/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.9 - (show annotations) (download) (as text)
Mon Jul 18 20:45:27 2005 UTC (20 years ago) by molod
Branch: MAIN
Changes since 1.8: +17 -15 lines
File MIME type: application/x-tex
Reorganization of chap 6 and 7 -- move some tex files, demote many
sections in section hierarchy

1 \subsection{Fizhi: High-end Atmospheric Physics}
2 \label{sec:pkg:fizhi}
3 \begin{rawhtml}
4 <!-- CMIREDIR:package_fizhi: -->
5 \end{rawhtml}
6 \input{texinputs/epsf.tex}
7
8 \subsubsection{Introduction}
9 The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art
10 physical parameterizations for atmospheric radiation, cumulus convection, atmospheric
11 boundary layer turbulence, and land surface processes.
12
13 % *************************************************************************
14 % *************************************************************************
15
16 \subsubsection{Equations}
17
18 Moist Convective Processes:
19
20 \paragraph{Sub-grid and Large-scale Convection}
21 \label{sec:fizhi:mc}
22
23 Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa
24 Schubert (RAS) scheme of Moorthi and Suarez (1992), which is a linearized Arakawa Schubert
25 type scheme. RAS predicts the mass flux from an ensemble of clouds. Each subensemble is identified
26 by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties.
27
28 The thermodynamic variables that are used in RAS to describe the grid scale vertical profile are
29 the dry static energy, $s=c_pT +gz$, and the moist static energy, $h=c_p T + gz + Lq$.
30 The conceptual model behind RAS depicts each subensemble as a rising plume cloud, entraining
31 mass from the environment during ascent, and detraining all cloud air at the level of neutral
32 buoyancy. RAS assumes that the normalized cloud mass flux, $\eta$, normalized by the cloud base
33 mass flux, is a linear function of height, expressed as:
34 \[
35 \pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =
36 -{c_p \over {g}}\theta\lambda
37 \]
38 where we have used the hydrostatic equation written in the form:
39 \[
40 \pp{z}{P^{\kappa}} = -{c_p \over {g}}\theta
41 \]
42
43 The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its
44 detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral
45 buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal
46 to the saturation moist static energy of the environment, $h^*$. Following Moorthi and Suarez (1992),
47 $\lambda$ may be written as
48 \[
49 \lambda = { {h_B - h^*_D} \over { {c_p \over g} {\int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}} } ,
50 \]
51
52 where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level.
53
54
55 The convective instability is measured in terms of the cloud work function $A$, defined as the
56 rate of change of cumulus kinetic energy. The cloud work function is
57 related to the buoyancy, or the difference
58 between the moist static energy in the cloud and in the environment:
59 \[
60 A = \int_{P_D}^{P_B} { {\eta \over {1 + \gamma} }
61 \left[ {{h_c-h^*} \over {P^{\kappa}}} \right] dP^{\kappa}}
62 \]
63
64 where $\gamma$ is ${L \over {c_p}}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation,
65 and the subscript $c$ refers to the value inside the cloud.
66
67
68 To determine the cloud base mass flux, the rate of change of $A$ in time {\em due to dissipation by
69 the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation
70 by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$:
71 \[
72 m_B = {{- \left.{dA \over dt} \right|_{ls}} \over K}
73 \]
74
75 where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per
76 unit cloud base mass flux, and is currently obtained by analytically differentiating the
77 expression for $A$ in time.
78 The rate of change of $A$ due to the generation by the large scale can be written as the
79 difference between the current $A(t+\Delta t)$ and its equillibrated value after the previous
80 convective time step
81 $A(t)$, divided by the time step. $A(t)$ is approximated as some critical $A_{crit}$,
82 computed by Lord (1982) from $in situ$ observations.
83
84
85 The predicted convective mass fluxes are used to solve grid-scale temperature
86 and moisture budget equations to determine the impact of convection on the large scale fields of
87 temperature (through latent heating and compensating subsidence) and moisture (through
88 precipitation and detrainment):
89 \[
90 \left.{\pp{\theta}{t}}\right|_{c} = \alpha { m_B \over {c_p P^{\kappa}}} \eta \pp{s}{p}
91 \]
92 and
93 \[
94 \left.{\pp{q}{t}}\right|_{c} = \alpha { m_B \over {L}} \eta (\pp{h}{p}-\pp{s}{p})
95 \]
96 where $\theta = {T \over P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter.
97
98 As an approximation to a full interaction between the different allowable subensembles,
99 many clouds are simulated frequently, each modifying the large scale environment some fraction
100 $\alpha$ of the total adjustment. The parameterization thereby ``relaxes'' the large scale environment
101 towards equillibrium.
102
103 In addition to the RAS cumulus convection scheme, the fizhi package employs a
104 Kessler-type scheme for the re-evaporation of falling rain (Sud and Molod, 1988), which
105 correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current
106 formulation assumes that all cloud water is deposited into the detrainment level as rain.
107 All of the rain is available for re-evaporation, which begins in the level below detrainment.
108 The scheme accounts for some microphysics such as
109 the rainfall intensity, the drop size distribution, as well as the temperature,
110 pressure and relative humidity of the surrounding air. The fraction of the moisture deficit
111 in any model layer into which the rain may re-evaporate is controlled by a free parameter,
112 which allows for a relatively efficient re-evaporation of liquid precipitate and larger rainout
113 for frozen precipitation.
114
115 Due to the increased vertical resolution near the surface, the lowest model
116 layers are averaged to provide a 50 mb thick sub-cloud layer for RAS. Each time RAS is
117 invoked (every ten simulated minutes),
118 a number of randomly chosen subensembles are checked for the possibility
119 of convection, from just above cloud base to 10 mb.
120
121 Supersaturation or large-scale precipitation is initiated in the fizhi package whenever
122 the relative humidity in any grid-box exceeds a critical value, currently 100 \%.
123 The large-scale precipitation re-evaporates during descent to partially saturate
124 lower layers in a process identical to the re-evaporation of convective rain.
125
126
127 \paragraph{Cloud Formation}
128 \label{sec:fizhi:clouds}
129
130 Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined
131 diagnostically as part of the cumulus and large-scale parameterizations.
132 Convective cloud fractions produced by RAS are proportional to the
133 detrained liquid water amount given by
134
135 \[
136 F_{RAS} = \min\left[ {l_{RAS}\over l_c}, 1.0 \right]
137 \]
138
139 where $l_c$ is an assigned critical value equal to $1.25$ g/kg.
140 A memory is associated with convective clouds defined by:
141
142 \[
143 F_{RAS}^n = \min\left[ F_{RAS} + (1-{\Delta t_{RAS}\over\tau})F_{RAS}^{n-1}, 1.0 \right]
144 \]
145
146 where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction
147 from the previous RAS timestep. The memory coefficient is computed using a RAS cloud timescale,
148 $\tau$, equal to 1 hour. RAS cloud fractions are cleared when they fall below 5 \%.
149
150 Large-scale cloudiness is defined, following Slingo and Ritter (1985), as a function of relative
151 humidity:
152
153 \[
154 F_{LS} = \min\left[ { \left( {RH-RH_c \over 1-RH_c} \right) }^2, 1.0 \right]
155 \]
156
157 where
158
159 \bqa
160 RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\
161 s & = & p/p_{surf} \nonumber \\
162 r & = & \left( {1.0-RH_{min} \over \alpha} \right) \nonumber \\
163 RH_{min} & = & 0.75 \nonumber \\
164 \alpha & = & 0.573285 \nonumber .
165 \eqa
166
167 These cloud fractions are suppressed, however, in regions where the convective
168 sub-cloud layer is conditionally unstable. The functional form of $RH_c$ is shown in
169 Figure (\ref{fig:fizhi:rhcrit}).
170
171 \begin{figure*}[htbp]
172 \vspace{0.4in}
173 \centerline{ \epsfysize=4.0in \epsfbox{part6/rhcrit.ps}}
174 \vspace{0.4in}
175 \caption [Critical Relative Humidity for Clouds.]
176 {Critical Relative Humidity for Clouds.}
177 \label{fig:fizhi:rhcrit}
178 \end{figure*}
179
180 The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:
181
182 \[
183 F_{CLD} = \max \left[ F_{RAS},F_{LS} \right] .
184 \]
185
186 Finally, cloud fractions are time-averaged between calls to the radiation packages.
187
188
189 Radiation:
190
191 The parameterization of radiative heating in the fizhi package includes effects
192 from both shortwave and longwave processes.
193 Radiative fluxes are calculated at each
194 model edge-level in both up and down directions.
195 The heating rates/cooling rates are then obtained
196 from the vertical divergence of the net radiative fluxes.
197
198 The net flux is
199 \[
200 F = F^\uparrow - F^\downarrow
201 \]
202 where $F$ is the net flux, $F^\uparrow$ is the upward flux and $F^\downarrow$ is
203 the downward flux.
204
205 The heating rate due to the divergence of the radiative flux is given by
206 \[
207 \pp{\rho c_p T}{t} = - \pp{F}{z}
208 \]
209 or
210 \[
211 \pp{T}{t} = \frac{g}{c_p \pi} \pp{F}{\sigma}
212 \]
213 where $g$ is the accelation due to gravity
214 and $c_p$ is the heat capacity of air at constant pressure.
215
216 The time tendency for Longwave
217 Radiation is updated every 3 hours. The time tendency for Shortwave Radiation is updated once
218 every three hours assuming a normalized incident solar radiation, and subsequently modified at
219 every model time step by the true incident radiation.
220 The solar constant value used in the package is equal to 1365 $W/m^2$
221 and a $CO_2$ mixing ratio of 330 ppm.
222 For the ozone mixing ratio, monthly mean zonally averaged
223 climatological values specified as a function
224 of latitude and height (Rosenfield, et al., 1987) are linearly interpolated to the current time.
225
226
227 \paragraph{Shortwave Radiation}
228
229 The shortwave radiation package used in the package computes solar radiative
230 heating due to the absoption by water vapor, ozone, carbon dioxide, oxygen,
231 clouds, and aerosols and due to the
232 scattering by clouds, aerosols, and gases.
233 The shortwave radiative processes are described by
234 Chou (1990,1992). This shortwave package
235 uses the Delta-Eddington approximation to compute the
236 bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986).
237 The transmittance and reflectance of diffuse radiation
238 follow the procedures of Sagan and Pollock (JGR, 1967) and Lacis and Hansen (JAS, 1974).
239
240 Highly accurate heating rate calculations are obtained through the use
241 of an optimal grouping strategy of spectral bands. By grouping the UV and visible regions
242 as indicated in Table \ref{tab:fizhi:solar2}, the Rayleigh scattering and the ozone absorption of solar radiation
243 can be accurately computed in the ultraviolet region and the photosynthetically
244 active radiation (PAR) region.
245 The computation of solar flux in the infrared region is performed with a broadband
246 parameterization using the spectrum regions shown in Table \ref{tab:fizhi:solar1}.
247 The solar radiation algorithm used in the fizhi package can be applied not only for climate studies but
248 also for studies on the photolysis in the upper atmosphere and the photosynthesis in the biosphere.
249
250 \begin{table}[htb]
251 \begin{center}
252 {\bf UV and Visible Spectral Regions} \\
253 \vspace{0.1in}
254 \begin{tabular}{|c|c|c|}
255 \hline
256 Region & Band & Wavelength (micron) \\ \hline
257 \hline
258 UV-C & 1. & .175 - .225 \\
259 & 2. & .225 - .245 \\
260 & & .260 - .280 \\
261 & 3. & .245 - .260 \\ \hline
262 UV-B & 4. & .280 - .295 \\
263 & 5. & .295 - .310 \\
264 & 6. & .310 - .320 \\ \hline
265 UV-A & 7. & .320 - .400 \\ \hline
266 PAR & 8. & .400 - .700 \\
267 \hline
268 \end{tabular}
269 \end{center}
270 \caption{UV and Visible Spectral Regions used in shortwave radiation package.}
271 \label{tab:fizhi:solar2}
272 \end{table}
273
274 \begin{table}[htb]
275 \begin{center}
276 {\bf Infrared Spectral Regions} \\
277 \vspace{0.1in}
278 \begin{tabular}{|c|c|c|}
279 \hline
280 Band & Wavenumber(cm$^{-1}$) & Wavelength (micron) \\ \hline
281 \hline
282 1 & 1000-4400 & 2.27-10.0 \\
283 2 & 4400-8200 & 1.22-2.27 \\
284 3 & 8200-14300 & 0.70-1.22 \\
285 \hline
286 \end{tabular}
287 \end{center}
288 \caption{Infrared Spectral Regions used in shortwave radiation package.}
289 \label{tab:fizhi:solar1}
290 \end{table}
291
292 Within the shortwave radiation package,
293 both ice and liquid cloud particles are allowed to co-exist in any of the model layers.
294 Two sets of cloud parameters are used, one for ice paticles and the other for liquid particles.
295 Cloud parameters are defined as the cloud optical thickness and the effective cloud particle size.
296 In the fizhi package, the effective radius for water droplets is given as 10 microns,
297 while 65 microns is used for ice particles. The absorption due to aerosols is currently
298 set to zero.
299
300 To simplify calculations in a cloudy atmosphere, clouds are
301 grouped into low ($p>700$ mb), middle (700 mb $\ge p > 400$ mb), and high ($p < 400$ mb) cloud regions.
302 Within each of the three regions, clouds are assumed maximally
303 overlapped, and the cloud cover of the group is the maximum
304 cloud cover of all the layers in the group. The optical thickness
305 of a given layer is then scaled for both the direct (as a function of the
306 solar zenith angle) and diffuse beam radiation
307 so that the grouped layer reflectance is the same as the original reflectance.
308 The solar flux is computed for each of the eight cloud realizations possible
309 (see Figure \ref{fig:fizhi:cloud}) within this
310 low/middle/high classification, and appropriately averaged to produce the net solar flux.
311
312 \begin{figure*}[htbp]
313 \vspace{0.4in}
314 \centerline{ \epsfysize=4.0in %\epsfbox{part6/rhcrit.ps}
315 }
316 \vspace{0.4in}
317 \caption {Low-Middle-High Cloud Configurations}
318 \label{fig:fizhi:cloud}
319 \end{figure*}
320
321
322 \paragraph{Longwave Radiation}
323
324 The longwave radiation package used in the fizhi package is thoroughly described by Chou and Suarez (1994).
325 As described in that document, IR fluxes are computed due to absorption by water vapor, carbon
326 dioxide, and ozone. The spectral bands together with their absorbers and parameterization methods,
327 configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}.
328
329
330 \begin{table}[htb]
331 \begin{center}
332 {\bf IR Spectral Bands} \\
333 \vspace{0.1in}
334 \begin{tabular}{|c|c|l|c| }
335 \hline
336 Band & Spectral Range (cm$^{-1}$) & Absorber & Method \\ \hline
337 \hline
338 1 & 0-340 & H$_2$O line & T \\ \hline
339 2 & 340-540 & H$_2$O line & T \\ \hline
340 3a & 540-620 & H$_2$O line & K \\
341 3b & 620-720 & H$_2$O continuum & S \\
342 3b & 720-800 & CO$_2$ & T \\ \hline
343 4 & 800-980 & H$_2$O line & K \\
344 & & H$_2$O continuum & S \\ \hline
345 & & H$_2$O line & K \\
346 5 & 980-1100 & H$_2$O continuum & S \\
347 & & O$_3$ & T \\ \hline
348 6 & 1100-1380 & H$_2$O line & K \\
349 & & H$_2$O continuum & S \\ \hline
350 7 & 1380-1900 & H$_2$O line & T \\ \hline
351 8 & 1900-3000 & H$_2$O line & K \\ \hline
352 \hline
353 \multicolumn{4}{|l|}{ \quad K: {\em k}-distribution method with linear pressure scaling } \\
354 \multicolumn{4}{|l|}{ \quad T: Table look-up with temperature and pressure scaling } \\
355 \multicolumn{4}{|l|}{ \quad S: One-parameter temperature scaling } \\
356 \hline
357 \end{tabular}
358 \end{center}
359 \vspace{0.1in}
360 \caption{IR Spectral Bands, Absorbers, and Parameterization Method (from Chou and Suarez, 1994)}
361 \label{tab:fizhi:longwave}
362 \end{table}
363
364
365 The longwave radiation package accurately computes cooling rates for the middle and
366 lower atmosphere from 0.01 mb to the surface. Errors are $<$ 0.4 C day$^{-1}$ in cooling
367 rates and $<$ 1\% in fluxes. From Chou and Suarez, it is estimated that the total effect of
368 neglecting all minor absorption bands and the effects of minor infrared absorbers such as
369 nitrous oxide (N$_2$O), methane (CH$_4$), and the chlorofluorocarbons (CFCs), is an underestimate
370 of $\approx$ 5 W/m$^2$ in the downward flux at the surface and an overestimate of $\approx$ 3 W/m$^2$
371 in the upward flux at the top of the atmosphere.
372
373 Similar to the procedure used in the shortwave radiation package, clouds are grouped into
374 three regions catagorized as low/middle/high.
375 The net clear line-of-site probability $(P)$ between any two levels, $p_1$ and $p_2 \quad (p_2 > p_1)$,
376 assuming randomly overlapped cloud groups, is simply the product of the probabilities within each group:
377
378 \[ P_{net} = P_{low} \times P_{mid} \times P_{hi} . \]
379
380 Since all clouds within a group are assumed maximally overlapped, the clear line-of-site probability within
381 a group is given by:
382
383 \[ P_{group} = 1 - F_{max} , \]
384
385 where $F_{max}$ is the maximum cloud fraction encountered between $p_1$ and $p_2$ within that group.
386 For groups and/or levels outside the range of $p_1$ and $p_2$, a clear line-of-site probability equal to 1 is
387 assigned.
388
389
390 \paragraph{Cloud-Radiation Interaction}
391 \label{sec:fizhi:radcloud}
392
393 The cloud fractions and diagnosed cloud liquid water produced by moist processes
394 within the fizhi package are used in the radiation packages to produce cloud-radiative forcing.
395 The cloud optical thickness associated with large-scale cloudiness is made
396 proportional to the diagnosed large-scale liquid water, $\ell$, detrained due to super-saturation.
397 Two values are used corresponding to cloud ice particles and water droplets.
398 The range of optical thickness for these clouds is given as
399
400 \[ 0.0002 \le \tau_{ice} (mb^{-1}) \le 0.002 \quad\mbox{for}\quad 0 \le \ell \le 2 \quad\mbox{mg/kg} , \]
401 \[ 0.02 \le \tau_{h_2o} (mb^{-1}) \le 0.2 \quad\mbox{for}\quad 0 \le \ell \le 10 \quad\mbox{mg/kg} . \]
402
403 The partitioning, $\alpha$, between ice particles and water droplets is achieved through a linear scaling
404 in temperature:
405
406 \[ 0 \le \alpha \le 1 \quad\mbox{for}\quad 233.15 \le T \le 253.15 . \]
407
408 The resulting optical depth associated with large-scale cloudiness is given as
409
410 \[ \tau_{LS} = \alpha \tau_{h_2o} + (1-\alpha)\tau_{ice} . \]
411
412 The optical thickness associated with sub-grid scale convective clouds produced by RAS is given as
413
414 \[ \tau_{RAS} = 0.16 \quad mb^{-1} . \]
415
416 The total optical depth in a given model layer is computed as a weighted average between
417 the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the
418 layer:
419
420 \[ \tau = \left( {F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} \over F_{RAS}+F_{LS} } \right) \Delta p, \]
421
422 where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale
423 processes described in Section \ref{sec:fizhi:clouds}.
424 The optical thickness for the longwave radiative feedback is assumed to be 75 $\%$ of these values.
425
426 The entire Moist Convective Processes Module is called with a frequency of 10 minutes.
427 The cloud fraction values are time-averaged over the period between Radiation calls (every 3
428 hours). Therefore, in a time-averaged sense, both convective and large-scale
429 cloudiness can exist in a given grid-box.
430
431 Turbulence:
432
433 Turbulence is parameterized in the fizhi package to account for its contribution to the
434 vertical exchange of heat, moisture, and momentum.
435 The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative
436 time scheme with an internal time step of 5 minutes.
437 The tendencies of atmospheric state variables due to turbulent diffusion are calculated using
438 the diffusion equations:
439
440 \[
441 {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
442 = {\pp{}{z} }{(K_m \pp{u}{z})}
443 \]
444 \[
445 {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
446 = {\pp{}{z} }{(K_m \pp{v}{z})}
447 \]
448 \[
449 {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
450 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
451 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
452 \]
453 \[
454 {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
455 = {\pp{}{z} }{(K_h \pp{q}{z})}
456 \]
457
458 Within the atmosphere, the time evolution
459 of second turbulent moments is explicitly modeled by representing the third moments in terms of
460 the first and second moments. This approach is known as a second-order closure modeling.
461 To simplify and streamline the computation of the second moments, the level 2.5 assumption
462 of Mellor and Yamada (1974) and Yamada (1977) is employed, in which only the turbulent
463 kinetic energy (TKE),
464
465 \[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \]
466
467 is solved prognostically and the other second moments are solved diagnostically.
468 The prognostic equation for TKE allows the scheme to simulate
469 some of the transient and diffusive effects in the turbulence. The TKE budget equation
470 is solved numerically using an implicit backward computation of the terms linear in $q^2$
471 and is written:
472
473 \[
474 {\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ {5 \over 3} {{\lambda}_1} q { \pp {}{z}
475 ({\h}q^2)} })} =
476 {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}
477 { \pp{V}{z} }} + {{g \over {\Theta_0}}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}} }
478 - { q^3 \over {{\Lambda} _1} }
479 \]
480
481 where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and
482 ${{\theta}^{\prime}}$ are the fluctuating parts of the velocity components and potential
483 temperature, $U$ and $V$ are the mean velocity components, ${\Theta_0}^{-1}$ is the
484 coefficient of thermal expansion, and ${{\lambda}_1}$ and ${{\Lambda} _1}$ are constant
485 multiples of the master length scale, $\ell$, which is designed to be a characteristic measure
486 of the vertical structure of the turbulent layers.
487
488 The first term on the left-hand side represents the time rate of change of TKE, and
489 the second term is a representation of the triple correlation, or turbulent
490 transport term. The first three terms on the right-hand side represent the sources of
491 TKE due to shear and bouyancy, and the last term on the right hand side is the dissipation
492 of TKE.
493
494 In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the
495 wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and
496 $K_m$, respectively. In the statisically realizable level 2.5 turbulence scheme of Helfand
497 and Labraga (1988), these diffusion coefficients are expressed as
498
499 \[
500 K_h
501 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}
502 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
503 \]
504
505 and
506
507 \[
508 K_m
509 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}
510 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
511 \]
512
513 where the subscript $e$ refers to the value under conditions of local equillibrium
514 (obtained from the Level 2.0 Model), $\ell$ is the master length scale related to the
515 vertical structure of the atmosphere,
516 and $S_M$ and $S_H$ are functions of $G_H$ and $G_M$, the dimensionless buoyancy and
517 wind shear parameters, respectively.
518 Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
519 are functions of the Richardson number:
520
521 \[
522 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
523 = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } .
524 \]
525
526 Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$)
527 indicate dominantly unstable shear, and large positive values indicate dominantly stable
528 stratification.
529
530 Turbulent eddy diffusion coefficients of momentum, heat and moisture in the surface layer,
531 which corresponds to the lowest GCM level (see \ref{tab:fizhi:sigma}),
532 are calculated using stability-dependant functions based on Monin-Obukhov theory:
533 \[
534 {K_m} (surface) = C_u \times u_* = C_D W_s
535 \]
536 and
537 \[
538 {K_h} (surface) = C_t \times u_* = C_H W_s
539 \]
540 where $u_*=C_uW_s$ is the surface friction velocity,
541 $C_D$ is termed the surface drag coefficient, $C_H$ the heat transfer coefficient,
542 and $W_s$ is the magnitude of the surface layer wind.
543
544 $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
545 similarity functions:
546 \[
547 {C_u} = {u_* \over W_s} = { k \over \psi_{m} }
548 \]
549 where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional
550 wind shear given by
551 \[
552 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} .
553 \]
554 Here $\zeta$ is the non-dimensional stability parameter, and
555 $\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of
556 the momentum gradient. The functional form of $\phi_m$ is specified differently for stable and unstable
557 layers.
558
559 $C_t$ is the dimensionless exchange coefficient for heat and
560 moisture from the surface layer similarity functions:
561 \[
562 {C_t} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
563 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
564 { k \over { (\psi_{h} + \psi_{g}) } }
565 \]
566 where $\psi_h$ is the surface layer non-dimensional temperature gradient given by
567 \[
568 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} .
569 \]
570 Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
571 the temperature and moisture gradients, and is specified differently for stable and unstable
572 layers according to Helfand and Schubert, 1995.
573
574 $\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer,
575 which is the mosstly laminar region between the surface and the tops of the roughness
576 elements, in which temperature and moisture gradients can be quite large.
577 Based on Yaglom and Kader (1974):
578 \[
579 \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
580 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
581 \]
582 where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the
583 surface roughness length, and the subscript {\em ref} refers to a reference value.
584 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
585
586 The surface roughness length over oceans is is a function of the surface-stress velocity,
587 \[
588 {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
589 \]
590 where the constants are chosen to interpolate between the reciprocal relation of
591 Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
592 for moderate to large winds. Roughness lengths over land are specified
593 from the climatology of Dorman and Sellers (1989).
594
595 For an unstable surface layer, the stability functions, chosen to interpolate between the
596 condition of small values of $\beta$ and the convective limit, are the KEYPS function
597 (Panofsky, 1973) for momentum, and its generalization for heat and moisture:
598 \[
599 {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}
600 {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .
601 \]
602 The function for heat and moisture assures non-vanishing heat and moisture fluxes as the wind
603 speed approaches zero.
604
605 For a stable surface layer, the stability functions are the observationally
606 based functions of Clarke (1970), slightly modified for
607 the momemtum flux:
608 \[
609 {\phi_m} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {{\zeta}_1}
610 (1+ 5 {{\zeta}_1}) } } \hspace{1cm} ; \hspace{1cm}
611 {\phi_h} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {\zeta}
612 (1+ 5 {{\zeta}_1}) } } .
613 \]
614 The moisture flux also depends on a specified evapotranspiration
615 coefficient, set to unity over oceans and dependant on the climatological ground wetness over
616 land.
617
618 Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically
619 using an implicit backward operator.
620
621 \paragraph{Atmospheric Boundary Layer}
622
623 The depth of the atmospheric boundary layer (ABL) is diagnosed by the parameterization as the
624 level at which the turbulent kinetic energy is reduced to a tenth of its maximum near surface value.
625 The vertical structure of the ABL is explicitly resolved by the lowest few (3-8) model layers.
626
627 \paragraph{Surface Energy Budget}
628
629 The ground temperature equation is solved as part of the turbulence package
630 using a backward implicit time differencing scheme:
631 \[
632 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
633 \]
634 where $R_{sw}$ is the net surface downward shortwave radiative flux and $R_{lw}$ is the
635 net surface upward longwave radiative flux.
636
637 $H$ is the upward sensible heat flux, given by:
638 \[
639 {H} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{NLAY})
640 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
641 \]
642 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
643 heat of air at constant pressure, and $\theta$ represents the potential temperature
644 of the surface and of the lowest $\sigma$-level, respectively.
645
646 The upward latent heat flux, $LE$, is given by
647 \[
648 {LE} = \rho \beta L C_{H} W_s (q_{surface} - q_{NLAY})
649 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
650 \]
651 where $\beta$ is the fraction of the potential evapotranspiration actually evaporated,
652 L is the latent heat of evaporation, and $q_{surface}$ and $q_{NLAY}$ are the specific
653 humidity of the surface and of the lowest $\sigma$-level, respectively.
654
655 The heat conduction through sea ice, $Q_{ice}$, is given by
656 \[
657 {Q_{ice}} = {C_{ti} \over {H_i}} (T_i-T_g)
658 \]
659 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
660 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the
661 surface temperature of the ice.
662
663 $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation
664 for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
665 \[
666 C_g = \sqrt{ {\lambda C_s \over 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
667 {86400 \over 2 \pi} } \, \, .
668 \]
669 Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ ${ly\over{ sec}}
670 {cm \over {^oK}}$,
671 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
672 by $2 \pi$ $radians/
673 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
674 is a function of the ground wetness, $W$.
675
676 Land Surface Processes:
677
678 \paragraph{Surface Type}
679 The fizhi package surface Types are designated using the Koster-Suarez (1992) mosaic
680 philosophy which allows multiple ``tiles'', or multiple surface types, in any one
681 grid cell. The Koster-Suarez Land Surface Model (LSM) surface type classifications
682 are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid
683 cell occupied by any surface type were derived from the surface classification of
684 Defries and Townshend (1994), and information about the location of permanent
685 ice was obtained from the classifications of Dorman and Sellers (1989).
686 The surface type for the \txt GCM grid is shown in Figure \ref{fig:fizhi:surftype}.
687 The determination of the land or sea category of surface type was made from NCAR's
688 10 minute by 10 minute Navy topography
689 dataset, which includes information about the percentage of water-cover at any point.
690 The data were averaged to the model's \fxf and \txt grid resolutions,
691 and any grid-box whose averaged water percentage was $\geq 60 \%$ was
692 defined as a water point. The \fxf grid Land-Water designation was further modified
693 subjectively to ensure sufficient representation from small but isolated land and water regions.
694
695 \begin{table}
696 \begin{center}
697 {\bf Surface Type Designation} \\
698 \vspace{0.1in}
699 \begin{tabular}{ |c|l| }
700 \hline
701 Type & Vegetation Designation \\ \hline
702 \hline
703 1 & Broadleaf Evergreen Trees \\ \hline
704 2 & Broadleaf Deciduous Trees \\ \hline
705 3 & Needleleaf Trees \\ \hline
706 4 & Ground Cover \\ \hline
707 5 & Broadleaf Shrubs \\ \hline
708 6 & Dwarf Trees (Tundra) \\ \hline
709 7 & Bare Soil \\ \hline
710 8 & Desert (Bright) \\ \hline
711 9 & Glacier \\ \hline
712 10 & Desert (Dark) \\ \hline
713 100 & Ocean \\ \hline
714 \end{tabular}
715 \end{center}
716 \caption{Surface type designations used to compute surface roughness (over land)
717 and surface albedo.}
718 \label{tab:fizhi:surftype}
719 \end{table}
720
721
722 \begin{figure*}[htbp]
723 \centerline{ \epsfysize=7in \epsfbox{part6/surftypes.ps}}
724 \vspace{0.3in}
725 \caption {Surface Type Compinations at \txt resolution.}
726 \label{fig:fizhi:surftype}
727 \end{figure*}
728
729 \begin{figure*}[htbp]
730 \centerline{ \epsfysize=7in \epsfbox{part6/surftypes.descrip.ps}}
731 \vspace{0.3in}
732 \caption {Surface Type Descriptions.}
733 \label{fig:fizhi:surftype.desc}
734 \end{figure*}
735
736
737 \paragraph{Surface Roughness}
738 The surface roughness length over oceans is computed iteratively with the wind
739 stress by the surface layer parameterization (Helfand and Schubert, 1991).
740 It employs an interpolation between the functions of Large and Pond (1981)
741 for high winds and of Kondo (1975) for weak winds.
742
743
744 \paragraph{Albedo}
745 The surface albedo computation, described in Koster and Suarez (1991),
746 employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)
747 Model which distinguishes between the direct and diffuse albedos in the visible
748 and in the near infra-red spectral ranges. The albedos are functions of the observed
749 leaf area index (a description of the relative orientation of the leaves to the
750 sun), the greenness fraction, the vegetation type, and the solar zenith angle.
751 Modifications are made to account for the presence of snow, and its depth relative
752 to the height of the vegetation elements.
753
754 Gravity Wave Drag:
755
756 The fizhi package employs the gravity wave drag scheme of Zhou et al. (1996).
757 This scheme is a modified version of Vernekar et al. (1992),
758 which was based on Alpert et al. (1988) and Helfand et al. (1987).
759 In this version, the gravity wave stress at the surface is
760 based on that derived by Pierrehumbert (1986) and is given by:
761
762 \bq
763 |\vec{\tau}_{sfc}| = {\rho U^3\over{N \ell^*}} \left(F_r^2 \over{1+F_r^2}\right) \, \, ,
764 \eq
765
766 where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the
767 surface wind speed, $h$ is the standard deviation of the sub-grid scale orography,
768 and $\ell^*$ is the wavelength of the monochromatic gravity wave in the direction of the low-level wind.
769 A modification introduced by Zhou et al. allows for the momentum flux to
770 escape through the top of the model, although this effect is small for the current 70-level model.
771 The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m.
772
773 The effects of using this scheme within a GCM are shown in Takacs and Suarez (1996).
774 Experiments using the gravity wave drag parameterization yielded significant and
775 beneficial impacts on both the time-mean flow and the transient statistics of the
776 a GCM climatology, and have eliminated most of the worst dynamically driven biases
777 in the a GCM simulation.
778 An examination of the angular momentum budget during climate runs indicates that the
779 resulting gravity wave torque is similar to the data-driven torque produced by a data
780 assimilation which was performed without gravity
781 wave drag. It was shown that the inclusion of gravity wave drag results in
782 large changes in both the mean flow and in eddy fluxes.
783 The result is a more
784 accurate simulation of surface stress (through a reduction in the surface wind strength),
785 of mountain torque (through a redistribution of mean sea-level pressure), and of momentum
786 convergence (through a reduction in the flux of westerly momentum by transient flow eddies).
787
788
789 Boundary Conditions and other Input Data:
790
791 Required fields which are not explicitly predicted or diagnosed during model execution must
792 either be prescribed internally or obtained from external data sets. In the fizhi package these
793 fields include: sea surface temperature, sea ice estent, surface geopotential variance,
794 vegetation index, and the radiation-related background levels of: ozone, carbon dioxide,
795 and stratospheric moisture.
796
797 Boundary condition data sets are available at the model's \fxf and \txt
798 resolutions for either climatological or yearly varying conditions.
799 Any frequency of boundary condition data can be used in the fizhi package;
800 however, the current selection of data is summarized in Table \ref{tab:fizhi:bcdata}\@.
801 The time mean values are interpolated during each model timestep to the
802 current time. Future model versions will incorporate boundary conditions at
803 higher spatial \mbox{($1^\circ$ x $1^\circ$)} resolutions.
804
805 \begin{table}[htb]
806 \begin{center}
807 {\bf Fizhi Input Datasets} \\
808 \vspace{0.1in}
809 \begin{tabular}{|l|c|r|} \hline
810 \multicolumn{1}{|c}{Variable} & \multicolumn{1}{|c}{Frequency} & \multicolumn{1}{|c|}{Years} \\ \hline\hline
811 Sea Ice Extent & monthly & 1979-current, climatology \\ \hline
812 Sea Ice Extent & weekly & 1982-current, climatology \\ \hline
813 Sea Surface Temperature & monthly & 1979-current, climatology \\ \hline
814 Sea Surface Temperature & weekly & 1982-current, climatology \\ \hline
815 Zonally Averaged Upper-Level Moisture & monthly & climatology \\ \hline
816 Zonally Averaged Ozone Concentration & monthly & climatology \\ \hline
817 \end{tabular}
818 \end{center}
819 \caption{Boundary conditions and other input data used in the fizhi package. Also noted are the
820 current years and frequencies available.}
821 \label{tab:fizhi:bcdata}
822 \end{table}
823
824
825 \paragraph{Topography and Topography Variance}
826
827 Surface geopotential heights are provided from an averaging of the Navy 10 minute
828 by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the
829 model's grid resolution. The original topography is first rotated to the proper grid-orientation
830 which is being run, and then
831 averages the data to the model resolution.
832 The averaged topography is then passed through a Lanczos (1966) filter in both dimensions
833 which removes the smallest
834 scales while inhibiting Gibbs phenomena.
835
836 In one dimension, we may define a cyclic function in $x$ as:
837 \begin{equation}
838 f(x) = {a_0 \over 2} + \sum_{k=1}^N \left( a_k \cos(kx) + b_k \sin(kx) \right)
839 \label{eq:fizhi:filt}
840 \end{equation}
841 where $N = { {\rm IM} \over 2 }$ and ${\rm IM}$ is the total number of points in the $x$ direction.
842 Defining $\Delta x = { 2 \pi \over {\rm IM}}$, we may define the average of $f(x)$ over a
843 $2 \Delta x$ region as:
844
845 \begin{equation}
846 \overline {f(x)} = {1 \over {2 \Delta x}} \int_{x-\Delta x}^{x+\Delta x} f(x^{\prime}) dx^{\prime}
847 \label{eq:fizhi:fave1}
848 \end{equation}
849
850 Using equation (\ref{eq:fizhi:filt}) in equation (\ref{eq:fizhi:fave1}) and integrating, we may write:
851
852 \begin{equation}
853 \overline {f(x)} = {a_0 \over 2} + {1 \over {2 \Delta x}}
854 \sum_{k=1}^N \left [
855 \left. a_k { \sin(kx^{\prime}) \over k } \right /_{x-\Delta x}^{x+\Delta x} -
856 \left. b_k { \cos(kx^{\prime}) \over k } \right /_{x-\Delta x}^{x+\Delta x}
857 \right]
858 \end{equation}
859 or
860
861 \begin{equation}
862 \overline {f(x)} = {a_0 \over 2} + \sum_{k=1}^N {\sin(k \Delta x) \over {k \Delta x}}
863 \left( a_k \cos(kx) + b_k \sin(kx) \right)
864 \label{eq:fizhi:fave2}
865 \end{equation}
866
867 Thus, the Fourier wave amplitudes are simply modified by the Lanczos filter response
868 function ${\sin(k\Delta x) \over {k \Delta x}}$. This may be compared with an $mth$-order
869 Shapiro (1970) filter response function, defined as $1-\sin^m({k \Delta x \over 2})$,
870 shown in Figure \ref{fig:fizhi:lanczos}.
871 It should be noted that negative values in the topography resulting from
872 the filtering procedure are {\em not} filled.
873
874 \begin{figure*}[htbp]
875 \centerline{ \epsfysize=7.0in \epsfbox{part6/lanczos.ps}}
876 \caption{ \label{fig:fizhi:lanczos} Comparison between the Lanczos and $mth$-order Shapiro filter
877 response functions for $m$ = 2, 4, and 8. }
878 \end{figure*}
879
880 The standard deviation of the subgrid-scale topography
881 is computed from a modified version of the the Navy 10 minute by 10 minute dataset.
882 The 10 minute by 10 minute topography is passed through a wavelet
883 filter in both dimensions which removes the scale smaller than 20 minutes.
884 The topography is then averaged to $1^\circ x 1^\circ$ grid resolution, and then
885 re-interpolated back to the 10 minute by 10 minute resolution.
886 The sub-grid scale variance is constructed based on this smoothed dataset.
887
888
889 \paragraph{Upper Level Moisture}
890 The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas
891 Experiment (SAGE) as input into the model's radiation packages. The SAGE data is archived
892 as monthly zonal means at 5$^\circ$ latitudinal resolution. The data is interpolated to the
893 model's grid location and current time, and blended with the GCM's moisture data. Below 300 mb,
894 the model's moisture data is used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb,
895 a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.
896
897
898 \subsubsection{Fizhi Diagnostics}
899
900 Fizhi Diagnostic Menu:
901 \label{sec:fizhi-diagnostics:menu}
902
903 \begin{tabular}{llll}
904 \hline\hline
905 NAME & UNITS & LEVELS & DESCRIPTION \\
906 \hline
907
908 &\\
909 UFLUX & $Newton/m^2$ & 1
910 &\begin{minipage}[t]{3in}
911 {Surface U-Wind Stress on the atmosphere}
912 \end{minipage}\\
913 VFLUX & $Newton/m^2$ & 1
914 &\begin{minipage}[t]{3in}
915 {Surface V-Wind Stress on the atmosphere}
916 \end{minipage}\\
917 HFLUX & $Watts/m^2$ & 1
918 &\begin{minipage}[t]{3in}
919 {Surface Flux of Sensible Heat}
920 \end{minipage}\\
921 EFLUX & $Watts/m^2$ & 1
922 &\begin{minipage}[t]{3in}
923 {Surface Flux of Latent Heat}
924 \end{minipage}\\
925 QICE & $Watts/m^2$ & 1
926 &\begin{minipage}[t]{3in}
927 {Heat Conduction through Sea-Ice}
928 \end{minipage}\\
929 RADLWG & $Watts/m^2$ & 1
930 &\begin{minipage}[t]{3in}
931 {Net upward LW flux at the ground}
932 \end{minipage}\\
933 RADSWG & $Watts/m^2$ & 1
934 &\begin{minipage}[t]{3in}
935 {Net downward SW flux at the ground}
936 \end{minipage}\\
937 RI & $dimensionless$ & Nrphys
938 &\begin{minipage}[t]{3in}
939 {Richardson Number}
940 \end{minipage}\\
941 CT & $dimensionless$ & 1
942 &\begin{minipage}[t]{3in}
943 {Surface Drag coefficient for T and Q}
944 \end{minipage}\\
945 CU & $dimensionless$ & 1
946 &\begin{minipage}[t]{3in}
947 {Surface Drag coefficient for U and V}
948 \end{minipage}\\
949 ET & $m^2/sec$ & Nrphys
950 &\begin{minipage}[t]{3in}
951 {Diffusivity coefficient for T and Q}
952 \end{minipage}\\
953 EU & $m^2/sec$ & Nrphys
954 &\begin{minipage}[t]{3in}
955 {Diffusivity coefficient for U and V}
956 \end{minipage}\\
957 TURBU & $m/sec/day$ & Nrphys
958 &\begin{minipage}[t]{3in}
959 {U-Momentum Changes due to Turbulence}
960 \end{minipage}\\
961 TURBV & $m/sec/day$ & Nrphys
962 &\begin{minipage}[t]{3in}
963 {V-Momentum Changes due to Turbulence}
964 \end{minipage}\\
965 TURBT & $deg/day$ & Nrphys
966 &\begin{minipage}[t]{3in}
967 {Temperature Changes due to Turbulence}
968 \end{minipage}\\
969 TURBQ & $g/kg/day$ & Nrphys
970 &\begin{minipage}[t]{3in}
971 {Specific Humidity Changes due to Turbulence}
972 \end{minipage}\\
973 MOISTT & $deg/day$ & Nrphys
974 &\begin{minipage}[t]{3in}
975 {Temperature Changes due to Moist Processes}
976 \end{minipage}\\
977 MOISTQ & $g/kg/day$ & Nrphys
978 &\begin{minipage}[t]{3in}
979 {Specific Humidity Changes due to Moist Processes}
980 \end{minipage}\\
981 RADLW & $deg/day$ & Nrphys
982 &\begin{minipage}[t]{3in}
983 {Net Longwave heating rate for each level}
984 \end{minipage}\\
985 RADSW & $deg/day$ & Nrphys
986 &\begin{minipage}[t]{3in}
987 {Net Shortwave heating rate for each level}
988 \end{minipage}\\
989 PREACC & $mm/day$ & 1
990 &\begin{minipage}[t]{3in}
991 {Total Precipitation}
992 \end{minipage}\\
993 PRECON & $mm/day$ & 1
994 &\begin{minipage}[t]{3in}
995 {Convective Precipitation}
996 \end{minipage}\\
997 TUFLUX & $Newton/m^2$ & Nrphys
998 &\begin{minipage}[t]{3in}
999 {Turbulent Flux of U-Momentum}
1000 \end{minipage}\\
1001 TVFLUX & $Newton/m^2$ & Nrphys
1002 &\begin{minipage}[t]{3in}
1003 {Turbulent Flux of V-Momentum}
1004 \end{minipage}\\
1005 TTFLUX & $Watts/m^2$ & Nrphys
1006 &\begin{minipage}[t]{3in}
1007 {Turbulent Flux of Sensible Heat}
1008 \end{minipage}\\
1009 \end{tabular}
1010
1011 \newpage
1012 \vspace*{\fill}
1013 \begin{tabular}{llll}
1014 \hline\hline
1015 NAME & UNITS & LEVELS & DESCRIPTION \\
1016 \hline
1017
1018 &\\
1019 TQFLUX & $Watts/m^2$ & Nrphys
1020 &\begin{minipage}[t]{3in}
1021 {Turbulent Flux of Latent Heat}
1022 \end{minipage}\\
1023 CN & $dimensionless$ & 1
1024 &\begin{minipage}[t]{3in}
1025 {Neutral Drag Coefficient}
1026 \end{minipage}\\
1027 WINDS & $m/sec$ & 1
1028 &\begin{minipage}[t]{3in}
1029 {Surface Wind Speed}
1030 \end{minipage}\\
1031 DTSRF & $deg$ & 1
1032 &\begin{minipage}[t]{3in}
1033 {Air/Surface virtual temperature difference}
1034 \end{minipage}\\
1035 TG & $deg$ & 1
1036 &\begin{minipage}[t]{3in}
1037 {Ground temperature}
1038 \end{minipage}\\
1039 TS & $deg$ & 1
1040 &\begin{minipage}[t]{3in}
1041 {Surface air temperature (Adiabatic from lowest model layer)}
1042 \end{minipage}\\
1043 DTG & $deg$ & 1
1044 &\begin{minipage}[t]{3in}
1045 {Ground temperature adjustment}
1046 \end{minipage}\\
1047
1048 QG & $g/kg$ & 1
1049 &\begin{minipage}[t]{3in}
1050 {Ground specific humidity}
1051 \end{minipage}\\
1052 QS & $g/kg$ & 1
1053 &\begin{minipage}[t]{3in}
1054 {Saturation surface specific humidity}
1055 \end{minipage}\\
1056 TGRLW & $deg$ & 1
1057 &\begin{minipage}[t]{3in}
1058 {Instantaneous ground temperature used as input to the
1059 Longwave radiation subroutine}
1060 \end{minipage}\\
1061 ST4 & $Watts/m^2$ & 1
1062 &\begin{minipage}[t]{3in}
1063 {Upward Longwave flux at the ground ($\sigma T^4$)}
1064 \end{minipage}\\
1065 OLR & $Watts/m^2$ & 1
1066 &\begin{minipage}[t]{3in}
1067 {Net upward Longwave flux at the top of the model}
1068 \end{minipage}\\
1069 OLRCLR & $Watts/m^2$ & 1
1070 &\begin{minipage}[t]{3in}
1071 {Net upward clearsky Longwave flux at the top of the model}
1072 \end{minipage}\\
1073 LWGCLR & $Watts/m^2$ & 1
1074 &\begin{minipage}[t]{3in}
1075 {Net upward clearsky Longwave flux at the ground}
1076 \end{minipage}\\
1077 LWCLR & $deg/day$ & Nrphys
1078 &\begin{minipage}[t]{3in}
1079 {Net clearsky Longwave heating rate for each level}
1080 \end{minipage}\\
1081 TLW & $deg$ & Nrphys
1082 &\begin{minipage}[t]{3in}
1083 {Instantaneous temperature used as input to the Longwave radiation
1084 subroutine}
1085 \end{minipage}\\
1086 SHLW & $g/g$ & Nrphys
1087 &\begin{minipage}[t]{3in}
1088 {Instantaneous specific humidity used as input to the Longwave radiation
1089 subroutine}
1090 \end{minipage}\\
1091 OZLW & $g/g$ & Nrphys
1092 &\begin{minipage}[t]{3in}
1093 {Instantaneous ozone used as input to the Longwave radiation
1094 subroutine}
1095 \end{minipage}\\
1096 CLMOLW & $0-1$ & Nrphys
1097 &\begin{minipage}[t]{3in}
1098 {Maximum overlap cloud fraction used in the Longwave radiation
1099 subroutine}
1100 \end{minipage}\\
1101 CLDTOT & $0-1$ & Nrphys
1102 &\begin{minipage}[t]{3in}
1103 {Total cloud fraction used in the Longwave and Shortwave radiation
1104 subroutines}
1105 \end{minipage}\\
1106 LWGDOWN & $Watts/m^2$ & 1
1107 &\begin{minipage}[t]{3in}
1108 {Downwelling Longwave radiation at the ground}
1109 \end{minipage}\\
1110 GWDT & $deg/day$ & Nrphys
1111 &\begin{minipage}[t]{3in}
1112 {Temperature tendency due to Gravity Wave Drag}
1113 \end{minipage}\\
1114 RADSWT & $Watts/m^2$ & 1
1115 &\begin{minipage}[t]{3in}
1116 {Incident Shortwave radiation at the top of the atmosphere}
1117 \end{minipage}\\
1118 TAUCLD & $per 100 mb$ & Nrphys
1119 &\begin{minipage}[t]{3in}
1120 {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
1121 \end{minipage}\\
1122 TAUCLDC & $Number$ & Nrphys
1123 &\begin{minipage}[t]{3in}
1124 {Cloud Optical Depth Counter}
1125 \end{minipage}\\
1126 \end{tabular}
1127 \vfill
1128
1129 \newpage
1130 \vspace*{\fill}
1131 \begin{tabular}{llll}
1132 \hline\hline
1133 NAME & UNITS & LEVELS & DESCRIPTION \\
1134 \hline
1135
1136 &\\
1137 CLDLOW & $0-1$ & Nrphys
1138 &\begin{minipage}[t]{3in}
1139 {Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)}
1140 \end{minipage}\\
1141 EVAP & $mm/day$ & 1
1142 &\begin{minipage}[t]{3in}
1143 {Surface evaporation}
1144 \end{minipage}\\
1145 DPDT & $hPa/day$ & 1
1146 &\begin{minipage}[t]{3in}
1147 {Surface Pressure tendency}
1148 \end{minipage}\\
1149 UAVE & $m/sec$ & Nrphys
1150 &\begin{minipage}[t]{3in}
1151 {Average U-Wind}
1152 \end{minipage}\\
1153 VAVE & $m/sec$ & Nrphys
1154 &\begin{minipage}[t]{3in}
1155 {Average V-Wind}
1156 \end{minipage}\\
1157 TAVE & $deg$ & Nrphys
1158 &\begin{minipage}[t]{3in}
1159 {Average Temperature}
1160 \end{minipage}\\
1161 QAVE & $g/kg$ & Nrphys
1162 &\begin{minipage}[t]{3in}
1163 {Average Specific Humidity}
1164 \end{minipage}\\
1165 OMEGA & $hPa/day$ & Nrphys
1166 &\begin{minipage}[t]{3in}
1167 {Vertical Velocity}
1168 \end{minipage}\\
1169 DUDT & $m/sec/day$ & Nrphys
1170 &\begin{minipage}[t]{3in}
1171 {Total U-Wind tendency}
1172 \end{minipage}\\
1173 DVDT & $m/sec/day$ & Nrphys
1174 &\begin{minipage}[t]{3in}
1175 {Total V-Wind tendency}
1176 \end{minipage}\\
1177 DTDT & $deg/day$ & Nrphys
1178 &\begin{minipage}[t]{3in}
1179 {Total Temperature tendency}
1180 \end{minipage}\\
1181 DQDT & $g/kg/day$ & Nrphys
1182 &\begin{minipage}[t]{3in}
1183 {Total Specific Humidity tendency}
1184 \end{minipage}\\
1185 VORT & $10^{-4}/sec$ & Nrphys
1186 &\begin{minipage}[t]{3in}
1187 {Relative Vorticity}
1188 \end{minipage}\\
1189 DTLS & $deg/day$ & Nrphys
1190 &\begin{minipage}[t]{3in}
1191 {Temperature tendency due to Stratiform Cloud Formation}
1192 \end{minipage}\\
1193 DQLS & $g/kg/day$ & Nrphys
1194 &\begin{minipage}[t]{3in}
1195 {Specific Humidity tendency due to Stratiform Cloud Formation}
1196 \end{minipage}\\
1197 USTAR & $m/sec$ & 1
1198 &\begin{minipage}[t]{3in}
1199 {Surface USTAR wind}
1200 \end{minipage}\\
1201 Z0 & $m$ & 1
1202 &\begin{minipage}[t]{3in}
1203 {Surface roughness}
1204 \end{minipage}\\
1205 FRQTRB & $0-1$ & Nrphys-1
1206 &\begin{minipage}[t]{3in}
1207 {Frequency of Turbulence}
1208 \end{minipage}\\
1209 PBL & $mb$ & 1
1210 &\begin{minipage}[t]{3in}
1211 {Planetary Boundary Layer depth}
1212 \end{minipage}\\
1213 SWCLR & $deg/day$ & Nrphys
1214 &\begin{minipage}[t]{3in}
1215 {Net clearsky Shortwave heating rate for each level}
1216 \end{minipage}\\
1217 OSR & $Watts/m^2$ & 1
1218 &\begin{minipage}[t]{3in}
1219 {Net downward Shortwave flux at the top of the model}
1220 \end{minipage}\\
1221 OSRCLR & $Watts/m^2$ & 1
1222 &\begin{minipage}[t]{3in}
1223 {Net downward clearsky Shortwave flux at the top of the model}
1224 \end{minipage}\\
1225 CLDMAS & $kg / m^2$ & Nrphys
1226 &\begin{minipage}[t]{3in}
1227 {Convective cloud mass flux}
1228 \end{minipage}\\
1229 UAVE & $m/sec$ & Nrphys
1230 &\begin{minipage}[t]{3in}
1231 {Time-averaged $u-Wind$}
1232 \end{minipage}\\
1233 \end{tabular}
1234 \vfill
1235
1236 \newpage
1237 \vspace*{\fill}
1238 \begin{tabular}{llll}
1239 \hline\hline
1240 NAME & UNITS & LEVELS & DESCRIPTION \\
1241 \hline
1242
1243 &\\
1244 VAVE & $m/sec$ & Nrphys
1245 &\begin{minipage}[t]{3in}
1246 {Time-averaged $v-Wind$}
1247 \end{minipage}\\
1248 TAVE & $deg$ & Nrphys
1249 &\begin{minipage}[t]{3in}
1250 {Time-averaged $Temperature$}
1251 \end{minipage}\\
1252 QAVE & $g/g$ & Nrphys
1253 &\begin{minipage}[t]{3in}
1254 {Time-averaged $Specific \, \, Humidity$}
1255 \end{minipage}\\
1256 RFT & $deg/day$ & Nrphys
1257 &\begin{minipage}[t]{3in}
1258 {Temperature tendency due Rayleigh Friction}
1259 \end{minipage}\\
1260 PS & $mb$ & 1
1261 &\begin{minipage}[t]{3in}
1262 {Surface Pressure}
1263 \end{minipage}\\
1264 QQAVE & $(m/sec)^2$ & Nrphys
1265 &\begin{minipage}[t]{3in}
1266 {Time-averaged $Turbulent Kinetic Energy$}
1267 \end{minipage}\\
1268 SWGCLR & $Watts/m^2$ & 1
1269 &\begin{minipage}[t]{3in}
1270 {Net downward clearsky Shortwave flux at the ground}
1271 \end{minipage}\\
1272 PAVE & $mb$ & 1
1273 &\begin{minipage}[t]{3in}
1274 {Time-averaged Surface Pressure}
1275 \end{minipage}\\
1276 DIABU & $m/sec/day$ & Nrphys
1277 &\begin{minipage}[t]{3in}
1278 {Total Diabatic forcing on $u-Wind$}
1279 \end{minipage}\\
1280 DIABV & $m/sec/day$ & Nrphys
1281 &\begin{minipage}[t]{3in}
1282 {Total Diabatic forcing on $v-Wind$}
1283 \end{minipage}\\
1284 DIABT & $deg/day$ & Nrphys
1285 &\begin{minipage}[t]{3in}
1286 {Total Diabatic forcing on $Temperature$}
1287 \end{minipage}\\
1288 DIABQ & $g/kg/day$ & Nrphys
1289 &\begin{minipage}[t]{3in}
1290 {Total Diabatic forcing on $Specific \, \, Humidity$}
1291 \end{minipage}\\
1292 RFU & $m/sec/day$ & Nrphys
1293 &\begin{minipage}[t]{3in}
1294 {U-Wind tendency due to Rayleigh Friction}
1295 \end{minipage}\\
1296 RFV & $m/sec/day$ & Nrphys
1297 &\begin{minipage}[t]{3in}
1298 {V-Wind tendency due to Rayleigh Friction}
1299 \end{minipage}\\
1300 GWDU & $m/sec/day$ & Nrphys
1301 &\begin{minipage}[t]{3in}
1302 {U-Wind tendency due to Gravity Wave Drag}
1303 \end{minipage}\\
1304 GWDU & $m/sec/day$ & Nrphys
1305 &\begin{minipage}[t]{3in}
1306 {V-Wind tendency due to Gravity Wave Drag}
1307 \end{minipage}\\
1308 GWDUS & $N/m^2$ & 1
1309 &\begin{minipage}[t]{3in}
1310 {U-Wind Gravity Wave Drag Stress at Surface}
1311 \end{minipage}\\
1312 GWDVS & $N/m^2$ & 1
1313 &\begin{minipage}[t]{3in}
1314 {V-Wind Gravity Wave Drag Stress at Surface}
1315 \end{minipage}\\
1316 GWDUT & $N/m^2$ & 1
1317 &\begin{minipage}[t]{3in}
1318 {U-Wind Gravity Wave Drag Stress at Top}
1319 \end{minipage}\\
1320 GWDVT & $N/m^2$ & 1
1321 &\begin{minipage}[t]{3in}
1322 {V-Wind Gravity Wave Drag Stress at Top}
1323 \end{minipage}\\
1324 LZRAD & $mg/kg$ & Nrphys
1325 &\begin{minipage}[t]{3in}
1326 {Estimated Cloud Liquid Water used in Radiation}
1327 \end{minipage}\\
1328 \end{tabular}
1329 \vfill
1330
1331 \newpage
1332 \vspace*{\fill}
1333 \begin{tabular}{llll}
1334 \hline\hline
1335 NAME & UNITS & LEVELS & DESCRIPTION \\
1336 \hline
1337
1338 &\\
1339 SLP & $mb$ & 1
1340 &\begin{minipage}[t]{3in}
1341 {Time-averaged Sea-level Pressure}
1342 \end{minipage}\\
1343 CLDFRC & $0-1$ & 1
1344 &\begin{minipage}[t]{3in}
1345 {Total Cloud Fraction}
1346 \end{minipage}\\
1347 TPW & $gm/cm^2$ & 1
1348 &\begin{minipage}[t]{3in}
1349 {Precipitable water}
1350 \end{minipage}\\
1351 U2M & $m/sec$ & 1
1352 &\begin{minipage}[t]{3in}
1353 {U-Wind at 2 meters}
1354 \end{minipage}\\
1355 V2M & $m/sec$ & 1
1356 &\begin{minipage}[t]{3in}
1357 {V-Wind at 2 meters}
1358 \end{minipage}\\
1359 T2M & $deg$ & 1
1360 &\begin{minipage}[t]{3in}
1361 {Temperature at 2 meters}
1362 \end{minipage}\\
1363 Q2M & $g/kg$ & 1
1364 &\begin{minipage}[t]{3in}
1365 {Specific Humidity at 2 meters}
1366 \end{minipage}\\
1367 U10M & $m/sec$ & 1
1368 &\begin{minipage}[t]{3in}
1369 {U-Wind at 10 meters}
1370 \end{minipage}\\
1371 V10M & $m/sec$ & 1
1372 &\begin{minipage}[t]{3in}
1373 {V-Wind at 10 meters}
1374 \end{minipage}\\
1375 T10M & $deg$ & 1
1376 &\begin{minipage}[t]{3in}
1377 {Temperature at 10 meters}
1378 \end{minipage}\\
1379 Q10M & $g/kg$ & 1
1380 &\begin{minipage}[t]{3in}
1381 {Specific Humidity at 10 meters}
1382 \end{minipage}\\
1383 DTRAIN & $kg/m^2$ & Nrphys
1384 &\begin{minipage}[t]{3in}
1385 {Detrainment Cloud Mass Flux}
1386 \end{minipage}\\
1387 QFILL & $g/kg/day$ & Nrphys
1388 &\begin{minipage}[t]{3in}
1389 {Filling of negative specific humidity}
1390 \end{minipage}\\
1391 \end{tabular}
1392 \vspace{1.5in}
1393 \vfill
1394
1395 \newpage
1396 \vspace*{\fill}
1397 \begin{tabular}{llll}
1398 \hline\hline
1399 NAME & UNITS & LEVELS & DESCRIPTION \\
1400 \hline
1401
1402 &\\
1403 DTCONV & $deg/sec$ & Nr
1404 &\begin{minipage}[t]{3in}
1405 {Temp Change due to Convection}
1406 \end{minipage}\\
1407 DQCONV & $g/kg/sec$ & Nr
1408 &\begin{minipage}[t]{3in}
1409 {Specific Humidity Change due to Convection}
1410 \end{minipage}\\
1411 RELHUM & $percent$ & Nr
1412 &\begin{minipage}[t]{3in}
1413 {Relative Humidity}
1414 \end{minipage}\\
1415 PRECLS & $g/m^2/sec$ & 1
1416 &\begin{minipage}[t]{3in}
1417 {Large Scale Precipitation}
1418 \end{minipage}\\
1419 ENPREC & $J/g$ & 1
1420 &\begin{minipage}[t]{3in}
1421 {Energy of Precipitation (snow, rain Temp)}
1422 \end{minipage}\\
1423 \end{tabular}
1424 \vspace{1.5in}
1425 \vfill
1426
1427 \newpage
1428
1429 Fizhi Diagnostic Description:
1430
1431 In this section we list and describe the diagnostic quantities available within the
1432 GCM. The diagnostics are listed in the order that they appear in the
1433 Diagnostic Menu, Section \ref{sec:fizhi-diagnostics:menu}.
1434 In all cases, each diagnostic as currently archived on the output datasets
1435 is time-averaged over its diagnostic output frequency:
1436
1437 \[
1438 {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1439 \]
1440 where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
1441 output frequency of the diagnostic, and $\Delta t$ is
1442 the timestep over which the diagnostic is updated.
1443
1444 { \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1445
1446 The zonal wind stress is the turbulent flux of zonal momentum from
1447 the surface.
1448 \[
1449 {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1450 \]
1451 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1452 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1453 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1454 the zonal wind in the lowest model layer.
1455 \\
1456
1457
1458 { \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1459
1460 The meridional wind stress is the turbulent flux of meridional momentum from
1461 the surface.
1462 \[
1463 {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1464 \]
1465 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1466 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1467 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1468 the meridional wind in the lowest model layer.
1469 \\
1470
1471 { \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1472
1473 The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1474 gradient of virtual potential temperature and the eddy exchange coefficient:
1475 \[
1476 {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1477 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1478 \]
1479 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1480 heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1481 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1482 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1483 for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1484 at the surface and at the bottom model level.
1485 \\
1486
1487
1488 { \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1489
1490 The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1491 gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1492 \[
1493 {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1494 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1495 \]
1496 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1497 the potential evapotranspiration actually evaporated, L is the latent
1498 heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1499 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1500 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1501 for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1502 humidity at the surface and at the bottom model level, respectively.
1503 \\
1504
1505 { \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1506
1507 Over sea ice there is an additional source of energy at the surface due to the heat
1508 conduction from the relatively warm ocean through the sea ice. The heat conduction
1509 through sea ice represents an additional energy source term for the ground temperature equation.
1510
1511 \[
1512 {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
1513 \]
1514
1515 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1516 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1517 $T_g$ is the temperature of the sea ice.
1518
1519 NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1520 \\
1521
1522
1523 { \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1524
1525 \begin{eqnarray*}
1526 {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
1527 & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1528 \end{eqnarray*}
1529 \\
1530 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1531 $F_{LW}^\uparrow$ is
1532 the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1533 \\
1534
1535 { \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1536
1537 \begin{eqnarray*}
1538 {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
1539 & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1540 \end{eqnarray*}
1541 \\
1542 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1543 $F_{SW}^\downarrow$ is
1544 the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1545 \\
1546
1547
1548 \noindent
1549 { \underline {RI} Richardson Number} ($dimensionless$)
1550
1551 \noindent
1552 The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1553 \[
1554 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1555 = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1556 \]
1557 \\
1558 where we used the hydrostatic equation:
1559 \[
1560 {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1561 \]
1562 Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1563 indicate dominantly unstable shear, and large positive values indicate dominantly stable
1564 stratification.
1565 \\
1566
1567 \noindent
1568 { \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1569
1570 \noindent
1571 The surface exchange coefficient is obtained from the similarity functions for the stability
1572 dependant flux profile relationships:
1573 \[
1574 {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
1575 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
1576 { k \over { (\psi_{h} + \psi_{g}) } }
1577 \]
1578 where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1579 viscous sublayer non-dimensional temperature or moisture change:
1580 \[
1581 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
1582 \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
1583 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1584 \]
1585 and:
1586 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1587
1588 \noindent
1589 $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1590 the temperature and moisture gradients, specified differently for stable and unstable
1591 layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
1592 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1593 viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1594 (see diagnostic number 67), and the subscript ref refers to a reference value.
1595 \\
1596
1597 \noindent
1598 { \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
1599
1600 \noindent
1601 The surface exchange coefficient is obtained from the similarity functions for the stability
1602 dependant flux profile relationships:
1603 \[
1604 {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
1605 \]
1606 where $\psi_m$ is the surface layer non-dimensional wind shear:
1607 \[
1608 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
1609 \]
1610 \noindent
1611 $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1612 the temperature and moisture gradients, specified differently for stable and unstable layers
1613 according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
1614 non-dimensional stability parameter, $u_*$ is the surface stress velocity
1615 (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1616 \\
1617
1618 \noindent
1619 { \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1620
1621 \noindent
1622 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1623 moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1624 diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1625 or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$
1626 takes the form:
1627 \[
1628 {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
1629 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1630 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1631 \]
1632 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1633 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1634 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1635 depth,
1636 $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1637 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1638 dimensionless buoyancy and wind shear
1639 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1640 are functions of the Richardson number.
1641
1642 \noindent
1643 For the detailed equations and derivations of the modified level 2.5 closure scheme,
1644 see Helfand and Labraga, 1988.
1645
1646 \noindent
1647 In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1648 in units of $m/sec$, given by:
1649 \[
1650 {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
1651 \]
1652 \noindent
1653 where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1654 surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1655 friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1656 and $W_s$ is the magnitude of the surface layer wind.
1657 \\
1658
1659 \noindent
1660 { \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
1661
1662 \noindent
1663 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1664 momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1665 diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1666 In the Helfand and Labraga (1988) adaptation of this closure, $K_m$
1667 takes the form:
1668 \[
1669 {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
1670 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1671 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1672 \]
1673 \noindent
1674 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1675 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1676 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1677 depth,
1678 $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1679 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1680 dimensionless buoyancy and wind shear
1681 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1682 are functions of the Richardson number.
1683
1684 \noindent
1685 For the detailed equations and derivations of the modified level 2.5 closure scheme,
1686 see Helfand and Labraga, 1988.
1687
1688 \noindent
1689 In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1690 in units of $m/sec$, given by:
1691 \[
1692 {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1693 \]
1694 \noindent
1695 where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1696 similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1697 (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1698 magnitude of the surface layer wind.
1699 \\
1700
1701 \noindent
1702 { \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1703
1704 \noindent
1705 The tendency of U-Momentum due to turbulence is written:
1706 \[
1707 {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1708 = {\pp{}{z} }{(K_m \pp{u}{z})}
1709 \]
1710
1711 \noindent
1712 The Helfand and Labraga level 2.5 scheme models the turbulent
1713 flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1714 equation.
1715
1716 \noindent
1717 { \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1718
1719 \noindent
1720 The tendency of V-Momentum due to turbulence is written:
1721 \[
1722 {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1723 = {\pp{}{z} }{(K_m \pp{v}{z})}
1724 \]
1725
1726 \noindent
1727 The Helfand and Labraga level 2.5 scheme models the turbulent
1728 flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1729 equation.
1730 \\
1731
1732 \noindent
1733 { \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
1734
1735 \noindent
1736 The tendency of temperature due to turbulence is written:
1737 \[
1738 {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1739 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1740 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1741 \]
1742
1743 \noindent
1744 The Helfand and Labraga level 2.5 scheme models the turbulent
1745 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1746 equation.
1747 \\
1748
1749 \noindent
1750 { \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
1751
1752 \noindent
1753 The tendency of specific humidity due to turbulence is written:
1754 \[
1755 {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1756 = {\pp{}{z} }{(K_h \pp{q}{z})}
1757 \]
1758
1759 \noindent
1760 The Helfand and Labraga level 2.5 scheme models the turbulent
1761 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1762 equation.
1763 \\
1764
1765 \noindent
1766 { \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1767
1768 \noindent
1769 \[
1770 {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1771 \]
1772 where:
1773 \[
1774 \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1775 \hspace{.4cm} and
1776 \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1777 \]
1778 and
1779 \[
1780 \Gamma_s = g \eta \pp{s}{p}
1781 \]
1782
1783 \noindent
1784 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1785 precipitation processes, or supersaturation rain.
1786 The summation refers to contributions from each cloud type called by RAS.
1787 The dry static energy is given
1788 as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1789 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1790 the description of the convective parameterization. The fractional adjustment, or relaxation
1791 parameter, for each cloud type is given as $\alpha$, while
1792 $R$ is the rain re-evaporation adjustment.
1793 \\
1794
1795 \noindent
1796 { \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1797
1798 \noindent
1799 \[
1800 {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1801 \]
1802 where:
1803 \[
1804 \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1805 \hspace{.4cm} and
1806 \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1807 \]
1808 and
1809 \[
1810 \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1811 \]
1812 \noindent
1813 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1814 precipitation processes, or supersaturation rain.
1815 The summation refers to contributions from each cloud type called by RAS.
1816 The dry static energy is given as $s$,
1817 the moist static energy is given as $h$,
1818 the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1819 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1820 the description of the convective parameterization. The fractional adjustment, or relaxation
1821 parameter, for each cloud type is given as $\alpha$, while
1822 $R$ is the rain re-evaporation adjustment.
1823 \\
1824
1825 \noindent
1826 { \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1827
1828 \noindent
1829 The net longwave heating rate is calculated as the vertical divergence of the
1830 net terrestrial radiative fluxes.
1831 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1832 longwave routine.
1833 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1834 For a given cloud fraction,
1835 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1836 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1837 for the upward and downward radiative fluxes.
1838 (see Section \ref{sec:fizhi:radcloud}).
1839 The cloudy-sky flux is then obtained as:
1840
1841 \noindent
1842 \[
1843 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1844 \]
1845
1846 \noindent
1847 Finally, the net longwave heating rate is calculated as the vertical divergence of the
1848 net terrestrial radiative fluxes:
1849 \[
1850 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1851 \]
1852 or
1853 \[
1854 {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1855 \]
1856
1857 \noindent
1858 where $g$ is the accelation due to gravity,
1859 $c_p$ is the heat capacity of air at constant pressure,
1860 and
1861 \[
1862 F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1863 \]
1864 \\
1865
1866
1867 \noindent
1868 { \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1869
1870 \noindent
1871 The net Shortwave heating rate is calculated as the vertical divergence of the
1872 net solar radiative fluxes.
1873 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1874 For the clear-sky case, the shortwave fluxes and heating rates are computed with
1875 both CLMO (maximum overlap cloud fraction) and
1876 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1877 The shortwave routine is then called a second time, for the cloudy-sky case, with the
1878 true time-averaged cloud fractions CLMO
1879 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1880 input at the top of the atmosphere.
1881
1882 \noindent
1883 The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1884 \[
1885 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1886 \]
1887 or
1888 \[
1889 {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1890 \]
1891
1892 \noindent
1893 where $g$ is the accelation due to gravity,
1894 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1895 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1896 \[
1897 F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1898 \]
1899 \\
1900
1901 \noindent
1902 { \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1903
1904 \noindent
1905 For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1906 the vertical integral or total precipitable amount is given by:
1907 \[
1908 {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1909 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1910 \]
1911 \\
1912
1913 \noindent
1914 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1915 time step, scaled to $mm/day$.
1916 \\
1917
1918 \noindent
1919 { \underline {PRECON} Convective Precipition ($mm/day$) }
1920
1921 \noindent
1922 For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1923 the vertical integral or total precipitable amount is given by:
1924 \[
1925 {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1926 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1927 \]
1928 \\
1929
1930 \noindent
1931 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1932 time step, scaled to $mm/day$.
1933 \\
1934
1935 \noindent
1936 { \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1937
1938 \noindent
1939 The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1940 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1941
1942 \[
1943 {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1944 {\rho } {(- K_m \pp{U}{z})}
1945 \]
1946
1947 \noindent
1948 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1949 \\
1950
1951 \noindent
1952 { \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1953
1954 \noindent
1955 The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1956 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1957
1958 \[
1959 {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1960 {\rho } {(- K_m \pp{V}{z})}
1961 \]
1962
1963 \noindent
1964 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1965 \\
1966
1967
1968 \noindent
1969 { \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1970
1971 \noindent
1972 The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1973 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1974
1975 \noindent
1976 \[
1977 {\bf TTFLUX} = c_p {\rho }
1978 P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1979 = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1980 \]
1981
1982 \noindent
1983 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1984 \\
1985
1986
1987 \noindent
1988 { \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1989
1990 \noindent
1991 The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1992 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1993
1994 \noindent
1995 \[
1996 {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1997 {L {\rho }(- K_h \pp{q}{z})}
1998 \]
1999
2000 \noindent
2001 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
2002 \\
2003
2004
2005 \noindent
2006 { \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
2007
2008 \noindent
2009 The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
2010 \[
2011 {\bf CN} = { k \over { \ln({h \over {z_0}})} }
2012 \]
2013
2014 \noindent
2015 where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
2016 $z_0$ is the surface roughness.
2017
2018 \noindent
2019 NOTE: CN is not available through model version 5.3, but is available in subsequent
2020 versions.
2021 \\
2022
2023 \noindent
2024 { \underline {WINDS} Surface Wind Speed ($meter/sec$) }
2025
2026 \noindent
2027 The surface wind speed is calculated for the last internal turbulence time step:
2028 \[
2029 {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
2030 \]
2031
2032 \noindent
2033 where the subscript $Nrphys$ refers to the lowest model level.
2034 \\
2035
2036 \noindent
2037 { \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
2038
2039 \noindent
2040 The air/surface virtual temperature difference measures the stability of the surface layer:
2041 \[
2042 {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
2043 \]
2044 \noindent
2045 where
2046 \[
2047 \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
2048 and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2049 \]
2050
2051 \noindent
2052 $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2053 $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
2054 and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
2055 refers to the surface.
2056 \\
2057
2058
2059 \noindent
2060 { \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
2061
2062 \noindent
2063 The ground temperature equation is solved as part of the turbulence package
2064 using a backward implicit time differencing scheme:
2065 \[
2066 {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
2067 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
2068 \]
2069
2070 \noindent
2071 where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
2072 net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
2073 sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
2074 flux, and $C_g$ is the total heat capacity of the ground.
2075 $C_g$ is obtained by solving a heat diffusion equation
2076 for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
2077 \[
2078 C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
2079 { 86400. \over {2 \pi} } } \, \, .
2080 \]
2081 \noindent
2082 Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
2083 {cm \over {^oK}}$,
2084 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
2085 by $2 \pi$ $radians/
2086 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
2087 is a function of the ground wetness, $W$.
2088 \\
2089
2090 \noindent
2091 { \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
2092
2093 \noindent
2094 The surface temperature estimate is made by assuming that the model's lowest
2095 layer is well-mixed, and therefore that $\theta$ is constant in that layer.
2096 The surface temperature is therefore:
2097 \[
2098 {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
2099 \]
2100 \\
2101
2102 \noindent
2103 { \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
2104
2105 \noindent
2106 The change in surface temperature from one turbulence time step to the next, solved
2107 using the Ground Temperature Equation (see diagnostic number 30) is calculated:
2108 \[
2109 {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
2110 \]
2111
2112 \noindent
2113 where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
2114 refers to the value at the previous turbulence time level.
2115 \\
2116
2117 \noindent
2118 { \underline {QG} Ground Specific Humidity ($g/kg$) }
2119
2120 \noindent
2121 The ground specific humidity is obtained by interpolating between the specific
2122 humidity at the lowest model level and the specific humidity of a saturated ground.
2123 The interpolation is performed using the potential evapotranspiration function:
2124 \[
2125 {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2126 \]
2127
2128 \noindent
2129 where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2130 and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
2131 pressure.
2132 \\
2133
2134 \noindent
2135 { \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
2136
2137 \noindent
2138 The surface saturation specific humidity is the saturation specific humidity at
2139 the ground temprature and surface pressure:
2140 \[
2141 {\bf QS} = q^*(T_g,P_s)
2142 \]
2143 \\
2144
2145 \noindent
2146 { \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
2147 radiation subroutine (deg)}
2148 \[
2149 {\bf TGRLW} = T_g(\lambda , \phi ,n)
2150 \]
2151 \noindent
2152 where $T_g$ is the model ground temperature at the current time step $n$.
2153 \\
2154
2155
2156 \noindent
2157 { \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
2158 \[
2159 {\bf ST4} = \sigma T^4
2160 \]
2161 \noindent
2162 where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
2163 \\
2164
2165 \noindent
2166 { \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2167 \[
2168 {\bf OLR} = F_{LW,top}^{NET}
2169 \]
2170 \noindent
2171 where top indicates the top of the first model layer.
2172 In the GCM, $p_{top}$ = 0.0 mb.
2173 \\
2174
2175
2176 \noindent
2177 { \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2178 \[
2179 {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
2180 \]
2181 \noindent
2182 where top indicates the top of the first model layer.
2183 In the GCM, $p_{top}$ = 0.0 mb.
2184 \\
2185
2186 \noindent
2187 { \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
2188
2189 \noindent
2190 \begin{eqnarray*}
2191 {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
2192 & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
2193 \end{eqnarray*}
2194 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2195 $F(clearsky)_{LW}^\uparrow$ is
2196 the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
2197 \\
2198
2199 \noindent
2200 { \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
2201
2202 \noindent
2203 The net longwave heating rate is calculated as the vertical divergence of the
2204 net terrestrial radiative fluxes.
2205 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
2206 longwave routine.
2207 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
2208 For a given cloud fraction,
2209 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
2210 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
2211 for the upward and downward radiative fluxes.
2212 (see Section \ref{sec:fizhi:radcloud}).
2213 The cloudy-sky flux is then obtained as:
2214
2215 \noindent
2216 \[
2217 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2218 \]
2219
2220 \noindent
2221 Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2222 vertical divergence of the
2223 clear-sky longwave radiative flux:
2224 \[
2225 \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
2226 \]
2227 or
2228 \[
2229 {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
2230 \]
2231
2232 \noindent
2233 where $g$ is the accelation due to gravity,
2234 $c_p$ is the heat capacity of air at constant pressure,
2235 and
2236 \[
2237 F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2238 \]
2239 \\
2240
2241
2242 \noindent
2243 { \underline {TLW} Instantaneous temperature used as input to the Longwave
2244 radiation subroutine (deg)}
2245 \[
2246 {\bf TLW} = T(\lambda , \phi ,level, n)
2247 \]
2248 \noindent
2249 where $T$ is the model temperature at the current time step $n$.
2250 \\
2251
2252
2253 \noindent
2254 { \underline {SHLW} Instantaneous specific humidity used as input to
2255 the Longwave radiation subroutine (kg/kg)}
2256 \[
2257 {\bf SHLW} = q(\lambda , \phi , level , n)
2258 \]
2259 \noindent
2260 where $q$ is the model specific humidity at the current time step $n$.
2261 \\
2262
2263
2264 \noindent
2265 { \underline {OZLW} Instantaneous ozone used as input to
2266 the Longwave radiation subroutine (kg/kg)}
2267 \[
2268 {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
2269 \]
2270 \noindent
2271 where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2272 mean zonally averaged ozone data set.
2273 \\
2274
2275
2276 \noindent
2277 { \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2278
2279 \noindent
2280 {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2281 Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
2282 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2283 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2284 \[
2285 {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
2286 \]
2287 \\
2288
2289
2290 { \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2291
2292 {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2293 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2294 Radiation packages.
2295 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2296 \[
2297 {\bf CLDTOT} = F_{RAS} + F_{LS}
2298 \]
2299 \\
2300 where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2301 time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2302 \\
2303
2304
2305 \noindent
2306 { \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2307
2308 \noindent
2309 {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2310 Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
2311 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2312 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2313 \[
2314 {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
2315 \]
2316 \\
2317
2318 \noindent
2319 { \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2320
2321 \noindent
2322 {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2323 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2324 Radiation algorithm. These are
2325 convective and large-scale clouds whose radiative characteristics are not
2326 assumed to be correlated in the vertical.
2327 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2328 \[
2329 {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
2330 \]
2331 \\
2332
2333 \noindent
2334 { \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2335 \[
2336 {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2337 \]
2338 \noindent
2339 where $S_0$, is the extra-terrestial solar contant,
2340 $R_a$ is the earth-sun distance in Astronomical Units,
2341 and $cos \phi_z$ is the cosine of the zenith angle.
2342 It should be noted that {\bf RADSWT}, as well as
2343 {\bf OSR} and {\bf OSRCLR},
2344 are calculated at the top of the atmosphere (p=0 mb). However, the
2345 {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2346 calculated at $p= p_{top}$ (0.0 mb for the GCM).
2347 \\
2348
2349 \noindent
2350 { \underline {EVAP} Surface Evaporation ($mm/day$) }
2351
2352 \noindent
2353 The surface evaporation is a function of the gradient of moisture, the potential
2354 evapotranspiration fraction and the eddy exchange coefficient:
2355 \[
2356 {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2357 \]
2358 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2359 the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2360 turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2361 $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2362 number 34) and at the bottom model level, respectively.
2363 \\
2364
2365 \noindent
2366 { \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
2367
2368 \noindent
2369 {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2370 and Analysis forcing.
2371 \[
2372 {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2373 \]
2374 \\
2375
2376 \noindent
2377 { \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
2378
2379 \noindent
2380 {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2381 and Analysis forcing.
2382 \[
2383 {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2384 \]
2385 \\
2386
2387 \noindent
2388 { \underline {DTDT} Total Temperature Tendency ($deg/day$) }
2389
2390 \noindent
2391 {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2392 and Analysis forcing.
2393 \begin{eqnarray*}
2394 {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2395 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2396 \end{eqnarray*}
2397 \\
2398
2399 \noindent
2400 { \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
2401
2402 \noindent
2403 {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2404 and Analysis forcing.
2405 \[
2406 {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2407 + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2408 \]
2409 \\
2410
2411 \noindent
2412 { \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
2413
2414 \noindent
2415 The surface stress velocity, or the friction velocity, is the wind speed at
2416 the surface layer top impeded by the surface drag:
2417 \[
2418 {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2419 C_u = {k \over {\psi_m} }
2420 \]
2421
2422 \noindent
2423 $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2424 number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2425
2426 \noindent
2427 { \underline {Z0} Surface Roughness Length ($m$) }
2428
2429 \noindent
2430 Over the land surface, the surface roughness length is interpolated to the local
2431 time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,
2432 the roughness length is a function of the surface-stress velocity, $u_*$.
2433 \[
2434 {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
2435 \]
2436
2437 \noindent
2438 where the constants are chosen to interpolate between the reciprocal relation of
2439 Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
2440 for moderate to large winds.
2441 \\
2442
2443 \noindent
2444 { \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
2445
2446 \noindent
2447 The fraction of time when turbulence is present is defined as the fraction of
2448 time when the turbulent kinetic energy exceeds some minimum value, defined here
2449 to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2450 incremented. The fraction over the averaging interval is reported.
2451 \\
2452
2453 \noindent
2454 { \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
2455
2456 \noindent
2457 The depth of the PBL is defined by the turbulence parameterization to be the
2458 depth at which the turbulent kinetic energy reduces to ten percent of its surface
2459 value.
2460
2461 \[
2462 {\bf PBL} = P_{PBL} - P_{surface}
2463 \]
2464
2465 \noindent
2466 where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2467 reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2468 \\
2469
2470 \noindent
2471 { \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2472
2473 \noindent
2474 The net Shortwave heating rate is calculated as the vertical divergence of the
2475 net solar radiative fluxes.
2476 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2477 For the clear-sky case, the shortwave fluxes and heating rates are computed with
2478 both CLMO (maximum overlap cloud fraction) and
2479 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2480 The shortwave routine is then called a second time, for the cloudy-sky case, with the
2481 true time-averaged cloud fractions CLMO
2482 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
2483 input at the top of the atmosphere.
2484
2485 \noindent
2486 The heating rate due to Shortwave Radiation under clear skies is defined as:
2487 \[
2488 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2489 \]
2490 or
2491 \[
2492 {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2493 \]
2494
2495 \noindent
2496 where $g$ is the accelation due to gravity,
2497 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2498 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2499 \[
2500 F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2501 \]
2502 \\
2503
2504 \noindent
2505 { \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2506 \[
2507 {\bf OSR} = F_{SW,top}^{NET}
2508 \]
2509 \noindent
2510 where top indicates the top of the first model layer used in the shortwave radiation
2511 routine.
2512 In the GCM, $p_{SW_{top}}$ = 0 mb.
2513 \\
2514
2515 \noindent
2516 { \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2517 \[
2518 {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
2519 \]
2520 \noindent
2521 where top indicates the top of the first model layer used in the shortwave radiation
2522 routine.
2523 In the GCM, $p_{SW_{top}}$ = 0 mb.
2524 \\
2525
2526
2527 \noindent
2528 { \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2529
2530 \noindent
2531 The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2532 \[
2533 {\bf CLDMAS} = \eta m_B
2534 \]
2535 where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2536 the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2537 description of the convective parameterization.
2538 \\
2539
2540
2541
2542 \noindent
2543 { \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2544
2545 \noindent
2546 The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2547 the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
2548 Zonal U-Wind which is archived on the Prognostic Output data stream.
2549 \[
2550 {\bf UAVE} = u(\lambda, \phi, level , t)
2551 \]
2552 \\
2553 Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2554 \\
2555
2556 \noindent
2557 { \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2558
2559 \noindent
2560 The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2561 the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
2562 Meridional V-Wind which is archived on the Prognostic Output data stream.
2563 \[
2564 {\bf VAVE} = v(\lambda, \phi, level , t)
2565 \]
2566 \\
2567 Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2568 \\
2569
2570 \noindent
2571 { \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2572
2573 \noindent
2574 The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2575 the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
2576 Temperature which is archived on the Prognostic Output data stream.
2577 \[
2578 {\bf TAVE} = T(\lambda, \phi, level , t)
2579 \]
2580 \\
2581
2582 \noindent
2583 { \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2584
2585 \noindent
2586 The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2587 the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
2588 Specific Humidity which is archived on the Prognostic Output data stream.
2589 \[
2590 {\bf QAVE} = q(\lambda, \phi, level , t)
2591 \]
2592 \\
2593
2594 \noindent
2595 { \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2596
2597 \noindent
2598 The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2599 the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
2600 Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2601 \begin{eqnarray*}
2602 {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
2603 & = & p_s(\lambda, \phi, level , t) - p_T
2604 \end{eqnarray*}
2605 \\
2606
2607
2608 \noindent
2609 { \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2610
2611 \noindent
2612 The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2613 produced by the GCM Turbulence parameterization over
2614 the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
2615 Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2616 \[
2617 {\bf QQAVE} = qq(\lambda, \phi, level , t)
2618 \]
2619 \\
2620 Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2621 \\
2622
2623 \noindent
2624 { \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2625
2626 \noindent
2627 \begin{eqnarray*}
2628 {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2629 & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2630 \end{eqnarray*}
2631 \noindent
2632 \\
2633 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2634 $F(clearsky){SW}^\downarrow$ is
2635 the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2636 the upward clearsky Shortwave flux.
2637 \\
2638
2639 \noindent
2640 { \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
2641
2642 \noindent
2643 {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2644 and the Analysis forcing.
2645 \[
2646 {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2647 \]
2648 \\
2649
2650 \noindent
2651 { \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
2652
2653 \noindent
2654 {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2655 and the Analysis forcing.
2656 \[
2657 {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2658 \]
2659 \\
2660
2661 \noindent
2662 { \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
2663
2664 \noindent
2665 {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2666 and the Analysis forcing.
2667 \begin{eqnarray*}
2668 {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2669 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2670 \end{eqnarray*}
2671 \\
2672 If we define the time-tendency of Temperature due to Diabatic processes as
2673 \begin{eqnarray*}
2674 \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2675 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2676 \end{eqnarray*}
2677 then, since there are no surface pressure changes due to Diabatic processes, we may write
2678 \[
2679 \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2680 \]
2681 where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
2682 \[
2683 {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2684 \]
2685 \\
2686
2687 \noindent
2688 { \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
2689
2690 \noindent
2691 {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2692 and the Analysis forcing.
2693 \[
2694 {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2695 \]
2696 If we define the time-tendency of Specific Humidity due to Diabatic processes as
2697 \[
2698 \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2699 \]
2700 then, since there are no surface pressure changes due to Diabatic processes, we may write
2701 \[
2702 \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2703 \]
2704 Thus, {\bf DIABQ} may be written as
2705 \[
2706 {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2707 \]
2708 \\
2709
2710 \noindent
2711 { \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2712
2713 \noindent
2714 The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2715 $u q$ over the depth of the atmosphere at each model timestep,
2716 and dividing by the total mass of the column.
2717 \[
2718 {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2719 \]
2720 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2721 \[
2722 {\bf VINTUQ} = { \int_0^1 u q dp }
2723 \]
2724 \\
2725
2726
2727 \noindent
2728 { \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2729
2730 \noindent
2731 The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2732 $v q$ over the depth of the atmosphere at each model timestep,
2733 and dividing by the total mass of the column.
2734 \[
2735 {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2736 \]
2737 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2738 \[
2739 {\bf VINTVQ} = { \int_0^1 v q dp }
2740 \]
2741 \\
2742
2743
2744 \noindent
2745 { \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2746
2747 \noindent
2748 The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2749 $u T$ over the depth of the atmosphere at each model timestep,
2750 and dividing by the total mass of the column.
2751 \[
2752 {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2753 \]
2754 Or,
2755 \[
2756 {\bf VINTUT} = { \int_0^1 u T dp }
2757 \]
2758 \\
2759
2760 \noindent
2761 { \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2762
2763 \noindent
2764 The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2765 $v T$ over the depth of the atmosphere at each model timestep,
2766 and dividing by the total mass of the column.
2767 \[
2768 {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2769 \]
2770 Using $\rho \delta z = -{\delta p \over g} $, we have
2771 \[
2772 {\bf VINTVT} = { \int_0^1 v T dp }
2773 \]
2774 \\
2775
2776 \noindent
2777 { \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2778
2779 If we define the
2780 time-averaged random and maximum overlapped cloudiness as CLRO and
2781 CLMO respectively, then the probability of clear sky associated
2782 with random overlapped clouds at any level is (1-CLRO) while the probability of
2783 clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2784 The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2785 the total cloud fraction at each level may be obtained by
2786 1-(1-CLRO)*(1-CLMO).
2787
2788 At any given level, we may define the clear line-of-site probability by
2789 appropriately accounting for the maximum and random overlap
2790 cloudiness. The clear line-of-site probability is defined to be
2791 equal to the product of the clear line-of-site probabilities
2792 associated with random and maximum overlap cloudiness. The clear
2793 line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2794 from the current pressure $p$
2795 to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2796 is simply 1.0 minus the largest maximum overlap cloud value along the
2797 line-of-site, ie.
2798
2799 $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2800
2801 Thus, even in the time-averaged sense it is assumed that the
2802 maximum overlap clouds are correlated in the vertical. The clear
2803 line-of-site probability associated with random overlap clouds is
2804 defined to be the product of the clear sky probabilities at each
2805 level along the line-of-site, ie.
2806
2807 $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2808
2809 The total cloud fraction at a given level associated with a line-
2810 of-site calculation is given by
2811
2812 $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2813 \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2814
2815
2816 \noindent
2817 The 2-dimensional net cloud fraction as seen from the top of the
2818 atmosphere is given by
2819 \[
2820 {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2821 \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2822 \]
2823 \\
2824 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2825
2826
2827 \noindent
2828 { \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2829
2830 \noindent
2831 The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2832 given by:
2833 \begin{eqnarray*}
2834 {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2835 & = & {\pi \over g} \int_0^1 q dp
2836 \end{eqnarray*}
2837 where we have used the hydrostatic relation
2838 $\rho \delta z = -{\delta p \over g} $.
2839 \\
2840
2841
2842 \noindent
2843 { \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2844
2845 \noindent
2846 The u-wind at the 2-meter depth is determined from the similarity theory:
2847 \[
2848 {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2849 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2850 \]
2851
2852 \noindent
2853 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2854 $sl$ refers to the height of the top of the surface layer. If the roughness height
2855 is above two meters, ${\bf U2M}$ is undefined.
2856 \\
2857
2858 \noindent
2859 { \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2860
2861 \noindent
2862 The v-wind at the 2-meter depth is a determined from the similarity theory:
2863 \[
2864 {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2865 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2866 \]
2867
2868 \noindent
2869 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2870 $sl$ refers to the height of the top of the surface layer. If the roughness height
2871 is above two meters, ${\bf V2M}$ is undefined.
2872 \\
2873
2874 \noindent
2875 { \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2876
2877 \noindent
2878 The temperature at the 2-meter depth is a determined from the similarity theory:
2879 \[
2880 {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2881 P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2882 (\theta_{sl} - \theta_{surf}))
2883 \]
2884 where:
2885 \[
2886 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2887 \]
2888
2889 \noindent
2890 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2891 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2892 $sl$ refers to the height of the top of the surface layer. If the roughness height
2893 is above two meters, ${\bf T2M}$ is undefined.
2894 \\
2895
2896 \noindent
2897 { \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2898
2899 \noindent
2900 The specific humidity at the 2-meter depth is determined from the similarity theory:
2901 \[
2902 {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2903 P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2904 (q_{sl} - q_{surf}))
2905 \]
2906 where:
2907 \[
2908 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2909 \]
2910
2911 \noindent
2912 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2913 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2914 $sl$ refers to the height of the top of the surface layer. If the roughness height
2915 is above two meters, ${\bf Q2M}$ is undefined.
2916 \\
2917
2918 \noindent
2919 { \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2920
2921 \noindent
2922 The u-wind at the 10-meter depth is an interpolation between the surface wind
2923 and the model lowest level wind using the ratio of the non-dimensional wind shear
2924 at the two levels:
2925 \[
2926 {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2927 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2928 \]
2929
2930 \noindent
2931 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2932 $sl$ refers to the height of the top of the surface layer.
2933 \\
2934
2935 \noindent
2936 { \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2937
2938 \noindent
2939 The v-wind at the 10-meter depth is an interpolation between the surface wind
2940 and the model lowest level wind using the ratio of the non-dimensional wind shear
2941 at the two levels:
2942 \[
2943 {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2944 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2945 \]
2946
2947 \noindent
2948 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2949 $sl$ refers to the height of the top of the surface layer.
2950 \\
2951
2952 \noindent
2953 { \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2954
2955 \noindent
2956 The temperature at the 10-meter depth is an interpolation between the surface potential
2957 temperature and the model lowest level potential temperature using the ratio of the
2958 non-dimensional temperature gradient at the two levels:
2959 \[
2960 {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2961 P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2962 (\theta_{sl} - \theta_{surf}))
2963 \]
2964 where:
2965 \[
2966 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2967 \]
2968
2969 \noindent
2970 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2971 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2972 $sl$ refers to the height of the top of the surface layer.
2973 \\
2974
2975 \noindent
2976 { \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2977
2978 \noindent
2979 The specific humidity at the 10-meter depth is an interpolation between the surface specific
2980 humidity and the model lowest level specific humidity using the ratio of the
2981 non-dimensional temperature gradient at the two levels:
2982 \[
2983 {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2984 P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2985 (q_{sl} - q_{surf}))
2986 \]
2987 where:
2988 \[
2989 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2990 \]
2991
2992 \noindent
2993 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2994 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2995 $sl$ refers to the height of the top of the surface layer.
2996 \\
2997
2998 \noindent
2999 { \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
3000
3001 The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
3002 \[
3003 {\bf DTRAIN} = \eta_{r_D}m_B
3004 \]
3005 \noindent
3006 where $r_D$ is the detrainment level,
3007 $m_B$ is the cloud base mass flux, and $\eta$
3008 is the entrainment, defined in Section \ref{sec:fizhi:mc}.
3009 \\
3010
3011 \noindent
3012 { \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
3013
3014 \noindent
3015 Due to computational errors associated with the numerical scheme used for
3016 the advection of moisture, negative values of specific humidity may be generated. The
3017 specific humidity is checked for negative values after every dynamics timestep. If negative
3018 values have been produced, a filling algorithm is invoked which redistributes moisture from
3019 below. Diagnostic {\bf QFILL} is equal to the net filling needed
3020 to eliminate negative specific humidity, scaled to a per-day rate:
3021 \[
3022 {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
3023 \]
3024 where
3025 \[
3026 q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
3027 \]
3028
3029
3030 \subsubsection{Key subroutines, parameters and files}
3031
3032 \subsubsection{Dos and donts}
3033
3034 \subsubsection{Fizhi Reference}

  ViewVC Help
Powered by ViewVC 1.1.22