| 1 | 
molod | 
1.10 | 
\subsection{GMREDI: Gent/McWiliams/Redi SGS Eddy Parameterization} | 
| 2 | 
edhill | 
1.8 | 
\label{sec:pkg:gmredi} | 
| 3 | 
edhill | 
1.7 | 
\begin{rawhtml} | 
| 4 | 
  | 
  | 
<!-- CMIREDIR:gmredi: --> | 
| 5 | 
  | 
  | 
\end{rawhtml} | 
| 6 | 
adcroft | 
1.1 | 
 | 
| 7 | 
  | 
  | 
There are two parts to the Redi/GM parameterization of geostrophic | 
| 8 | 
  | 
  | 
eddies. The first aims to mix tracer properties along isentropes | 
| 9 | 
  | 
  | 
(neutral surfaces) by means of a diffusion operator oriented along the | 
| 10 | 
  | 
  | 
local isentropic surface (Redi). The second part, adiabatically | 
| 11 | 
  | 
  | 
re-arranges tracers through an advective flux where the advecting flow | 
| 12 | 
  | 
  | 
is a function of slope of the isentropic surfaces (GM). | 
| 13 | 
  | 
  | 
 | 
| 14 | 
  | 
  | 
The first GCM implementation of the Redi scheme was by Cox 1987 in the | 
| 15 | 
  | 
  | 
GFDL ocean circulation model. The original approach failed to | 
| 16 | 
  | 
  | 
distinguish between isopycnals and surfaces of locally referenced | 
| 17 | 
  | 
  | 
potential density (now called neutral surfaces) which are proper | 
| 18 | 
  | 
  | 
isentropes for the ocean. As will be discussed later, it also appears | 
| 19 | 
  | 
  | 
that the Cox implementation is susceptible  to a computational mode. | 
| 20 | 
  | 
  | 
Due to this mode, the Cox scheme requires a background lateral | 
| 21 | 
  | 
  | 
diffusion to be present to conserve the integrity of the model fields. | 
| 22 | 
  | 
  | 
 | 
| 23 | 
  | 
  | 
The GM parameterization was then added to the GFDL code in the form of | 
| 24 | 
  | 
  | 
a non-divergent bolus velocity. The method defines two | 
| 25 | 
  | 
  | 
stream-functions expressed in terms of the isoneutral slopes subject | 
| 26 | 
  | 
  | 
to the boundary condition of zero value on upper and lower | 
| 27 | 
  | 
  | 
boundaries. The horizontal bolus velocities are then the vertical | 
| 28 | 
  | 
  | 
derivative of these functions. Here in lies a problem highlighted by | 
| 29 | 
  | 
  | 
Griffies et al., 1997: the bolus velocities involve multiple | 
| 30 | 
  | 
  | 
derivatives on the potential density field, which can consequently | 
| 31 | 
  | 
  | 
give rise to noise. Griffies et al. point out that the GM bolus fluxes | 
| 32 | 
  | 
  | 
can be identically written as a skew flux which involves fewer | 
| 33 | 
  | 
  | 
differential operators. Further, combining the skew flux formulation | 
| 34 | 
  | 
  | 
and Redi scheme, substantial cancellations take place to the point | 
| 35 | 
  | 
  | 
that the horizontal fluxes are unmodified from the lateral diffusion | 
| 36 | 
  | 
  | 
parameterization. | 
| 37 | 
  | 
  | 
 | 
| 38 | 
molod | 
1.10 | 
\subsubsection{Redi scheme: Isopycnal diffusion} | 
| 39 | 
adcroft | 
1.1 | 
 | 
| 40 | 
  | 
  | 
The Redi scheme diffuses tracers along isopycnals and introduces a | 
| 41 | 
  | 
  | 
term in the tendency (rhs) of such a tracer (here $\tau$) of the form: | 
| 42 | 
  | 
  | 
\begin{equation} | 
| 43 | 
  | 
  | 
\bf{\nabla} \cdot \kappa_\rho \bf{K}_{Redi}  \bf{\nabla} \tau | 
| 44 | 
  | 
  | 
\end{equation} | 
| 45 | 
  | 
  | 
where $\kappa_\rho$ is the along isopycnal diffusivity and | 
| 46 | 
  | 
  | 
$\bf{K}_{Redi}$ is a rank 2 tensor that projects the gradient of | 
| 47 | 
  | 
  | 
$\tau$ onto the isopycnal surface. The unapproximated projection tensor is: | 
| 48 | 
  | 
  | 
\begin{equation} | 
| 49 | 
  | 
  | 
\bf{K}_{Redi} = \left( | 
| 50 | 
  | 
  | 
\begin{array}{ccc} | 
| 51 | 
  | 
  | 
1 + S_x& S_x S_y & S_x \\ | 
| 52 | 
  | 
  | 
S_x S_y  & 1 + S_y & S_y \\ | 
| 53 | 
  | 
  | 
S_x & S_y & |S|^2 \\ | 
| 54 | 
  | 
  | 
\end{array} | 
| 55 | 
  | 
  | 
\right) | 
| 56 | 
  | 
  | 
\end{equation} | 
| 57 | 
  | 
  | 
Here, $S_x = -\partial_x \sigma / \partial_z \sigma$ and $S_y = | 
| 58 | 
  | 
  | 
-\partial_y \sigma / \partial_z \sigma$ are the components of the | 
| 59 | 
  | 
  | 
isoneutral slope. | 
| 60 | 
  | 
  | 
 | 
| 61 | 
  | 
  | 
The first point to note is that a typical slope in the ocean interior | 
| 62 | 
  | 
  | 
is small, say of the order $10^{-4}$. A maximum slope might be of | 
| 63 | 
  | 
  | 
order $10^{-2}$ and only exceeds such in unstratified regions where | 
| 64 | 
  | 
  | 
the slope is ill defined. It is therefore justifiable, and | 
| 65 | 
  | 
  | 
customary, to make the small slope approximation, $|S| << 1$. The Redi | 
| 66 | 
  | 
  | 
projection tensor then becomes: | 
| 67 | 
  | 
  | 
\begin{equation} | 
| 68 | 
  | 
  | 
\bf{K}_{Redi} = \left( | 
| 69 | 
  | 
  | 
\begin{array}{ccc} | 
| 70 | 
  | 
  | 
1 & 0 & S_x \\ | 
| 71 | 
  | 
  | 
0 & 1 & S_y \\ | 
| 72 | 
  | 
  | 
S_x & S_y & |S|^2 \\ | 
| 73 | 
  | 
  | 
\end{array} | 
| 74 | 
  | 
  | 
\right) | 
| 75 | 
  | 
  | 
\end{equation} | 
| 76 | 
  | 
  | 
 | 
| 77 | 
  | 
  | 
 | 
| 78 | 
molod | 
1.10 | 
\subsubsection{GM parameterization} | 
| 79 | 
adcroft | 
1.1 | 
 | 
| 80 | 
  | 
  | 
The GM parameterization aims to parameterise the ``advective'' or | 
| 81 | 
  | 
  | 
``transport'' effect of geostrophic eddies by means of a ``bolus'' | 
| 82 | 
  | 
  | 
velocity, $\bf{u}^*$. The divergence of this advective flux is added | 
| 83 | 
  | 
  | 
to the tracer tendency equation (on the rhs): | 
| 84 | 
  | 
  | 
\begin{equation} | 
| 85 | 
  | 
  | 
- \bf{\nabla} \cdot \tau \bf{u}^* | 
| 86 | 
  | 
  | 
\end{equation} | 
| 87 | 
  | 
  | 
 | 
| 88 | 
  | 
  | 
The bolus velocity is defined as: | 
| 89 | 
  | 
  | 
\begin{eqnarray} | 
| 90 | 
  | 
  | 
u^* & = & - \partial_z F_x \\ | 
| 91 | 
  | 
  | 
v^* & = & - \partial_z F_y \\ | 
| 92 | 
  | 
  | 
w^* & = & \partial_x F_x + \partial_y F_y | 
| 93 | 
  | 
  | 
\end{eqnarray} | 
| 94 | 
  | 
  | 
where $F_x$ and $F_y$ are stream-functions with boundary conditions | 
| 95 | 
  | 
  | 
$F_x=F_y=0$ on upper and lower boundaries. The virtue of casting the | 
| 96 | 
  | 
  | 
bolus velocity in terms of these stream-functions is that they are | 
| 97 | 
  | 
  | 
automatically non-divergent ($\partial_x u^* + \partial_y v^* = - | 
| 98 | 
  | 
  | 
\partial_{xz} F_x - \partial_{yz} F_y = - \partial_z w^*$). $F_x$ and | 
| 99 | 
  | 
  | 
$F_y$ are specified in terms of the isoneutral slopes $S_x$ and $S_y$: | 
| 100 | 
  | 
  | 
\begin{eqnarray} | 
| 101 | 
  | 
  | 
F_x & = & \kappa_{GM} S_x \\ | 
| 102 | 
  | 
  | 
F_y & = & \kappa_{GM} S_y | 
| 103 | 
  | 
  | 
\end{eqnarray} | 
| 104 | 
  | 
  | 
This is the form of the GM parameterization as applied by Donabasaglu, | 
| 105 | 
  | 
  | 
1997, in MOM versions 1 and 2. | 
| 106 | 
  | 
  | 
 | 
| 107 | 
molod | 
1.10 | 
\subsubsection{Griffies Skew Flux} | 
| 108 | 
adcroft | 
1.1 | 
 | 
| 109 | 
  | 
  | 
Griffies notes that the discretisation of bolus velocities involves | 
| 110 | 
  | 
  | 
multiple layers of differencing and interpolation that potentially | 
| 111 | 
  | 
  | 
lead to noisy fields and computational modes. He pointed out that the | 
| 112 | 
  | 
  | 
bolus flux can be re-written in terms of a non-divergent flux and a | 
| 113 | 
  | 
  | 
skew-flux: | 
| 114 | 
  | 
  | 
\begin{eqnarray*} | 
| 115 | 
  | 
  | 
\bf{u}^* \tau | 
| 116 | 
  | 
  | 
& = & | 
| 117 | 
  | 
  | 
\left( \begin{array}{c} | 
| 118 | 
  | 
  | 
- \partial_z ( \kappa_{GM} S_x ) \tau \\ | 
| 119 | 
  | 
  | 
- \partial_z ( \kappa_{GM} S_y ) \tau \\ | 
| 120 | 
  | 
  | 
(\partial_x \kappa_{GM} S_x + \partial_y \kappa_{GM} S_y)\tau | 
| 121 | 
  | 
  | 
\end{array} \right) | 
| 122 | 
  | 
  | 
\\ | 
| 123 | 
  | 
  | 
& = & | 
| 124 | 
  | 
  | 
\left( \begin{array}{c} | 
| 125 | 
  | 
  | 
- \partial_z ( \kappa_{GM} S_x \tau) \\ | 
| 126 | 
  | 
  | 
- \partial_z ( \kappa_{GM} S_y \tau) \\ | 
| 127 | 
  | 
  | 
\partial_x ( \kappa_{GM} S_x \tau) + \partial_y ( \kappa_{GM} S_y) \tau) | 
| 128 | 
  | 
  | 
\end{array} \right) | 
| 129 | 
  | 
  | 
+ \left( \begin{array}{c} | 
| 130 | 
  | 
  | 
 \kappa_{GM} S_x \partial_z \tau \\ | 
| 131 | 
  | 
  | 
 \kappa_{GM} S_y \partial_z \tau \\ | 
| 132 | 
  | 
  | 
- \kappa_{GM} S_x \partial_x \tau - \kappa_{GM} S_y) \partial_y \tau | 
| 133 | 
  | 
  | 
\end{array} \right) | 
| 134 | 
  | 
  | 
\end{eqnarray*} | 
| 135 | 
  | 
  | 
The first vector is non-divergent and thus has no effect on the tracer | 
| 136 | 
  | 
  | 
field and can be dropped. The remaining flux can be written: | 
| 137 | 
  | 
  | 
\begin{equation} | 
| 138 | 
  | 
  | 
\bf{u}^* \tau = - \kappa_{GM} \bf{K}_{GM} \bf{\nabla} \tau | 
| 139 | 
  | 
  | 
\end{equation} | 
| 140 | 
  | 
  | 
where | 
| 141 | 
  | 
  | 
\begin{equation} | 
| 142 | 
  | 
  | 
\bf{K}_{GM} = | 
| 143 | 
  | 
  | 
\left( | 
| 144 | 
  | 
  | 
\begin{array}{ccc} | 
| 145 | 
  | 
  | 
0 & 0 & -S_x \\ | 
| 146 | 
  | 
  | 
0 & 0 & -S_y \\ | 
| 147 | 
  | 
  | 
S_x & S_y & 0 | 
| 148 | 
  | 
  | 
\end{array} | 
| 149 | 
  | 
  | 
\right) | 
| 150 | 
  | 
  | 
\end{equation} | 
| 151 | 
  | 
  | 
is an anti-symmetric tensor. | 
| 152 | 
  | 
  | 
 | 
| 153 | 
  | 
  | 
This formulation of the GM parameterization involves fewer derivatives | 
| 154 | 
  | 
  | 
than the original and also involves only terms that already appear in | 
| 155 | 
  | 
  | 
the Redi mixing scheme. Indeed, a somewhat fortunate cancellation | 
| 156 | 
  | 
  | 
becomes apparent when we use the GM parameterization in conjunction | 
| 157 | 
  | 
  | 
with the Redi isoneutral mixing scheme: | 
| 158 | 
  | 
  | 
\begin{equation} | 
| 159 | 
  | 
  | 
\kappa_\rho \bf{K}_{Redi} \bf{\nabla} \tau | 
| 160 | 
  | 
  | 
- u^* \tau =  | 
| 161 | 
  | 
  | 
( \kappa_\rho \bf{K}_{Redi} + \kappa_{GM} \bf{K}_{GM} ) \bf{\nabla} \tau | 
| 162 | 
  | 
  | 
\end{equation} | 
| 163 | 
  | 
  | 
In the instance that $\kappa_{GM} = \kappa_{\rho}$ then | 
| 164 | 
  | 
  | 
\begin{equation} | 
| 165 | 
  | 
  | 
\kappa_\rho \bf{K}_{Redi} + \kappa_{GM} \bf{K}_{GM} = | 
| 166 | 
  | 
  | 
\kappa_\rho | 
| 167 | 
  | 
  | 
\left( \begin{array}{ccc} | 
| 168 | 
  | 
  | 
1 & 0 & 0 \\ | 
| 169 | 
  | 
  | 
0 & 1 & 0 \\ | 
| 170 | 
  | 
  | 
2 S_x & 2 S_y & |S|^2  | 
| 171 | 
  | 
  | 
\end{array} | 
| 172 | 
  | 
  | 
\right) | 
| 173 | 
  | 
  | 
\end{equation} | 
| 174 | 
cnh | 
1.3 | 
which differs from the variable Laplacian diffusion tensor by only | 
| 175 | 
adcroft | 
1.1 | 
two non-zero elements in the $z$-row. | 
| 176 | 
  | 
  | 
 | 
| 177 | 
adcroft | 
1.2 | 
\fbox{ \begin{minipage}{4.75in} | 
| 178 | 
  | 
  | 
{\em S/R GMREDI\_CALC\_TENSOR} ({\em pkg/gmredi/gmredi\_calc\_tensor.F}) | 
| 179 | 
  | 
  | 
 | 
| 180 | 
  | 
  | 
$\sigma_x$: {\bf SlopeX} (argument on entry) | 
| 181 | 
  | 
  | 
 | 
| 182 | 
  | 
  | 
$\sigma_y$: {\bf SlopeY} (argument on entry) | 
| 183 | 
  | 
  | 
 | 
| 184 | 
  | 
  | 
$\sigma_z$: {\bf SlopeY} (argument) | 
| 185 | 
  | 
  | 
 | 
| 186 | 
  | 
  | 
$S_x$: {\bf SlopeX} (argument on exit) | 
| 187 | 
  | 
  | 
 | 
| 188 | 
  | 
  | 
$S_y$: {\bf SlopeY} (argument on exit) | 
| 189 | 
  | 
  | 
 | 
| 190 | 
  | 
  | 
\end{minipage} } | 
| 191 | 
  | 
  | 
 | 
| 192 | 
  | 
  | 
 | 
| 193 | 
  | 
  | 
 | 
| 194 | 
molod | 
1.10 | 
\subsubsection{Variable $\kappa_{GM}$} | 
| 195 | 
adcroft | 
1.1 | 
 | 
| 196 | 
  | 
  | 
Visbeck et al., 1996, suggest making the eddy coefficient, | 
| 197 | 
  | 
  | 
$\kappa_{GM}$, a function of the Eady growth rate, | 
| 198 | 
  | 
  | 
$|f|/\sqrt{Ri}$. The formula involves a non-dimensional constant, | 
| 199 | 
  | 
  | 
$\alpha$, and a length-scale $L$: | 
| 200 | 
  | 
  | 
\begin{displaymath} | 
| 201 | 
  | 
  | 
\kappa_{GM} = \alpha L^2 \overline{ \frac{|f|}{\sqrt{Ri}} }^z | 
| 202 | 
  | 
  | 
\end{displaymath} | 
| 203 | 
  | 
  | 
where the Eady growth rate has been depth averaged (indicated by the | 
| 204 | 
  | 
  | 
over-line). A local Richardson number is defined $Ri = N^2 / (\partial | 
| 205 | 
  | 
  | 
u/\partial z)^2$ which, when combined with thermal wind gives: | 
| 206 | 
  | 
  | 
\begin{displaymath} | 
| 207 | 
  | 
  | 
\frac{1}{Ri} = \frac{(\frac{\partial u}{\partial z})^2}{N^2} = | 
| 208 | 
  | 
  | 
\frac{ ( \frac{g}{f \rho_o} | {\bf \nabla} \sigma | )^2 }{N^2} = | 
| 209 | 
  | 
  | 
\frac{ M^4 }{ |f|^2 N^2 } | 
| 210 | 
  | 
  | 
\end{displaymath} | 
| 211 | 
  | 
  | 
where $M^2$ is defined $M^2 = \frac{g}{\rho_o} |{\bf \nabla} \sigma|$. | 
| 212 | 
  | 
  | 
Substituting into the formula for $\kappa_{GM}$ gives: | 
| 213 | 
  | 
  | 
\begin{displaymath} | 
| 214 | 
  | 
  | 
\kappa_{GM} = \alpha L^2 \overline{ \frac{M^2}{N} }^z = | 
| 215 | 
  | 
  | 
\alpha L^2 \overline{ \frac{M^2}{N^2} N }^z = | 
| 216 | 
  | 
  | 
\alpha L^2 \overline{ |S| N }^z | 
| 217 | 
  | 
  | 
\end{displaymath} | 
| 218 | 
  | 
  | 
 | 
| 219 | 
  | 
  | 
 | 
| 220 | 
molod | 
1.10 | 
\subsubsection{Tapering and stability} | 
| 221 | 
adcroft | 
1.1 | 
 | 
| 222 | 
  | 
  | 
Experience with the GFDL model showed that the GM scheme has to be | 
| 223 | 
  | 
  | 
matched to the convective parameterization. This was originally | 
| 224 | 
  | 
  | 
expressed in connection with the introduction of the KPP boundary | 
| 225 | 
cnh | 
1.3 | 
layer scheme (Large et al., 97) but in fact, as subsequent experience | 
| 226 | 
adcroft | 
1.1 | 
with the MIT model has found, is necessary for any convective | 
| 227 | 
  | 
  | 
parameterization. | 
| 228 | 
  | 
  | 
 | 
| 229 | 
  | 
  | 
\fbox{ \begin{minipage}{4.75in} | 
| 230 | 
  | 
  | 
{\em S/R GMREDI\_SLOPE\_LIMIT} ({\em | 
| 231 | 
  | 
  | 
pkg/gmredi/gmredi\_slope\_limit.F}) | 
| 232 | 
  | 
  | 
 | 
| 233 | 
  | 
  | 
$\sigma_x, s_x$: {\bf SlopeX} (argument) | 
| 234 | 
  | 
  | 
 | 
| 235 | 
  | 
  | 
$\sigma_y, s_y$: {\bf SlopeY} (argument) | 
| 236 | 
  | 
  | 
 | 
| 237 | 
  | 
  | 
$\sigma_z$: {\bf dSigmadRReal} (argument) | 
| 238 | 
  | 
  | 
 | 
| 239 | 
  | 
  | 
$z_\sigma^{*}$: {\bf dRdSigmaLtd} (argument) | 
| 240 | 
  | 
  | 
 | 
| 241 | 
  | 
  | 
\end{minipage} } | 
| 242 | 
  | 
  | 
 | 
| 243 | 
adcroft | 
1.2 | 
\begin{figure} | 
| 244 | 
  | 
  | 
\begin{center} | 
| 245 | 
  | 
  | 
\resizebox{5.0in}{3.0in}{\includegraphics{part6/tapers.eps}} | 
| 246 | 
  | 
  | 
\end{center} | 
| 247 | 
adcroft | 
1.5 | 
\caption{Taper functions used in GKW99 and DM95.} | 
| 248 | 
adcroft | 
1.2 | 
\label{fig:tapers} | 
| 249 | 
  | 
  | 
\end{figure} | 
| 250 | 
  | 
  | 
 | 
| 251 | 
  | 
  | 
\begin{figure} | 
| 252 | 
  | 
  | 
\begin{center} | 
| 253 | 
  | 
  | 
\resizebox{5.0in}{3.0in}{\includegraphics{part6/effective_slopes.eps}} | 
| 254 | 
  | 
  | 
\end{center} | 
| 255 | 
  | 
  | 
\caption{Effective slope as a function of ``true'' slope using Cox | 
| 256 | 
  | 
  | 
slope clipping, GKW91 limiting and DM95 limiting.} | 
| 257 | 
  | 
  | 
\label{fig:effective_slopes} | 
| 258 | 
  | 
  | 
\end{figure} | 
| 259 | 
  | 
  | 
 | 
| 260 | 
adcroft | 
1.1 | 
 | 
| 261 | 
molod | 
1.10 | 
Slope clipping: | 
| 262 | 
adcroft | 
1.1 | 
 | 
| 263 | 
  | 
  | 
Deep convection sites and the mixed layer are indicated by | 
| 264 | 
  | 
  | 
homogenized, unstable or nearly unstable stratification. The slopes in | 
| 265 | 
  | 
  | 
such regions can be either infinite, very large with a sign reversal | 
| 266 | 
  | 
  | 
or simply very large. From a numerical point of view, large slopes | 
| 267 | 
  | 
  | 
lead to large variations in the tensor elements (implying large bolus | 
| 268 | 
cnh | 
1.3 | 
flow) and can be numerically unstable. This was first recognized by | 
| 269 | 
adcroft | 
1.1 | 
Cox, 1987, who implemented ``slope clipping'' in the isopycnal mixing | 
| 270 | 
  | 
  | 
tensor. Here, the slope magnitude is simply restricted by an upper | 
| 271 | 
  | 
  | 
limit: | 
| 272 | 
  | 
  | 
\begin{eqnarray} | 
| 273 | 
  | 
  | 
|\nabla \sigma| & = & \sqrt{ \sigma_x^2 + \sigma_y^2 } \\ | 
| 274 | 
  | 
  | 
S_{lim} & = & - \frac{|\nabla \sigma|}{ S_{max} } | 
| 275 | 
  | 
  | 
\;\;\;\;\;\;\;\; \mbox{where $S_{max}$ is a parameter} \\ | 
| 276 | 
  | 
  | 
\sigma_z^\star & = & \min( \sigma_z , S_{lim} ) \\ | 
| 277 | 
  | 
  | 
{[s_x,s_y]} & = & - \frac{ [\sigma_x,\sigma_y] }{\sigma_z^\star} | 
| 278 | 
  | 
  | 
\end{eqnarray} | 
| 279 | 
  | 
  | 
Notice that this algorithm assumes stable stratification through the | 
| 280 | 
  | 
  | 
``min'' function. In the case where the fluid is well stratified ($\sigma_z < S_{lim}$) then the slopes evaluate to: | 
| 281 | 
  | 
  | 
\begin{equation} | 
| 282 | 
  | 
  | 
{[s_x,s_y]} = - \frac{ [\sigma_x,\sigma_y] }{\sigma_z} | 
| 283 | 
  | 
  | 
\end{equation} | 
| 284 | 
  | 
  | 
while in the limited regions ($\sigma_z > S_{lim}$) the slopes become: | 
| 285 | 
  | 
  | 
\begin{equation} | 
| 286 | 
  | 
  | 
{[s_x,s_y]} = \frac{ [\sigma_x,\sigma_y] }{|\nabla \sigma|/S_{max}} | 
| 287 | 
  | 
  | 
\end{equation} | 
| 288 | 
  | 
  | 
so that the slope magnitude is limited $\sqrt{s_x^2 + s_y^2} = | 
| 289 | 
  | 
  | 
S_{max}$. | 
| 290 | 
  | 
  | 
 | 
| 291 | 
  | 
  | 
The slope clipping scheme is activated in the model by setting {\bf | 
| 292 | 
  | 
  | 
GM\_tap\-er\_scheme = 'clipping'} in {\em data.gmredi}. | 
| 293 | 
  | 
  | 
 | 
| 294 | 
  | 
  | 
Even using slope clipping, it is normally the case that the vertical | 
| 295 | 
  | 
  | 
diffusion term (with coefficient $\kappa_\rho{\bf K}_{33} = | 
| 296 | 
  | 
  | 
\kappa_\rho S_{max}^2$) is large and must be time-stepped using an | 
| 297 | 
  | 
  | 
implicit procedure (see section on discretisation and code later). | 
| 298 | 
  | 
  | 
Fig. \ref{fig-mixedlayer} shows the mixed layer depth resulting from | 
| 299 | 
  | 
  | 
a) using the GM scheme with clipping and b) no GM scheme (horizontal | 
| 300 | 
  | 
  | 
diffusion). The classic result of dramatically reduced mixed layers is | 
| 301 | 
  | 
  | 
evident. Indeed, the deep convection sites to just one or two points | 
| 302 | 
  | 
  | 
each and are much shallower than we might prefer. This, it turns out, | 
| 303 | 
cnh | 
1.3 | 
is due to the over zealous re-stratification due to the bolus transport | 
| 304 | 
adcroft | 
1.1 | 
parameterization. Limiting the slopes also breaks the adiabatic nature | 
| 305 | 
  | 
  | 
of the GM/Redi parameterization, re-introducing diabatic fluxes in | 
| 306 | 
  | 
  | 
regions where the limiting is in effect. | 
| 307 | 
  | 
  | 
 | 
| 308 | 
molod | 
1.10 | 
Tapering: Gerdes, Koberle and Willebrand, Clim. Dyn. 1991: | 
| 309 | 
adcroft | 
1.1 | 
 | 
| 310 | 
adcroft | 
1.5 | 
The tapering scheme used in Gerdes et al., 1999, (\cite{gkw:99}) | 
| 311 | 
adcroft | 
1.1 | 
addressed two issues with the clipping method: the introduction of | 
| 312 | 
  | 
  | 
large vertical fluxes in addition to convective adjustment fluxes is | 
| 313 | 
  | 
  | 
avoided by tapering the GM/Redi slopes back to zero in | 
| 314 | 
  | 
  | 
low-stratification regions; the adjustment of slopes is replaced by a | 
| 315 | 
  | 
  | 
tapering of the entire GM/Redi tensor. This means the direction of | 
| 316 | 
  | 
  | 
fluxes is unaffected as the amplitude is scaled. | 
| 317 | 
  | 
  | 
 | 
| 318 | 
  | 
  | 
The scheme inserts a tapering function, $f_1(S)$, in front of the | 
| 319 | 
  | 
  | 
GM/Redi tensor: | 
| 320 | 
  | 
  | 
\begin{equation} | 
| 321 | 
  | 
  | 
f_1(S) = \min \left[ 1, \left( \frac{S_{max}}{|S|}\right)^2 \right] | 
| 322 | 
  | 
  | 
\end{equation} | 
| 323 | 
  | 
  | 
where $S_{max}$ is the maximum slope you want allowed. Where the | 
| 324 | 
  | 
  | 
slopes, $|S|<S_{max}$ then $f_1(S) = 1$ and the tensor is un-tapered | 
| 325 | 
  | 
  | 
but where $|S| \ge S_{max}$ then $f_1(S)$ scales down the tensor so | 
| 326 | 
  | 
  | 
that the effective vertical diffusivity term $\kappa f_1(S) |S|^2 = | 
| 327 | 
  | 
  | 
\kappa S_{max}^2$. | 
| 328 | 
  | 
  | 
 | 
| 329 | 
  | 
  | 
The GKW tapering scheme is activated in the model by setting {\bf | 
| 330 | 
  | 
  | 
GM\_tap\-er\_scheme = 'gkw91'} in {\em data.gmredi}. | 
| 331 | 
  | 
  | 
 | 
| 332 | 
molod | 
1.10 | 
\subsubsection{Tapering: Danabasoglu and McWilliams, J. Clim. 1995} | 
| 333 | 
adcroft | 
1.1 | 
 | 
| 334 | 
  | 
  | 
The tapering scheme used by Danabasoglu and McWilliams, 1995, | 
| 335 | 
adcroft | 
1.5 | 
\cite{dm:95}, followed a similar procedure but used a different | 
| 336 | 
adcroft | 
1.1 | 
tapering function, $f_1(S)$: | 
| 337 | 
  | 
  | 
\begin{equation} | 
| 338 | 
  | 
  | 
f_1(S) = \frac{1}{2} \left( 1+\tanh \left[ \frac{S_c - |S|}{S_d} \right] \right) | 
| 339 | 
  | 
  | 
\end{equation} | 
| 340 | 
  | 
  | 
where $S_c = 0.004$ is a cut-off slope and $S_d=0.001$ is a scale over | 
| 341 | 
  | 
  | 
which the slopes are smoothly tapered. Functionally, the operates in | 
| 342 | 
  | 
  | 
the same way as the GKW91 scheme but has a substantially lower | 
| 343 | 
  | 
  | 
cut-off, turning off the GM/Redi SGS parameterization for weaker | 
| 344 | 
  | 
  | 
slopes. | 
| 345 | 
  | 
  | 
 | 
| 346 | 
  | 
  | 
The DM tapering scheme is activated in the model by setting {\bf | 
| 347 | 
  | 
  | 
GM\_tap\-er\_scheme = 'dm95'} in {\em data.gmredi}. | 
| 348 | 
  | 
  | 
 | 
| 349 | 
molod | 
1.10 | 
\subsubsection{Tapering: Large, Danabasoglu and Doney, JPO 1997} | 
| 350 | 
adcroft | 
1.1 | 
 | 
| 351 | 
adcroft | 
1.5 | 
The tapering used in Large et al., 1997, \cite{ldd:97}, is based on the | 
| 352 | 
adcroft | 
1.1 | 
DM95 tapering scheme, but also tapers the scheme with an additional | 
| 353 | 
  | 
  | 
function of height, $f_2(z)$, so that the GM/Redi SGS fluxes are | 
| 354 | 
  | 
  | 
reduced near the surface: | 
| 355 | 
  | 
  | 
\begin{equation} | 
| 356 | 
  | 
  | 
f_2(S) = \frac{1}{2} \left( 1 + \sin(\pi \frac{z}{D} - \pi/2)\right) | 
| 357 | 
  | 
  | 
\end{equation} | 
| 358 | 
  | 
  | 
where $D = L_\rho |S|$ is a depth-scale and $L_\rho=c/f$ with | 
| 359 | 
  | 
  | 
$c=2$~m~s$^{-1}$.  This tapering with height was introduced to fix | 
| 360 | 
  | 
  | 
some spurious interaction with the mixed-layer KPP parameterization. | 
| 361 | 
  | 
  | 
 | 
| 362 | 
  | 
  | 
The LDD tapering scheme is activated in the model by setting {\bf | 
| 363 | 
  | 
  | 
GM\_tap\-er\_scheme = 'ldd97'} in {\em data.gmredi}. | 
| 364 | 
  | 
  | 
 | 
| 365 | 
  | 
  | 
 | 
| 366 | 
  | 
  | 
 | 
| 367 | 
adcroft | 
1.2 | 
 | 
| 368 | 
adcroft | 
1.1 | 
\begin{figure} | 
| 369 | 
adcroft | 
1.4 | 
\begin{center} | 
| 370 | 
adcroft | 
1.1 | 
%\includegraphics{mixedlayer-cox.eps} | 
| 371 | 
  | 
  | 
%\includegraphics{mixedlayer-diff.eps} | 
| 372 | 
adcroft | 
1.4 | 
Figure missing. | 
| 373 | 
  | 
  | 
\end{center} | 
| 374 | 
adcroft | 
1.1 | 
\caption{Mixed layer depth using GM parameterization with a) Cox slope | 
| 375 | 
  | 
  | 
clipping and for comparison b) using horizontal constant diffusion.} | 
| 376 | 
adcroft | 
1.4 | 
\label{fig-mixedlayer} | 
| 377 | 
adcroft | 
1.1 | 
\end{figure} | 
| 378 | 
  | 
  | 
 | 
| 379 | 
molod | 
1.10 | 
\subsubsection{Package Reference} | 
| 380 | 
molod | 
1.11 | 
\label{sec:pkg:gmredi:diagnostics} | 
| 381 | 
  | 
  | 
 | 
| 382 | 
  | 
  | 
\begin{verbatim} | 
| 383 | 
  | 
  | 
------------------------------------------------------------------------ | 
| 384 | 
  | 
  | 
<-Name->|Levs|<-parsing code->|<--  Units   -->|<- Tile (max=80c)  | 
| 385 | 
  | 
  | 
------------------------------------------------------------------------ | 
| 386 | 
  | 
  | 
GM_VisbK|  1 |SM P    M1      |m^2/s           |Mixing coefficient from Visbeck etal parameterization | 
| 387 | 
  | 
  | 
GM_Kux  | 15 |UU P 177MR      |m^2/s           |K_11 element (U.point, X.dir) of GM-Redi tensor | 
| 388 | 
  | 
  | 
GM_Kvy  | 15 |VV P 176MR      |m^2/s           |K_22 element (V.point, Y.dir) of GM-Redi tensor | 
| 389 | 
  | 
  | 
GM_Kuz  | 15 |UU   179MR      |m^2/s           |K_13 element (U.point, Z.dir) of GM-Redi tensor | 
| 390 | 
  | 
  | 
GM_Kvz  | 15 |VV   178MR      |m^2/s           |K_23 element (V.point, Z.dir) of GM-Redi tensor | 
| 391 | 
  | 
  | 
GM_Kwx  | 15 |UM   181LR      |m^2/s           |K_31 element (W.point, X.dir) of GM-Redi tensor | 
| 392 | 
  | 
  | 
GM_Kwy  | 15 |VM   180LR      |m^2/s           |K_32 element (W.point, Y.dir) of GM-Redi tensor | 
| 393 | 
  | 
  | 
GM_Kwz  | 15 |WM P    LR      |m^2/s           |K_33 element (W.point, Z.dir) of GM-Redi tensor | 
| 394 | 
  | 
  | 
GM_PsiX | 15 |UU   184LR      |m^2/s           |GM Bolus transport stream-function : X component | 
| 395 | 
  | 
  | 
GM_PsiY | 15 |VV   183LR      |m^2/s           |GM Bolus transport stream-function : Y component | 
| 396 | 
  | 
  | 
GM_KuzTz| 15 |UU   186MR      |degC.m^3/s      |Redi Off-diagonal Tempetature flux: X component | 
| 397 | 
  | 
  | 
GM_KvzTz| 15 |VV   185MR      |degC.m^3/s      |Redi Off-diagonal Tempetature flux: Y component | 
| 398 | 
  | 
  | 
\end{verbatim} | 
| 399 | 
  | 
  | 
 | 
| 400 | 
  | 
  | 
\subsubsection{Package Reference} | 
| 401 | 
cnh | 
1.6 | 
% DO NOT EDIT HERE | 
| 402 | 
adcroft | 
1.1 | 
 | 
| 403 | 
  | 
  | 
 | 
| 404 | 
  | 
  | 
 |