile time |
92 |
|
|
via CPP preprocessor flags. These options are set in |
93 |
|
|
\texttt{KPP\_OPTIONS.h}. Table \ref{tab:pkg:kpp:cpp} summarizes them. |
94 |
|
|
|
95 |
|
|
\begin{table}[h!] |
96 |
heimbach |
1.7 |
\centering |
97 |
heimbach |
1.6 |
\label{tab:pkg:kpp:cpp} |
98 |
|
|
{\footnotesize |
99 |
|
|
\begin{tabular}{|l|l|} |
100 |
|
|
\hline |
101 |
|
|
\textbf{CPP option} & \textbf{Description} \\ |
102 |
|
|
\hline \hline |
103 |
|
|
\texttt{\_KPP\_RL} & |
104 |
|
|
~ \\ |
105 |
|
|
\texttt{FRUGAL\_KPP} & |
106 |
|
|
~ \\ |
107 |
|
|
\texttt{KPP\_SMOOTH\_SHSQ} & |
108 |
|
|
~ \\ |
109 |
|
|
\texttt{KPP\_SMOOTH\_DVSQ} & |
110 |
|
|
~ \\ |
111 |
|
|
\texttt{KPP\_SMOOTH\_DENS} & |
112 |
|
|
~ \\ |
113 |
|
|
\texttt{KPP\_SMOOTH\_VISC} & |
114 |
|
|
~ \\ |
115 |
|
|
\texttt{KPP\_SMOOTH\_DIFF} & |
116 |
|
|
~ \\ |
117 |
|
|
\texttt{KPP\_ESTIMATE\_UREF} & |
118 |
|
|
~ \\ |
119 |
|
|
\texttt{INCLUDE\_DIAGNOSTICS\_INTERFACE\_CODE} & |
120 |
|
|
~ \\ |
121 |
|
|
\texttt{KPP\_GHAT} & |
122 |
|
|
~ \\ |
123 |
|
|
\texttt{EXCLUDE\_KPP\_SHEAR\_MIX} & |
124 |
|
|
~ \\ |
125 |
|
|
\hline |
126 |
|
|
\end{tabular} |
127 |
|
|
} |
128 |
|
|
\caption{~} |
129 |
|
|
\end{table} |
130 |
|
|
|
131 |
|
|
|
132 |
|
|
%---------------------------------------------------------------------- |
133 |
|
|
|
134 |
|
|
\subsubsection{Run-time parameters |
135 |
|
|
\label{sec:pkg:kpp:runtime}} |
136 |
|
|
|
137 |
|
|
Run-time parameters are set in files |
138 |
|
|
\texttt{data.pkg} and \texttt{data.kpp} |
139 |
|
|
which are read in \texttt{kpp\_readparms.F}. |
140 |
|
|
Run-time parameters may be broken into 3 categories: |
141 |
|
|
(i) switching on/off the package at runtime, |
142 |
|
|
(ii) required MITgcm flags, |
143 |
|
|
(iii) package flags and parameters. |
144 |
|
|
|
145 |
|
|
\paragraph{Enabling the package} |
146 |
|
|
~ \\ |
147 |
|
|
% |
148 |
|
|
The KPP package is switched on at runtime by setting |
149 |
|
|
\texttt{useKPP = .TRUE.} in \texttt{data.pkg}. |
150 |
|
|
|
151 |
|
|
\paragraph{Required MITgcm flags} |
152 |
|
|
~ \\ |
153 |
|
|
% |
154 |
|
|
The following flags/parameters of the MITgcm dynamical |
155 |
|
|
kernel need to be set in conjunction with KPP: |
156 |
|
|
|
157 |
|
|
\begin{tabular}{ll} |
158 |
|
|
\texttt{implicitViscosity = .TRUE.} & enable implicit vertical viscosity \\ |
159 |
|
|
\texttt{implicitDiffusion = .TRUE.} & enable implicit vertical diffusion \\ |
160 |
|
|
\end{tabular} |
161 |
|
|
|
162 |
|
|
|
163 |
|
|
\paragraph{Package flags and parameters} |
164 |
|
|
~ \\ |
165 |
|
|
% |
166 |
heimbach |
1.7 |
Table \ref{tab:pkg:kpp:runtime_flags} summarizes the |
167 |
|
|
runtime flags that are set in \texttt{data.pkg}, and |
168 |
|
|
their default values. |
169 |
|
|
|
170 |
heimbach |
1.6 |
\begin{table}[h!] |
171 |
heimbach |
1.7 |
\centering |
172 |
heimbach |
1.6 |
\label{tab:pkg:kpp:runtime_flags} |
173 |
|
|
{\footnotesize |
174 |
|
|
\begin{tabular}{|l|c|l|} |
175 |
|
|
\hline |
176 |
|
|
\textbf{Flag/parameter} & \textbf{default} & \textbf{Description} \\ |
177 |
|
|
\hline \hline |
178 |
|
|
\multicolumn{3}{|c|}{\textit{I/O related parameters} } \\ |
179 |
|
|
\hline |
180 |
|
|
kpp\_freq & \texttt{deltaTClock} & |
181 |
|
|
Recomputation frequency for KPP fields \\ |
182 |
|
|
kpp\_dumpFreq & \texttt{dumpFreq} & |
183 |
|
|
Dump frequency of KPP field snapshots \\ |
184 |
|
|
kpp\_taveFreq & \texttt{taveFreq} & |
185 |
|
|
Averaging and dump frequency of KPP fields \\ |
186 |
|
|
KPPmixingMaps & \texttt{.FALSE.} & |
187 |
|
|
include KPP diagnostic maps in STDOUT \\ |
188 |
|
|
KPPwriteState & \texttt{.FALSE.} & |
189 |
|
|
write KPP state to file \\ |
190 |
|
|
KPP\_ghatUseTotalDiffus & \texttt{.FALSE.} & |
191 |
|
|
if \texttt{.T.} compute non-local term using total vertical diffusivity \\ |
192 |
|
|
~ & ~ & |
193 |
|
|
if \texttt{.F.} use KPP vertical diffusivity \\ |
194 |
|
|
\hline |
195 |
|
|
\multicolumn{3}{|c|}{\textit{Genral KPP parameters} } \\ |
196 |
|
|
\hline |
197 |
|
|
minKPPhbl & \texttt{delRc(1)} & |
198 |
|
|
Minimum boundary layer depth \\ |
199 |
|
|
epsilon & 0.1 & |
200 |
|
|
nondimensional extent of the surface layer \\ |
201 |
|
|
vonk & 0.4 & |
202 |
|
|
von Karman constant \\ |
203 |
|
|
dB\_dz & 5.2E-5 1/s$^2$ & |
204 |
|
|
maximum dB/dz in mixed layer hMix \\ |
205 |
|
|
concs & 98.96 & |
206 |
|
|
~ \\ |
207 |
|
|
concv & 1.8 & |
208 |
|
|
~ \\ |
209 |
|
|
\hline |
210 |
|
|
\multicolumn{3}{|c|}{\textit{Boundary layer parameters (S/R \texttt{bldepth})} } \\ |
211 |
|
|
\hline |
212 |
|
|
Ricr & 0.3 & |
213 |
|
|
critical bulk Richardson number \\ |
214 |
|
|
cekman & 0.7 & |
215 |
|
|
coefficient for Ekman depth \\ |
216 |
|
|
cmonob & 1.0 & |
217 |
|
|
coefficient for Monin-Obukhov depth \\ |
218 |
|
|
concv & 1.8 & |
219 |
|
|
ratio of interior to entrainment depth buoyancy frequency \\ |
220 |
|
|
hbf & 1.0 & |
221 |
|
|
fraction of depth to which absorbed solar radiation contributes \\ |
222 |
|
|
~ & ~ & |
223 |
|
|
to surface buoyancy forcing \\ |
224 |
|
|
Vtc & \texttt{~} & |
225 |
|
|
non-dim. coeff. for velocity scale of turbulant velocity shear \\ |
226 |
|
|
~ & ~ & |
227 |
|
|
( = function of concv,concs,epsilon,vonk,Ricr) \\ |
228 |
|
|
\hline |
229 |
|
|
\multicolumn{3}{|c|}{\textit{Boundary layer mixing parameters (S/R \texttt{blmix})} } \\ |
230 |
|
|
\hline |
231 |
|
|
cstar & 10. & |
232 |
|
|
proportionality coefficient for nonlocal transport \\ |
233 |
|
|
cg & ~ & |
234 |
|
|
non-dimensional coefficient for counter-gradient term \\ |
235 |
|
|
~ & ~ & |
236 |
|
|
( = function of cstar,vonk,concs,epsilon) \\ |
237 |
|
|
\hline |
238 |
|
|
\multicolumn{3}{|c|}{\textit{Interior mixing parameters (S/R \texttt{Ri\_iwmix})} } \\ |
239 |
|
|
\hline |
240 |
|
|
Riinfty & 0.7 & |
241 |
|
|
gradient Richardson number limit for shear instability \\ |
242 |
|
|
BVDQcon & -0.2E-4 1/s$^2$ & |
243 |
|
|
Brunt-V\"ai\"sal\"a squared \\ |
244 |
|
|
difm0 & 0.005 m$^2$/s & |
245 |
|
|
viscosity max. due to shear instability \\ |
246 |
|
|
difs0 & 0.005 m$^2$/s & |
247 |
|
|
tracer diffusivity max. due to shear instability \\ |
248 |
|
|
dift0 & 0.005 m$^2$/s & |
249 |
|
|
heat diffusivity max. due to shear instability \\ |
250 |
|
|
difmcon & 0.1 & |
251 |
|
|
viscosity due to convective instability \\ |
252 |
|
|
difscon & 0.1 & |
253 |
|
|
tracer diffusivity due to convective instability \\ |
254 |
|
|
diftcon & 0.1 & |
255 |
|
|
heat diffusivity due to convective instability \\ |
256 |
|
|
\hline |
257 |
|
|
\multicolumn{3}{|c|}{\textit{Double-diffusive mixing parameters (S/R \texttt{ddmix})} } \\ |
258 |
|
|
\hline |
259 |
|
|
Rrho0 & not used & |
260 |
|
|
limit for double diffusive density ratio \\ |
261 |
|
|
dsfmax & not used & |
262 |
|
|
maximum diffusivity in case of salt fingering \\ |
263 |
|
|
\hline |
264 |
|
|
\hline |
265 |
|
|
\end{tabular} |
266 |
|
|
} |
267 |
|
|
\caption{~} |
268 |
|
|
\end{table} |
269 |
|
|
|
270 |
|
|
|
271 |
|
|
|
272 |
|
|
%---------------------------------------------------------------------- |
273 |
|
|
|
274 |
|
|
\subsubsection{Equations |
275 |
|
|
\label{sec:pkg:kpp:equations}} |
276 |
|
|
|
277 |
heimbach |
1.7 |
We restrict ourselves to writing out only the essential equations |
278 |
|
|
that relate to main processes and parameters mentioned above. |
279 |
|
|
We closely follow the notation of \cite{lar-eta:94}. |
280 |
|
|
|
281 |
|
|
\paragraph{Mixing in the boundary layer} ~ \\ |
282 |
|
|
% |
283 |
|
|
~ |
284 |
|
|
|
285 |
|
|
The vertical fluxes $\overline{wx}$ |
286 |
|
|
of momentum and tracer properties $X$ |
287 |
|
|
is composed of a gradient-flux term (proportional to |
288 |
|
|
the vertical property divergence $\partial_z X$), and |
289 |
|
|
a ``nonlocal'' term $\gamma_x$ that enhances the |
290 |
|
|
gradient-flux mixing coefficient $K_x$ |
291 |
|
|
% |
292 |
|
|
\begin{equation} |
293 |
|
|
\overline{wx}(d) \, = \, -K_x \left( |
294 |
|
|
\frac{\partial X}{\partial z} \, - \, \gamma_x \right) |
295 |
|
|
\end{equation} |
296 |
|
|
|
297 |
|
|
\begin{itemize} |
298 |
|
|
% |
299 |
|
|
\item |
300 |
|
|
\textit{Boundary layer mixing profile} \\ |
301 |
|
|
% |
302 |
|
|
It is expressed as the product of the boundary layer depth $h$, |
303 |
|
|
a depth-dependent turbulent velocity scale $w_x(\sigma)$ and a |
304 |
|
|
non-dimensional shape function $G(\sigma)$ |
305 |
|
|
% |
306 |
|
|
\begin{equation} |
307 |
|
|
K_x(\sigma) \, = \, h \, w_x(\sigma) \, G(\sigma) |
308 |
|
|
\end{equation} |
309 |
|
|
% |
310 |
|
|
with dimensionless vertical coordinate $\sigma = d/h$. |
311 |
|
|
For details of $ w_x(\sigma)$ and $G(\sigma)$ we refer to |
312 |
|
|
\cite{lar-eta:94}. |
313 |
|
|
|
314 |
|
|
% |
315 |
|
|
\item |
316 |
|
|
\textit{Nonlocal mixing term} \\ |
317 |
|
|
% |
318 |
|
|
The nonlocal transport term $\gamma$ is nonzero only for |
319 |
|
|
tracers in unstable (convective) forcing conditions. |
320 |
|
|
Thus, depending on the stability parameter $\zeta = d/L$ |
321 |
|
|
(with depth $d$, Monin-Obukhov length scale $L$) |
322 |
|
|
it has the following form: |
323 |
|
|
% |
324 |
|
|
\begin{eqnarray} |
325 |
|
|
\begin{array}{cl} |
326 |
|
|
\gamma_x \, = \, 0 & \zeta \, \ge \, 0 \\ |
327 |
|
|
~ & ~ \\ |
328 |
|
|
\left. |
329 |
|
|
\begin{array}{c} |
330 |
|
|
\gamma_m \, = \, 0 \\ |
331 |
|
|
~ \\ |
332 |
|
|
\gamma_s \, = \, C_s |
333 |
|
|
\frac{\overline{w s_0}}{w_s(\sigma) h} \\ |
334 |
|
|
~ \\ |
335 |
|
|
\gamma_{\theta} \, = \, C_s |
336 |
|
|
\frac{\overline{w \theta_0}+\overline{w \theta_R}}{w_s(\sigma) h} \\ |
337 |
|
|
\end{array} |
338 |
|
|
\right\} |
339 |
|
|
& |
340 |
|
|
\zeta \, < \, 0 \\ |
341 |
|
|
\end{array} |
342 |
|
|
\end{eqnarray} |
343 |
|
|
|
344 |
|
|
\end{itemize} |
345 |
|
|
|
346 |
|
|
|
347 |
|
|
\paragraph{Mixing in the interior} ~ \\ |
348 |
|
|
% |
349 |
|
|
~ |
350 |
|
|
|
351 |
|
|
\paragraph{Implicit time integration} ~ \\ |
352 |
|
|
% |
353 |
|
|
~ |
354 |
|
|
|
355 |
heimbach |
1.6 |
%---------------------------------------------------------------------- |
356 |
|
|
|
357 |
|
|
\subsubsection{Key subroutines |
358 |
|
|
\label{sec:pkg:kpp:subroutines}} |
359 |
|
|
|
360 |
|
|
\paragraph{kpp\_calc:} Top-level routine. \\ |
361 |
|
|
~ |
362 |
|
|
|
363 |
|
|
\paragraph{kpp\_mix:} Intermediate-level routine \\ |
364 |
|
|
~ |
365 |
|
|
|
366 |
|
|
\paragraph{ri\_iwmix:} ~ \\ |
367 |
|
|
% |
368 |
|
|
Compute interior viscosity and diffusivity coefficients due to |
369 |
|
|
% |
370 |
|
|
\begin{itemize} |
371 |
|
|
% |
372 |
|
|
\item |
373 |
|
|
shear instability (dependent on a local gradient Richardson number), |
374 |
|
|
% |
375 |
|
|
\item |
376 |
|
|
to background internal wave activity, and |
377 |
|
|
% |
378 |
|
|
\item |
379 |
|
|
to static instability (local Richardson number < 0). |
380 |
|
|
% |
381 |
|
|
\end{itemize} |
382 |
|
|
|
383 |
|
|
|
384 |
|
|
\paragraph{bldepth:} ~ \\ |
385 |
|
|
% |
386 |
|
|
The oceanic planetary boundary layer depth, \texttt{hbl}, is determined as |
387 |
|
|
the shallowest depth where the bulk Richardson number is |
388 |
|
|
equal to the critical value, \texttt{Ricr}. |
389 |
|
|
|
390 |
|
|
Bulk Richardson numbers are evaluated by computing velocity and |
391 |
|
|
buoyancy differences between values at zgrid(kl) < 0 and surface |
392 |
|
|
reference values. |
393 |
|
|
In this configuration, the reference values are equal to the |
394 |
|
|
values in the surface layer. |
395 |
|
|
When using a very fine vertical grid, these values should be |
396 |
|
|
computed as the vertical average of velocity and buoyancy from |
397 |
|
|
the surface down to epsilon*zgrid(kl). |
398 |
|
|
|
399 |
|
|
When the bulk Richardson number at k exceeds Ricr, hbl is |
400 |
|
|
linearly interpolated between grid levels zgrid(k) and zgrid(k-1). |
401 |
|
|
|
402 |
|
|
The water column and the surface forcing are diagnosed for |
403 |
|
|
stable/ustable forcing conditions, and where hbl is relative |
404 |
|
|
to grid points (caseA), so that conditional branches can be |
405 |
|
|
avoided in later subroutines. |
406 |
|
|
|
407 |
|
|
\paragraph{blmix:} ~ \\ |
408 |
|
|
% |
409 |
|
|
Compute boundary layer mixing coefficients. |
410 |
|
|
Mixing coefficients within boundary layer depend on surface |
411 |
|
|
forcing and the magnitude and gradient of interior mixing below |
412 |
|
|
the boundary layer ("matching"). |
413 |
|
|
% |
414 |
|
|
\begin{enumerate} |
415 |
|
|
% |
416 |
|
|
\item |
417 |
|
|
compute velocity scales at hbl |
418 |
|
|
% |
419 |
|
|
\item |
420 |
|
|
find the interior viscosities and derivatives at hbl |
421 |
|
|
% |
422 |
|
|
\item |
423 |
|
|
compute turbulent velocity scales on the interfaces |
424 |
|
|
% |
425 |
|
|
\item |
426 |
|
|
compute the dimensionless shape functions at the interfaces |
427 |
|
|
% |
428 |
|
|
\item |
429 |
|
|
compute boundary layer diffusivities at the interfaces |
430 |
|
|
% |
431 |
|
|
\item |
432 |
|
|
compute nonlocal transport term |
433 |
|
|
% |
434 |
|
|
\item |
435 |
|
|
find diffusivities at kbl-1 grid level |
436 |
|
|
% |
437 |
|
|
\end{enumerate} |
438 |
|
|
|
439 |
heimbach |
1.7 |
\paragraph{kpp\_calc\_diff\_t/\_s, kpp\_calc\_visc:} ~ \\ |
440 |
heimbach |
1.6 |
% |
441 |
|
|
Add contribution to net diffusivity/viscosity from |
442 |
|
|
KPP diffusivity/viscosity. |
443 |
|
|
|
444 |
heimbach |
1.7 |
\paragraph{kpp\_transport\_t/\_s/\_ptr:} ~ \\ |
445 |
heimbach |
1.6 |
% |
446 |
|
|
Add non local KPP transport term (ghat) to diffusive |
447 |
|
|
temperature/salinity/passive tracer flux. |
448 |
|
|
The nonlocal transport term is nonzero only for scalars |
449 |
|
|
in unstable (convective) forcing conditions. |
450 |
|
|
|
451 |
heimbach |
1.7 |
\paragraph{Flow chart:} ~ \\ |
452 |
|
|
% |
453 |
heimbach |
1.6 |
{\footnotesize |
454 |
|
|
\begin{verbatim} |
455 |
|
|
|
456 |
|
|
C !CALLING SEQUENCE: |
457 |
|
|
c ... |
458 |
|
|
c kpp_calc (TOP LEVEL ROUTINE) |
459 |
|
|
c | |
460 |
|
|
c |-- statekpp: o compute all EOS/density-related arrays |
461 |
|
|
c | o uses S/R FIND_ALPHA, FIND_BETA, FIND_RHO |
462 |
|
|
c | |
463 |
|
|
c |-- kppmix |
464 |
|
|
c | |--- ri_iwmix (compute interior mixing coefficients due to constant |
465 |
|
|
c | | internal wave activity, static instability, |
466 |
|
|
c | | and local shear instability). |
467 |
|
|
c | | |
468 |
|
|
c | |--- bldepth (diagnose boundary layer depth) |
469 |
|
|
c | | |
470 |
|
|
c | |--- blmix (compute boundary layer diffusivities) |
471 |
|
|
c | | |
472 |
|
|
c | |--- enhance (enhance diffusivity at interface kbl - 1) |
473 |
|
|
c | o |
474 |
|
|
c | |
475 |
|
|
c |-- swfrac |
476 |
|
|
c o |
477 |
|
|
|
478 |
|
|
\end{verbatim} |
479 |
|
|
} |
480 |
|
|
|
481 |
|
|
%---------------------------------------------------------------------- |
482 |
|
|
|
483 |
|
|
\subsubsection{KPP diagnostics |
484 |
|
|
\label{sec:pkg:kpp:diagnostics}} |
485 |
|
|
|
486 |
|
|
Diagnostics output is available via the diagnostics package |
487 |
|
|
(see Section \ref{sec:pkg:diagnostics}). |
488 |
|
|
Available output fields are summarized in |
489 |
|
|
Table \ref{tab:pkg:kpp:diagnostics}. |
490 |
|
|
|
491 |
|
|
\begin{table}[h!] |
492 |
heimbach |
1.7 |
\centering |
493 |
heimbach |
1.6 |
\label{tab:pkg:kpp:diagnostics} |
494 |
|
|
{\footnotesize |
495 |
|
|
\begin{verbatim} |
496 |
|
|
------------------------------------------------------ |
497 |
|
|
<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c) |
498 |
|
|
------------------------------------------------------ |
499 |
|
|
KPPviscA| 23 |SM |m^2/s |KPP vertical eddy viscosity coefficient |
500 |
|
|
KPPdiffS| 23 |SM |m^2/s |Vertical diffusion coefficient for salt & tracers |
501 |
|
|
KPPdiffT| 23 |SM |m^2/s |Vertical diffusion coefficient for heat |
502 |
|
|
KPPghat | 23 |SM |s/m^2 |Nonlocal transport coefficient |
503 |
|
|
KPPhbl | 1 |SM |m |KPP boundary layer depth, bulk Ri criterion |
504 |
|
|
KPPmld | 1 |SM |m |Mixed layer depth, dT=.8degC density criterion |
505 |
|
|
KPPfrac | 1 |SM | |Short-wave flux fraction penetrating mixing layer |
506 |
|
|
\end{verbatim} |
507 |
|
|
} |
508 |
|
|
\caption{~} |
509 |
|
|
\end{table} |
510 |
|
|
|
511 |
|
|
%---------------------------------------------------------------------- |
512 |
|
|
|
513 |
|
|
\subsubsection{Reference experiments} |
514 |
|
|
|
515 |
|
|
lab\_sea: |
516 |
|
|
|
517 |
|
|
natl\_box: |
518 |
|
|
|
519 |
|
|
%---------------------------------------------------------------------- |
520 |
|
|
|
521 |
|
|
\subsubsection{References} |
522 |
heimbach |
1.7 |
|