/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.19 - (show annotations) (download) (as text)
Mon Aug 30 23:09:21 2010 UTC (13 years, 8 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint01, HEAD
Changes since 1.18: +111 -109 lines
File MIME type: application/x-tex
clean-up latex built:
 (remove multiple definition of label; fix missing reference; replace
  non-standard latex stuff; ...)

1 \subsection{Fizhi: High-end Atmospheric Physics}
2 \label{sec:pkg:fizhi}
3 \begin{rawhtml}
4 <!-- CMIREDIR:package_fizhi: -->
5 \end{rawhtml}
6 \input{texinputs/epsf.tex}
7
8 \subsubsection{Introduction}
9 The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art
10 physical parameterizations for atmospheric radiation, cumulus convection, atmospheric
11 boundary layer turbulence, and land surface processes. The collection of atmospheric
12 physics parameterizations were originally used together as part of the GEOS-3
13 (Goddard Earth Observing System-3) GCM developed at the NASA/Goddard Global Modelling
14 and Assimilation Office (GMAO).
15
16 % *************************************************************************
17 % *************************************************************************
18
19 \subsubsection{Equations}
20
21 Moist Convective Processes:
22
23 \paragraph{Sub-grid and Large-scale Convection}
24 \label{sec:fizhi:mc}
25
26 Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa
27 Schubert (RAS) scheme of \cite{moorsz:92}, which is a linearized Arakawa Schubert
28 type scheme. RAS predicts the mass flux from an ensemble of clouds. Each subensemble is identified
29 by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties.
30
31 The thermodynamic variables that are used in RAS to describe the grid scale vertical profile are
32 the dry static energy, $s=c_pT +gz$, and the moist static energy, $h=c_p T + gz + Lq$.
33 The conceptual model behind RAS depicts each subensemble as a rising plume cloud, entraining
34 mass from the environment during ascent, and detraining all cloud air at the level of neutral
35 buoyancy. RAS assumes that the normalized cloud mass flux, $\eta$, normalized by the cloud base
36 mass flux, is a linear function of height, expressed as:
37 \[
38 \pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =
39 -\frac{c_p}{g}\theta\lambda
40 \]
41 where we have used the hydrostatic equation written in the form:
42 \[
43 \pp{z}{P^{\kappa}} = -\frac{c_p}{g}\theta
44 \]
45
46 The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its
47 detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral
48 buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal
49 to the saturation moist static energy of the environment, $h^*$. Following \cite{moorsz:92},
50 $\lambda$ may be written as
51 \[
52 \lambda = \frac{h_B - h^*_D}{ \frac{c_p}{g} \int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}},
53 \]
54
55 where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level.
56
57
58 The convective instability is measured in terms of the cloud work function $A$, defined as the
59 rate of change of cumulus kinetic energy. The cloud work function is
60 related to the buoyancy, or the difference
61 between the moist static energy in the cloud and in the environment:
62 \[
63 A = \int_{P_D}^{P_B} \frac{\eta}{1 + \gamma}
64 \left[ \frac{h_c-h^*}{P^{\kappa}} \right] dP^{\kappa}
65 \]
66
67 where $\gamma$ is $\frac{L}{c_p}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation,
68 and the subscript $c$ refers to the value inside the cloud.
69
70
71 To determine the cloud base mass flux, the rate of change of $A$ in time {\em due to dissipation by
72 the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation
73 by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$:
74 \[
75 m_B = \frac{- \left. \frac{dA}{dt} \right|_{ls}}{K}
76 \]
77
78 where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per
79 unit cloud base mass flux, and is currently obtained by analytically differentiating the
80 expression for $A$ in time.
81 The rate of change of $A$ due to the generation by the large scale can be written as the
82 difference between the current $A(t+\Delta t)$ and its equillibrated value after the previous
83 convective time step
84 $A(t)$, divided by the time step. $A(t)$ is approximated as some critical $A_{crit}$,
85 computed by Lord (1982) from $in situ$ observations.
86
87
88 The predicted convective mass fluxes are used to solve grid-scale temperature
89 and moisture budget equations to determine the impact of convection on the large scale fields of
90 temperature (through latent heating and compensating subsidence) and moisture (through
91 precipitation and detrainment):
92 \[
93 \left.{\pp{\theta}{t}}\right|_{c} = \alpha \frac{ m_B}{c_p P^{\kappa}} \eta \pp{s}{p}
94 \]
95 and
96 \[
97 \left.{\pp{q}{t}}\right|_{c} = \alpha \frac{ m_B}{L} \eta (\pp{h}{p}-\pp{s}{p})
98 \]
99 where $\theta = \frac{T}{P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter.
100
101 As an approximation to a full interaction between the different allowable subensembles,
102 many clouds are simulated frequently, each modifying the large scale environment some fraction
103 $\alpha$ of the total adjustment. The parameterization thereby ``relaxes'' the large scale environment
104 towards equillibrium.
105
106 In addition to the RAS cumulus convection scheme, the fizhi package employs a
107 Kessler-type scheme for the re-evaporation of falling rain (\cite{sudm:88}), which
108 correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current
109 formulation assumes that all cloud water is deposited into the detrainment level as rain.
110 All of the rain is available for re-evaporation, which begins in the level below detrainment.
111 The scheme accounts for some microphysics such as
112 the rainfall intensity, the drop size distribution, as well as the temperature,
113 pressure and relative humidity of the surrounding air. The fraction of the moisture deficit
114 in any model layer into which the rain may re-evaporate is controlled by a free parameter,
115 which allows for a relatively efficient re-evaporation of liquid precipitate and larger rainout
116 for frozen precipitation.
117
118 Due to the increased vertical resolution near the surface, the lowest model
119 layers are averaged to provide a 50 mb thick sub-cloud layer for RAS. Each time RAS is
120 invoked (every ten simulated minutes),
121 a number of randomly chosen subensembles are checked for the possibility
122 of convection, from just above cloud base to 10 mb.
123
124 Supersaturation or large-scale precipitation is initiated in the fizhi package whenever
125 the relative humidity in any grid-box exceeds a critical value, currently 100 \%.
126 The large-scale precipitation re-evaporates during descent to partially saturate
127 lower layers in a process identical to the re-evaporation of convective rain.
128
129
130 \paragraph{Cloud Formation}
131 \label{sec:fizhi:clouds}
132
133 Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined
134 diagnostically as part of the cumulus and large-scale parameterizations.
135 Convective cloud fractions produced by RAS are proportional to the
136 detrained liquid water amount given by
137
138 \[
139 F_{RAS} = \min\left[ \frac{l_{RAS}}{l_c}, 1.0 \right]
140 \]
141
142 where $l_c$ is an assigned critical value equal to $1.25$ g/kg.
143 A memory is associated with convective clouds defined by:
144
145 \[
146 F_{RAS}^n = \min\left[ F_{RAS} + (1-\frac{\Delta t_{RAS}}{\tau})F_{RAS}^{n-1}, 1.0 \right]
147 \]
148
149 where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction
150 from the previous RAS timestep. The memory coefficient is computed using a RAS cloud timescale,
151 $\tau$, equal to 1 hour. RAS cloud fractions are cleared when they fall below 5 \%.
152
153 Large-scale cloudiness is defined, following Slingo and Ritter (1985), as a function of relative
154 humidity:
155
156 \[
157 F_{LS} = \min\left[ { \left( \frac{RH-RH_c}{1-RH_c} \right) }^2, 1.0 \right]
158 \]
159
160 where
161
162 \bqa
163 RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\
164 s & = & p/p_{surf} \nonumber \\
165 r & = & \left( \frac{1.0-RH_{min}}{\alpha} \right) \nonumber \\
166 RH_{min} & = & 0.75 \nonumber \\
167 \alpha & = & 0.573285 \nonumber .
168 \eqa
169
170 These cloud fractions are suppressed, however, in regions where the convective
171 sub-cloud layer is conditionally unstable. The functional form of $RH_c$ is shown in
172 Figure (\ref{fig.rhcrit}).
173
174 \begin{figure*}[htbp]
175 \vspace{0.4in}
176 \centerline{ \epsfysize=4.0in \epsfbox{s_phys_pkgs/figs/rhcrit.ps}}
177 \vspace{0.4in}
178 \caption [Critical Relative Humidity for Clouds.]
179 {Critical Relative Humidity for Clouds.}
180 \label{fig.rhcrit}
181 \end{figure*}
182
183 The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:
184
185 \[
186 F_{CLD} = \max \left[ F_{RAS},F_{LS} \right] .
187 \]
188
189 Finally, cloud fractions are time-averaged between calls to the radiation packages.
190
191
192 Radiation:
193
194 The parameterization of radiative heating in the fizhi package includes effects
195 from both shortwave and longwave processes.
196 Radiative fluxes are calculated at each
197 model edge-level in both up and down directions.
198 The heating rates/cooling rates are then obtained
199 from the vertical divergence of the net radiative fluxes.
200
201 The net flux is
202 \[
203 F = F^\uparrow - F^\downarrow
204 \]
205 where $F$ is the net flux, $F^\uparrow$ is the upward flux and $F^\downarrow$ is
206 the downward flux.
207
208 The heating rate due to the divergence of the radiative flux is given by
209 \[
210 \pp{\rho c_p T}{t} = - \pp{F}{z}
211 \]
212 or
213 \[
214 \pp{T}{t} = \frac{g}{c_p \pi} \pp{F}{\sigma}
215 \]
216 where $g$ is the accelation due to gravity
217 and $c_p$ is the heat capacity of air at constant pressure.
218
219 The time tendency for Longwave
220 Radiation is updated every 3 hours. The time tendency for Shortwave Radiation is updated once
221 every three hours assuming a normalized incident solar radiation, and subsequently modified at
222 every model time step by the true incident radiation.
223 The solar constant value used in the package is equal to 1365 $W/m^2$
224 and a $CO_2$ mixing ratio of 330 ppm.
225 For the ozone mixing ratio, monthly mean zonally averaged
226 climatological values specified as a function
227 of latitude and height (\cite{rosen:87}) are linearly interpolated to the current time.
228
229
230 \paragraph{Shortwave Radiation}
231
232 The shortwave radiation package used in the package computes solar radiative
233 heating due to the absoption by water vapor, ozone, carbon dioxide, oxygen,
234 clouds, and aerosols and due to the
235 scattering by clouds, aerosols, and gases.
236 The shortwave radiative processes are described by
237 \cite{chou:90,chou:92}. This shortwave package
238 uses the Delta-Eddington approximation to compute the
239 bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986).
240 The transmittance and reflectance of diffuse radiation
241 follow the procedures of Sagan and Pollock (JGR, 1967) and \cite{lhans:74}.
242
243 Highly accurate heating rate calculations are obtained through the use
244 of an optimal grouping strategy of spectral bands. By grouping the UV and visible regions
245 as indicated in Table \ref{tab:fizhi:solar2}, the Rayleigh scattering and the ozone absorption of solar radiation
246 can be accurately computed in the ultraviolet region and the photosynthetically
247 active radiation (PAR) region.
248 The computation of solar flux in the infrared region is performed with a broadband
249 parameterization using the spectrum regions shown in Table \ref{tab:fizhi:solar1}.
250 The solar radiation algorithm used in the fizhi package can be applied not only for climate studies but
251 also for studies on the photolysis in the upper atmosphere and the photosynthesis in the biosphere.
252
253 \begin{table}[htb]
254 \begin{center}
255 {\bf UV and Visible Spectral Regions} \\
256 \vspace{0.1in}
257 \begin{tabular}{|c|c|c|}
258 \hline
259 Region & Band & Wavelength (micron) \\ \hline
260 \hline
261 UV-C & 1. & .175 - .225 \\
262 & 2. & .225 - .245 \\
263 & & .260 - .280 \\
264 & 3. & .245 - .260 \\ \hline
265 UV-B & 4. & .280 - .295 \\
266 & 5. & .295 - .310 \\
267 & 6. & .310 - .320 \\ \hline
268 UV-A & 7. & .320 - .400 \\ \hline
269 PAR & 8. & .400 - .700 \\
270 \hline
271 \end{tabular}
272 \end{center}
273 \caption{UV and Visible Spectral Regions used in shortwave radiation package.}
274 \label{tab:fizhi:solar2}
275 \end{table}
276
277 \begin{table}[htb]
278 \begin{center}
279 {\bf Infrared Spectral Regions} \\
280 \vspace{0.1in}
281 \begin{tabular}{|c|c|c|}
282 \hline
283 Band & Wavenumber(cm$^{-1}$) & Wavelength (micron) \\ \hline
284 \hline
285 1 & 1000-4400 & 2.27-10.0 \\
286 2 & 4400-8200 & 1.22-2.27 \\
287 3 & 8200-14300 & 0.70-1.22 \\
288 \hline
289 \end{tabular}
290 \end{center}
291 \caption{Infrared Spectral Regions used in shortwave radiation package.}
292 \label{tab:fizhi:solar1}
293 \end{table}
294
295 Within the shortwave radiation package,
296 both ice and liquid cloud particles are allowed to co-exist in any of the model layers.
297 Two sets of cloud parameters are used, one for ice paticles and the other for liquid particles.
298 Cloud parameters are defined as the cloud optical thickness and the effective cloud particle size.
299 In the fizhi package, the effective radius for water droplets is given as 10 microns,
300 while 65 microns is used for ice particles. The absorption due to aerosols is currently
301 set to zero.
302
303 To simplify calculations in a cloudy atmosphere, clouds are
304 grouped into low ($p>700$ mb), middle (700 mb $\ge p > 400$ mb), and high ($p < 400$ mb) cloud regions.
305 Within each of the three regions, clouds are assumed maximally
306 overlapped, and the cloud cover of the group is the maximum
307 cloud cover of all the layers in the group. The optical thickness
308 of a given layer is then scaled for both the direct (as a function of the
309 solar zenith angle) and diffuse beam radiation
310 so that the grouped layer reflectance is the same as the original reflectance.
311 The solar flux is computed for each of eight cloud realizations possible within this
312 low/middle/high classification, and appropriately averaged to produce the net solar flux.
313
314 \paragraph{Longwave Radiation}
315
316 The longwave radiation package used in the fizhi package is thoroughly described by \cite{chsz:94}.
317 As described in that document, IR fluxes are computed due to absorption by water vapor, carbon
318 dioxide, and ozone. The spectral bands together with their absorbers and parameterization methods,
319 configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}.
320
321
322 \begin{table}[htb]
323 \begin{center}
324 {\bf IR Spectral Bands} \\
325 \vspace{0.1in}
326 \begin{tabular}{|c|c|l|c| }
327 \hline
328 Band & Spectral Range (cm$^{-1}$) & Absorber & Method \\ \hline
329 \hline
330 1 & 0-340 & H$_2$O line & T \\ \hline
331 2 & 340-540 & H$_2$O line & T \\ \hline
332 3a & 540-620 & H$_2$O line & K \\
333 3b & 620-720 & H$_2$O continuum & S \\
334 3b & 720-800 & CO$_2$ & T \\ \hline
335 4 & 800-980 & H$_2$O line & K \\
336 & & H$_2$O continuum & S \\ \hline
337 & & H$_2$O line & K \\
338 5 & 980-1100 & H$_2$O continuum & S \\
339 & & O$_3$ & T \\ \hline
340 6 & 1100-1380 & H$_2$O line & K \\
341 & & H$_2$O continuum & S \\ \hline
342 7 & 1380-1900 & H$_2$O line & T \\ \hline
343 8 & 1900-3000 & H$_2$O line & K \\ \hline
344 \hline
345 \multicolumn{4}{|l|}{ \quad K: {\em k}-distribution method with linear pressure scaling } \\
346 \multicolumn{4}{|l|}{ \quad T: Table look-up with temperature and pressure scaling } \\
347 \multicolumn{4}{|l|}{ \quad S: One-parameter temperature scaling } \\
348 \hline
349 \end{tabular}
350 \end{center}
351 \vspace{0.1in}
352 \caption{IR Spectral Bands, Absorbers, and Parameterization Method (from \cite{chsz:94})}
353 \label{tab:fizhi:longwave}
354 \end{table}
355
356
357 The longwave radiation package accurately computes cooling rates for the middle and
358 lower atmosphere from 0.01 mb to the surface. Errors are $<$ 0.4 C day$^{-1}$ in cooling
359 rates and $<$ 1\% in fluxes. From Chou and Suarez, it is estimated that the total effect of
360 neglecting all minor absorption bands and the effects of minor infrared absorbers such as
361 nitrous oxide (N$_2$O), methane (CH$_4$), and the chlorofluorocarbons (CFCs), is an underestimate
362 of $\approx$ 5 W/m$^2$ in the downward flux at the surface and an overestimate of $\approx$ 3 W/m$^2$
363 in the upward flux at the top of the atmosphere.
364
365 Similar to the procedure used in the shortwave radiation package, clouds are grouped into
366 three regions catagorized as low/middle/high.
367 The net clear line-of-site probability $(P)$ between any two levels, $p_1$ and $p_2 \quad (p_2 > p_1)$,
368 assuming randomly overlapped cloud groups, is simply the product of the probabilities within each group:
369
370 \[ P_{net} = P_{low} \times P_{mid} \times P_{hi} . \]
371
372 Since all clouds within a group are assumed maximally overlapped, the clear line-of-site probability within
373 a group is given by:
374
375 \[ P_{group} = 1 - F_{max} , \]
376
377 where $F_{max}$ is the maximum cloud fraction encountered between $p_1$ and $p_2$ within that group.
378 For groups and/or levels outside the range of $p_1$ and $p_2$, a clear line-of-site probability equal to 1 is
379 assigned.
380
381
382 \paragraph{Cloud-Radiation Interaction}
383 \label{sec:fizhi:radcloud}
384
385 The cloud fractions and diagnosed cloud liquid water produced by moist processes
386 within the fizhi package are used in the radiation packages to produce cloud-radiative forcing.
387 The cloud optical thickness associated with large-scale cloudiness is made
388 proportional to the diagnosed large-scale liquid water, $\ell$, detrained due to super-saturation.
389 Two values are used corresponding to cloud ice particles and water droplets.
390 The range of optical thickness for these clouds is given as
391
392 \[ 0.0002 \le \tau_{ice} (mb^{-1}) \le 0.002 \quad\mbox{for}\quad 0 \le \ell \le 2 \quad\mbox{mg/kg} , \]
393 \[ 0.02 \le \tau_{h_2o} (mb^{-1}) \le 0.2 \quad\mbox{for}\quad 0 \le \ell \le 10 \quad\mbox{mg/kg} . \]
394
395 The partitioning, $\alpha$, between ice particles and water droplets is achieved through a linear scaling
396 in temperature:
397
398 \[ 0 \le \alpha \le 1 \quad\mbox{for}\quad 233.15 \le T \le 253.15 . \]
399
400 The resulting optical depth associated with large-scale cloudiness is given as
401
402 \[ \tau_{LS} = \alpha \tau_{h_2o} + (1-\alpha)\tau_{ice} . \]
403
404 The optical thickness associated with sub-grid scale convective clouds produced by RAS is given as
405
406 \[ \tau_{RAS} = 0.16 \quad mb^{-1} . \]
407
408 The total optical depth in a given model layer is computed as a weighted average between
409 the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the
410 layer:
411
412 \[ \tau = \left( \frac{F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} }{ F_{RAS}+F_{LS} } \right) \Delta p, \]
413
414 where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale
415 processes described in Section \ref{sec:fizhi:clouds}.
416 The optical thickness for the longwave radiative feedback is assumed to be 75 $\%$ of these values.
417
418 The entire Moist Convective Processes Module is called with a frequency of 10 minutes.
419 The cloud fraction values are time-averaged over the period between Radiation calls (every 3
420 hours). Therefore, in a time-averaged sense, both convective and large-scale
421 cloudiness can exist in a given grid-box.
422
423 \paragraph{Turbulence}:
424
425 Turbulence is parameterized in the fizhi package to account for its contribution to the
426 vertical exchange of heat, moisture, and momentum.
427 The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative
428 time scheme with an internal time step of 5 minutes.
429 The tendencies of atmospheric state variables due to turbulent diffusion are calculated using
430 the diffusion equations:
431
432 \[
433 {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
434 = {\pp{}{z} }{(K_m \pp{u}{z})}
435 \]
436 \[
437 {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
438 = {\pp{}{z} }{(K_m \pp{v}{z})}
439 \]
440 \[
441 {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
442 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
443 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
444 \]
445 \[
446 {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
447 = {\pp{}{z} }{(K_h \pp{q}{z})}
448 \]
449
450 Within the atmosphere, the time evolution
451 of second turbulent moments is explicitly modeled by representing the third moments in terms of
452 the first and second moments. This approach is known as a second-order closure modeling.
453 To simplify and streamline the computation of the second moments, the level 2.5 assumption
454 of Mellor and Yamada (1974) and \cite{yam:77} is employed, in which only the turbulent
455 kinetic energy (TKE),
456
457 \[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \]
458
459 is solved prognostically and the other second moments are solved diagnostically.
460 The prognostic equation for TKE allows the scheme to simulate
461 some of the transient and diffusive effects in the turbulence. The TKE budget equation
462 is solved numerically using an implicit backward computation of the terms linear in $q^2$
463 and is written:
464
465 \[
466 {\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ \frac{5}{3} {{\lambda}_1} q { \pp {}{z}
467 ({\h}q^2)} })} =
468 {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}
469 { \pp{V}{z} }} + {\frac{g}{\Theta_0}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}}
470 - \frac{ q^3}{{\Lambda}_1} }
471 \]
472
473 where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and
474 ${{\theta}^{\prime}}$ are the fluctuating parts of the velocity components and potential
475 temperature, $U$ and $V$ are the mean velocity components, ${\Theta_0}^{-1}$ is the
476 coefficient of thermal expansion, and ${{\lambda}_1}$ and ${{\Lambda} _1}$ are constant
477 multiples of the master length scale, $\ell$, which is designed to be a characteristic measure
478 of the vertical structure of the turbulent layers.
479
480 The first term on the left-hand side represents the time rate of change of TKE, and
481 the second term is a representation of the triple correlation, or turbulent
482 transport term. The first three terms on the right-hand side represent the sources of
483 TKE due to shear and bouyancy, and the last term on the right hand side is the dissipation
484 of TKE.
485
486 In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the
487 wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and
488 $K_m$, respectively. In the statisically realizable level 2.5 turbulence scheme of
489 \cite{helflab:88}, these diffusion coefficients are expressed as
490
491 \[
492 K_h
493 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}
494 \\ \frac{ q^2 }{ q_e } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
495 \]
496
497 and
498
499 \[
500 K_m
501 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}
502 \\ \frac{ q^2 }{ q_e } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
503 \]
504
505 where the subscript $e$ refers to the value under conditions of local equillibrium
506 (obtained from the Level 2.0 Model), $\ell$ is the master length scale related to the
507 vertical structure of the atmosphere,
508 and $S_M$ and $S_H$ are functions of $G_H$ and $G_M$, the dimensionless buoyancy and
509 wind shear parameters, respectively.
510 Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
511 are functions of the Richardson number:
512
513 \[
514 {\bf RI} = \frac{ \frac{g}{\theta_v} \pp{\theta_v}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }
515 = \frac{c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 } .
516 \]
517
518 Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$)
519 indicate dominantly unstable shear, and large positive values indicate dominantly stable
520 stratification.
521
522 Turbulent eddy diffusion coefficients of momentum, heat and moisture in the
523 surface layer, which corresponds to the lowest GCM level
524 (see {\it --- missing table ---}%\ref{tab:fizhi:sigma}
525 ),
526 are calculated using stability-dependant functions based on Monin-Obukhov theory:
527 \[
528 {K_m} (surface) = C_u \times u_* = C_D W_s
529 \]
530 and
531 \[
532 {K_h} (surface) = C_t \times u_* = C_H W_s
533 \]
534 where $u_*=C_uW_s$ is the surface friction velocity,
535 $C_D$ is termed the surface drag coefficient, $C_H$ the heat transfer coefficient,
536 and $W_s$ is the magnitude of the surface layer wind.
537
538 $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
539 similarity functions:
540 \[
541 {C_u} = \frac{u_* }{ W_s} = \frac{ k }{ \psi_{m} }
542 \]
543 where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional
544 wind shear given by
545 \[
546 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{m} }{ \zeta} d \zeta} .
547 \]
548 Here $\zeta$ is the non-dimensional stability parameter, and
549 $\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of
550 the momentum gradient. The functional form of $\phi_m$ is specified differently for stable and unstable
551 layers.
552
553 $C_t$ is the dimensionless exchange coefficient for heat and
554 moisture from the surface layer similarity functions:
555 \[
556 {C_t} = -\frac{( \overline{w^{\prime}\theta^{\prime}}) }{ u_* \Delta \theta } =
557 -\frac{( \overline{w^{\prime}q^{\prime}}) }{ u_* \Delta q } =
558 \frac{ k }{ (\psi_{h} + \psi_{g}) }
559 \]
560 where $\psi_h$ is the surface layer non-dimensional temperature gradient given by
561 \[
562 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{h} }{ \zeta} d \zeta} .
563 \]
564 Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
565 the temperature and moisture gradients, and is specified differently for stable and unstable
566 layers according to \cite{helfschu:95}.
567
568 $\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer,
569 which is the mosstly laminar region between the surface and the tops of the roughness
570 elements, in which temperature and moisture gradients can be quite large.
571 Based on \cite{yagkad:74}:
572 \[
573 \psi_{g} = \frac{ 0.55 (Pr^{2/3} - 0.2) }{ \nu^{1/2} }
574 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
575 \]
576 where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the
577 surface roughness length, and the subscript {\em ref} refers to a reference value.
578 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
579
580 The surface roughness length over oceans is is a function of the surface-stress velocity,
581 \[
582 {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + \frac{c_5 }{ u_*}
583 \]
584 where the constants are chosen to interpolate between the reciprocal relation of
585 \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
586 for moderate to large winds. Roughness lengths over land are specified
587 from the climatology of \cite{dorsell:89}.
588
589 For an unstable surface layer, the stability functions, chosen to interpolate between the
590 condition of small values of $\beta$ and the convective limit, are the KEYPS function
591 (\cite{pano:73}) for momentum, and its generalization for heat and moisture:
592 \[
593 {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}
594 {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .
595 \]
596 The function for heat and moisture assures non-vanishing heat and moisture fluxes as the wind
597 speed approaches zero.
598
599 For a stable surface layer, the stability functions are the observationally
600 based functions of \cite{clarke:70}, slightly modified for
601 the momemtum flux:
602 \[
603 {\phi_m} = \frac{ 1 + 5 {{\zeta}_1} }{ 1 + 0.00794 {\zeta}_1
604 (1+ 5 {\zeta}_1) } \hspace{1cm} ; \hspace{1cm}
605 {\phi_h} = \frac{ 1 + 5 {{\zeta}_1} }{ 1 + 0.00794 {\zeta}
606 (1+ 5 {{\zeta}_1}) } .
607 \]
608 The moisture flux also depends on a specified evapotranspiration
609 coefficient, set to unity over oceans and dependant on the climatological ground wetness over
610 land.
611
612 Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically
613 using an implicit backward operator.
614
615 \paragraph{Atmospheric Boundary Layer}
616
617 The depth of the atmospheric boundary layer (ABL) is diagnosed by the parameterization as the
618 level at which the turbulent kinetic energy is reduced to a tenth of its maximum near surface value.
619 The vertical structure of the ABL is explicitly resolved by the lowest few (3-8) model layers.
620
621 \paragraph{Surface Energy Budget}
622
623 The ground temperature equation is solved as part of the turbulence package
624 using a backward implicit time differencing scheme:
625 \[
626 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
627 \]
628 where $R_{sw}$ is the net surface downward shortwave radiative flux and $R_{lw}$ is the
629 net surface upward longwave radiative flux.
630
631 $H$ is the upward sensible heat flux, given by:
632 \[
633 {H} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{NLAY})
634 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
635 \]
636 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
637 heat of air at constant pressure, and $\theta$ represents the potential temperature
638 of the surface and of the lowest $\sigma$-level, respectively.
639
640 The upward latent heat flux, $LE$, is given by
641 \[
642 {LE} = \rho \beta L C_{H} W_s (q_{surface} - q_{NLAY})
643 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
644 \]
645 where $\beta$ is the fraction of the potential evapotranspiration actually evaporated,
646 L is the latent heat of evaporation, and $q_{surface}$ and $q_{NLAY}$ are the specific
647 humidity of the surface and of the lowest $\sigma$-level, respectively.
648
649 The heat conduction through sea ice, $Q_{ice}$, is given by
650 \[
651 {Q_{ice}} = \frac{C_{ti} }{ H_i} (T_i-T_g)
652 \]
653 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
654 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the
655 surface temperature of the ice.
656
657 $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation
658 for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
659 \[
660 C_g = \sqrt{ \frac{\lambda C_s }{ 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
661 \frac{86400}{2\pi} } \, \, .
662 \]
663 Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ $\frac{ly}{sec}
664 \frac{cm}{K}$,
665 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
666 by $2 \pi$ $radians/
667 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
668 is a function of the ground wetness, $W$.
669
670 Land Surface Processes:
671
672 \paragraph{Surface Type}
673 The fizhi package surface Types are designated using the Koster-Suarez (\cite{ks:91,ks:92})
674 Land Surface Model (LSM) mosaic philosophy which allows multiple ``tiles'', or multiple surface
675 types, in any one grid cell. The Koster-Suarez LSM surface type classifications
676 are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid
677 cell occupied by any surface type were derived from the surface classification of
678 \cite{deftow:94}, and information about the location of permanent
679 ice was obtained from the classifications of \cite{dorsell:89}.
680 The surface type map for a $1^\circ$ grid is shown in Figure \ref{fig:fizhi:surftype}.
681 The determination of the land or sea category of surface type was made from NCAR's
682 10 minute by 10 minute Navy topography
683 dataset, which includes information about the percentage of water-cover at any point.
684 The data were averaged to the model's grid resolutions,
685 and any grid-box whose averaged water percentage was $\geq 60 \%$ was
686 defined as a water point. The Land-Water designation was further modified
687 subjectively to ensure sufficient representation from small but isolated land and water regions.
688
689 \begin{table}
690 \begin{center}
691 {\bf Surface Type Designation} \\
692 \vspace{0.1in}
693 \begin{tabular}{ |c|l| }
694 \hline
695 Type & Vegetation Designation \\ \hline
696 \hline
697 1 & Broadleaf Evergreen Trees \\ \hline
698 2 & Broadleaf Deciduous Trees \\ \hline
699 3 & Needleleaf Trees \\ \hline
700 4 & Ground Cover \\ \hline
701 5 & Broadleaf Shrubs \\ \hline
702 6 & Dwarf Trees (Tundra) \\ \hline
703 7 & Bare Soil \\ \hline
704 8 & Desert (Bright) \\ \hline
705 9 & Glacier \\ \hline
706 10 & Desert (Dark) \\ \hline
707 100 & Ocean \\ \hline
708 \end{tabular}
709 \end{center}
710 \caption{Surface type designations.}
711 \label{tab:fizhi:surftype}
712 \end{table}
713
714 \begin{figure*}[htbp]
715 \centerline{ \epsfysize=4.0in \epsfbox{s_phys_pkgs/figs/surftype.eps}}
716 \vspace{0.2in}
717 \caption {Surface Type Combinations.}
718 \label{fig:fizhi:surftype}
719 \end{figure*}
720
721 % \rotatebox{270}{\centerline{ \epsfysize=4in \epsfbox{s_phys_pkgs/figs/surftypes.eps}}}
722 % \rotatebox{270}{\centerline{ \epsfysize=4in \epsfbox{s_phys_pkgs/figs/surftypes.descrip.eps}}}
723 %\begin{figure*}[htbp]
724 % \centerline{ \epsfysize=4in \epsfbox{s_phys_pkgs/figs/surftypes.descrip.ps}}
725 % \vspace{0.3in}
726 % \caption {Surface Type Descriptions.}
727 % \label{fig:fizhi:surftype.desc}
728 %\end{figure*}
729
730
731 \paragraph{Surface Roughness}
732 The surface roughness length over oceans is computed iteratively with the wind
733 stress by the surface layer parameterization (\cite{helfschu:95}).
734 It employs an interpolation between the functions of \cite{larpond:81}
735 for high winds and of \cite{kondo:75} for weak winds.
736
737
738 \paragraph{Albedo}
739 The surface albedo computation, described in \cite{ks:91},
740 employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)
741 Model which distinguishes between the direct and diffuse albedos in the visible
742 and in the near infra-red spectral ranges. The albedos are functions of the observed
743 leaf area index (a description of the relative orientation of the leaves to the
744 sun), the greenness fraction, the vegetation type, and the solar zenith angle.
745 Modifications are made to account for the presence of snow, and its depth relative
746 to the height of the vegetation elements.
747
748 \paragraph{Gravity Wave Drag}
749
750 The fizhi package employs the gravity wave drag scheme of \cite{zhouetal:95}).
751 This scheme is a modified version of Vernekar et al. (1992),
752 which was based on Alpert et al. (1988) and Helfand et al. (1987).
753 In this version, the gravity wave stress at the surface is
754 based on that derived by Pierrehumbert (1986) and is given by:
755
756 \bq
757 |\vec{\tau}_{sfc}| = \frac{\rho U^3}{N \ell^*} \left( \frac{F_r^2}{1+F_r^2}\right) \, \, ,
758 \eq
759
760 where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the
761 surface wind speed, $h$ is the standard deviation of the sub-grid scale orography,
762 and $\ell^*$ is the wavelength of the monochromatic gravity wave in the direction of the low-level wind.
763 A modification introduced by Zhou et al. allows for the momentum flux to
764 escape through the top of the model, although this effect is small for the current 70-level model.
765 The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m.
766
767 The effects of using this scheme within a GCM are shown in \cite{taksz:96}.
768 Experiments using the gravity wave drag parameterization yielded significant and
769 beneficial impacts on both the time-mean flow and the transient statistics of the
770 a GCM climatology, and have eliminated most of the worst dynamically driven biases
771 in the a GCM simulation.
772 An examination of the angular momentum budget during climate runs indicates that the
773 resulting gravity wave torque is similar to the data-driven torque produced by a data
774 assimilation which was performed without gravity
775 wave drag. It was shown that the inclusion of gravity wave drag results in
776 large changes in both the mean flow and in eddy fluxes.
777 The result is a more
778 accurate simulation of surface stress (through a reduction in the surface wind strength),
779 of mountain torque (through a redistribution of mean sea-level pressure), and of momentum
780 convergence (through a reduction in the flux of westerly momentum by transient flow eddies).
781
782
783 Boundary Conditions and other Input Data:
784
785 Required fields which are not explicitly predicted or diagnosed during model execution must
786 either be prescribed internally or obtained from external data sets. In the fizhi package these
787 fields include: sea surface temperature, sea ice estent, surface geopotential variance,
788 vegetation index, and the radiation-related background levels of: ozone, carbon dioxide,
789 and stratospheric moisture.
790
791 Boundary condition data sets are available at the model's
792 resolutions for either climatological or yearly varying conditions.
793 Any frequency of boundary condition data can be used in the fizhi package;
794 however, the current selection of data is summarized in Table \ref{tab:fizhi:bcdata}\@.
795 The time mean values are interpolated during each model timestep to the
796 current time.
797
798 \begin{table}[htb]
799 \begin{center}
800 {\bf Fizhi Input Datasets} \\
801 \vspace{0.1in}
802 \begin{tabular}{|l|c|r|} \hline
803 \multicolumn{1}{|c}{Variable} & \multicolumn{1}{|c}{Frequency} & \multicolumn{1}{|c|}{Years} \\ \hline\hline
804 Sea Ice Extent & monthly & 1979-current, climatology \\ \hline
805 Sea Ice Extent & weekly & 1982-current, climatology \\ \hline
806 Sea Surface Temperature & monthly & 1979-current, climatology \\ \hline
807 Sea Surface Temperature & weekly & 1982-current, climatology \\ \hline
808 Zonally Averaged Upper-Level Moisture & monthly & climatology \\ \hline
809 Zonally Averaged Ozone Concentration & monthly & climatology \\ \hline
810 \end{tabular}
811 \end{center}
812 \caption{Boundary conditions and other input data used in the fizhi package. Also noted are the
813 current years and frequencies available.}
814 \label{tab:fizhi:bcdata}
815 \end{table}
816
817
818 \paragraph{Topography and Topography Variance}
819
820 Surface geopotential heights are provided from an averaging of the Navy 10 minute
821 by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the
822 model's grid resolution. The original topography is first rotated to the proper grid-orientation
823 which is being run, and then averages the data to the model resolution.
824
825 The standard deviation of the subgrid-scale topography is computed by interpolating the 10 minute
826 data to the model's resolution and re-interpolating back to the 10 minute by 10 minute resolution.
827 The sub-grid scale variance is constructed based on this smoothed dataset.
828
829
830 \paragraph{Upper Level Moisture}
831 The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas
832 Experiment (SAGE) as input into the model's radiation packages. The SAGE data is archived
833 as monthly zonal means at $5^\circ$ latitudinal resolution. The data is interpolated to the
834 model's grid location and current time, and blended with the GCM's moisture data. Below 300 mb,
835 the model's moisture data is used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb,
836 a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.
837
838
839 \subsubsection{Fizhi Diagnostics}
840
841 Fizhi Diagnostic Menu:
842 \label{sec:pkg:fizhi:diagnostics}
843
844 \begin{tabular}{llll}
845 \hline\hline
846 NAME & UNITS & LEVELS & DESCRIPTION \\
847 \hline
848
849 &\\
850 UFLUX & $Newton/m^2$ & 1
851 &\begin{minipage}[t]{3in}
852 {Surface U-Wind Stress on the atmosphere}
853 \end{minipage}\\
854 VFLUX & $Newton/m^2$ & 1
855 &\begin{minipage}[t]{3in}
856 {Surface V-Wind Stress on the atmosphere}
857 \end{minipage}\\
858 HFLUX & $Watts/m^2$ & 1
859 &\begin{minipage}[t]{3in}
860 {Surface Flux of Sensible Heat}
861 \end{minipage}\\
862 EFLUX & $Watts/m^2$ & 1
863 &\begin{minipage}[t]{3in}
864 {Surface Flux of Latent Heat}
865 \end{minipage}\\
866 QICE & $Watts/m^2$ & 1
867 &\begin{minipage}[t]{3in}
868 {Heat Conduction through Sea-Ice}
869 \end{minipage}\\
870 RADLWG & $Watts/m^2$ & 1
871 &\begin{minipage}[t]{3in}
872 {Net upward LW flux at the ground}
873 \end{minipage}\\
874 RADSWG & $Watts/m^2$ & 1
875 &\begin{minipage}[t]{3in}
876 {Net downward SW flux at the ground}
877 \end{minipage}\\
878 RI & $dimensionless$ & Nrphys
879 &\begin{minipage}[t]{3in}
880 {Richardson Number}
881 \end{minipage}\\
882 CT & $dimensionless$ & 1
883 &\begin{minipage}[t]{3in}
884 {Surface Drag coefficient for T and Q}
885 \end{minipage}\\
886 CU & $dimensionless$ & 1
887 &\begin{minipage}[t]{3in}
888 {Surface Drag coefficient for U and V}
889 \end{minipage}\\
890 ET & $m^2/sec$ & Nrphys
891 &\begin{minipage}[t]{3in}
892 {Diffusivity coefficient for T and Q}
893 \end{minipage}\\
894 EU & $m^2/sec$ & Nrphys
895 &\begin{minipage}[t]{3in}
896 {Diffusivity coefficient for U and V}
897 \end{minipage}\\
898 TURBU & $m/sec/day$ & Nrphys
899 &\begin{minipage}[t]{3in}
900 {U-Momentum Changes due to Turbulence}
901 \end{minipage}\\
902 TURBV & $m/sec/day$ & Nrphys
903 &\begin{minipage}[t]{3in}
904 {V-Momentum Changes due to Turbulence}
905 \end{minipage}\\
906 TURBT & $deg/day$ & Nrphys
907 &\begin{minipage}[t]{3in}
908 {Temperature Changes due to Turbulence}
909 \end{minipage}\\
910 TURBQ & $g/kg/day$ & Nrphys
911 &\begin{minipage}[t]{3in}
912 {Specific Humidity Changes due to Turbulence}
913 \end{minipage}\\
914 MOISTT & $deg/day$ & Nrphys
915 &\begin{minipage}[t]{3in}
916 {Temperature Changes due to Moist Processes}
917 \end{minipage}\\
918 MOISTQ & $g/kg/day$ & Nrphys
919 &\begin{minipage}[t]{3in}
920 {Specific Humidity Changes due to Moist Processes}
921 \end{minipage}\\
922 RADLW & $deg/day$ & Nrphys
923 &\begin{minipage}[t]{3in}
924 {Net Longwave heating rate for each level}
925 \end{minipage}\\
926 RADSW & $deg/day$ & Nrphys
927 &\begin{minipage}[t]{3in}
928 {Net Shortwave heating rate for each level}
929 \end{minipage}\\
930 PREACC & $mm/day$ & 1
931 &\begin{minipage}[t]{3in}
932 {Total Precipitation}
933 \end{minipage}\\
934 PRECON & $mm/day$ & 1
935 &\begin{minipage}[t]{3in}
936 {Convective Precipitation}
937 \end{minipage}\\
938 TUFLUX & $Newton/m^2$ & Nrphys
939 &\begin{minipage}[t]{3in}
940 {Turbulent Flux of U-Momentum}
941 \end{minipage}\\
942 TVFLUX & $Newton/m^2$ & Nrphys
943 &\begin{minipage}[t]{3in}
944 {Turbulent Flux of V-Momentum}
945 \end{minipage}\\
946 TTFLUX & $Watts/m^2$ & Nrphys
947 &\begin{minipage}[t]{3in}
948 {Turbulent Flux of Sensible Heat}
949 \end{minipage}\\
950 \end{tabular}
951
952 \newpage
953 \vspace*{\fill}
954 \begin{tabular}{llll}
955 \hline\hline
956 NAME & UNITS & LEVELS & DESCRIPTION \\
957 \hline
958
959 &\\
960 TQFLUX & $Watts/m^2$ & Nrphys
961 &\begin{minipage}[t]{3in}
962 {Turbulent Flux of Latent Heat}
963 \end{minipage}\\
964 CN & $dimensionless$ & 1
965 &\begin{minipage}[t]{3in}
966 {Neutral Drag Coefficient}
967 \end{minipage}\\
968 WINDS & $m/sec$ & 1
969 &\begin{minipage}[t]{3in}
970 {Surface Wind Speed}
971 \end{minipage}\\
972 DTSRF & $deg$ & 1
973 &\begin{minipage}[t]{3in}
974 {Air/Surface virtual temperature difference}
975 \end{minipage}\\
976 TG & $deg$ & 1
977 &\begin{minipage}[t]{3in}
978 {Ground temperature}
979 \end{minipage}\\
980 TS & $deg$ & 1
981 &\begin{minipage}[t]{3in}
982 {Surface air temperature (Adiabatic from lowest model layer)}
983 \end{minipage}\\
984 DTG & $deg$ & 1
985 &\begin{minipage}[t]{3in}
986 {Ground temperature adjustment}
987 \end{minipage}\\
988
989 QG & $g/kg$ & 1
990 &\begin{minipage}[t]{3in}
991 {Ground specific humidity}
992 \end{minipage}\\
993 QS & $g/kg$ & 1
994 &\begin{minipage}[t]{3in}
995 {Saturation surface specific humidity}
996 \end{minipage}\\
997 TGRLW & $deg$ & 1
998 &\begin{minipage}[t]{3in}
999 {Instantaneous ground temperature used as input to the
1000 Longwave radiation subroutine}
1001 \end{minipage}\\
1002 ST4 & $Watts/m^2$ & 1
1003 &\begin{minipage}[t]{3in}
1004 {Upward Longwave flux at the ground ($\sigma T^4$)}
1005 \end{minipage}\\
1006 OLR & $Watts/m^2$ & 1
1007 &\begin{minipage}[t]{3in}
1008 {Net upward Longwave flux at the top of the model}
1009 \end{minipage}\\
1010 OLRCLR & $Watts/m^2$ & 1
1011 &\begin{minipage}[t]{3in}
1012 {Net upward clearsky Longwave flux at the top of the model}
1013 \end{minipage}\\
1014 LWGCLR & $Watts/m^2$ & 1
1015 &\begin{minipage}[t]{3in}
1016 {Net upward clearsky Longwave flux at the ground}
1017 \end{minipage}\\
1018 LWCLR & $deg/day$ & Nrphys
1019 &\begin{minipage}[t]{3in}
1020 {Net clearsky Longwave heating rate for each level}
1021 \end{minipage}\\
1022 TLW & $deg$ & Nrphys
1023 &\begin{minipage}[t]{3in}
1024 {Instantaneous temperature used as input to the Longwave radiation
1025 subroutine}
1026 \end{minipage}\\
1027 SHLW & $g/g$ & Nrphys
1028 &\begin{minipage}[t]{3in}
1029 {Instantaneous specific humidity used as input to the Longwave radiation
1030 subroutine}
1031 \end{minipage}\\
1032 OZLW & $g/g$ & Nrphys
1033 &\begin{minipage}[t]{3in}
1034 {Instantaneous ozone used as input to the Longwave radiation
1035 subroutine}
1036 \end{minipage}\\
1037 CLMOLW & $0-1$ & Nrphys
1038 &\begin{minipage}[t]{3in}
1039 {Maximum overlap cloud fraction used in the Longwave radiation
1040 subroutine}
1041 \end{minipage}\\
1042 CLDTOT & $0-1$ & Nrphys
1043 &\begin{minipage}[t]{3in}
1044 {Total cloud fraction used in the Longwave and Shortwave radiation
1045 subroutines}
1046 \end{minipage}\\
1047 LWGDOWN & $Watts/m^2$ & 1
1048 &\begin{minipage}[t]{3in}
1049 {Downwelling Longwave radiation at the ground}
1050 \end{minipage}\\
1051 GWDT & $deg/day$ & Nrphys
1052 &\begin{minipage}[t]{3in}
1053 {Temperature tendency due to Gravity Wave Drag}
1054 \end{minipage}\\
1055 RADSWT & $Watts/m^2$ & 1
1056 &\begin{minipage}[t]{3in}
1057 {Incident Shortwave radiation at the top of the atmosphere}
1058 \end{minipage}\\
1059 TAUCLD & $per 100 mb$ & Nrphys
1060 &\begin{minipage}[t]{3in}
1061 {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
1062 \end{minipage}\\
1063 TAUCLDC & $Number$ & Nrphys
1064 &\begin{minipage}[t]{3in}
1065 {Cloud Optical Depth Counter}
1066 \end{minipage}\\
1067 \end{tabular}
1068 \vfill
1069
1070 \newpage
1071 \vspace*{\fill}
1072 \begin{tabular}{llll}
1073 \hline\hline
1074 NAME & UNITS & LEVELS & DESCRIPTION \\
1075 \hline
1076
1077 &\\
1078 CLDLOW & $0-1$ & Nrphys
1079 &\begin{minipage}[t]{3in}
1080 {Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)}
1081 \end{minipage}\\
1082 EVAP & $mm/day$ & 1
1083 &\begin{minipage}[t]{3in}
1084 {Surface evaporation}
1085 \end{minipage}\\
1086 DPDT & $hPa/day$ & 1
1087 &\begin{minipage}[t]{3in}
1088 {Surface Pressure tendency}
1089 \end{minipage}\\
1090 UAVE & $m/sec$ & Nrphys
1091 &\begin{minipage}[t]{3in}
1092 {Average U-Wind}
1093 \end{minipage}\\
1094 VAVE & $m/sec$ & Nrphys
1095 &\begin{minipage}[t]{3in}
1096 {Average V-Wind}
1097 \end{minipage}\\
1098 TAVE & $deg$ & Nrphys
1099 &\begin{minipage}[t]{3in}
1100 {Average Temperature}
1101 \end{minipage}\\
1102 QAVE & $g/kg$ & Nrphys
1103 &\begin{minipage}[t]{3in}
1104 {Average Specific Humidity}
1105 \end{minipage}\\
1106 OMEGA & $hPa/day$ & Nrphys
1107 &\begin{minipage}[t]{3in}
1108 {Vertical Velocity}
1109 \end{minipage}\\
1110 DUDT & $m/sec/day$ & Nrphys
1111 &\begin{minipage}[t]{3in}
1112 {Total U-Wind tendency}
1113 \end{minipage}\\
1114 DVDT & $m/sec/day$ & Nrphys
1115 &\begin{minipage}[t]{3in}
1116 {Total V-Wind tendency}
1117 \end{minipage}\\
1118 DTDT & $deg/day$ & Nrphys
1119 &\begin{minipage}[t]{3in}
1120 {Total Temperature tendency}
1121 \end{minipage}\\
1122 DQDT & $g/kg/day$ & Nrphys
1123 &\begin{minipage}[t]{3in}
1124 {Total Specific Humidity tendency}
1125 \end{minipage}\\
1126 VORT & $10^{-4}/sec$ & Nrphys
1127 &\begin{minipage}[t]{3in}
1128 {Relative Vorticity}
1129 \end{minipage}\\
1130 DTLS & $deg/day$ & Nrphys
1131 &\begin{minipage}[t]{3in}
1132 {Temperature tendency due to Stratiform Cloud Formation}
1133 \end{minipage}\\
1134 DQLS & $g/kg/day$ & Nrphys
1135 &\begin{minipage}[t]{3in}
1136 {Specific Humidity tendency due to Stratiform Cloud Formation}
1137 \end{minipage}\\
1138 USTAR & $m/sec$ & 1
1139 &\begin{minipage}[t]{3in}
1140 {Surface USTAR wind}
1141 \end{minipage}\\
1142 Z0 & $m$ & 1
1143 &\begin{minipage}[t]{3in}
1144 {Surface roughness}
1145 \end{minipage}\\
1146 FRQTRB & $0-1$ & Nrphys-1
1147 &\begin{minipage}[t]{3in}
1148 {Frequency of Turbulence}
1149 \end{minipage}\\
1150 PBL & $mb$ & 1
1151 &\begin{minipage}[t]{3in}
1152 {Planetary Boundary Layer depth}
1153 \end{minipage}\\
1154 SWCLR & $deg/day$ & Nrphys
1155 &\begin{minipage}[t]{3in}
1156 {Net clearsky Shortwave heating rate for each level}
1157 \end{minipage}\\
1158 OSR & $Watts/m^2$ & 1
1159 &\begin{minipage}[t]{3in}
1160 {Net downward Shortwave flux at the top of the model}
1161 \end{minipage}\\
1162 OSRCLR & $Watts/m^2$ & 1
1163 &\begin{minipage}[t]{3in}
1164 {Net downward clearsky Shortwave flux at the top of the model}
1165 \end{minipage}\\
1166 CLDMAS & $kg / m^2$ & Nrphys
1167 &\begin{minipage}[t]{3in}
1168 {Convective cloud mass flux}
1169 \end{minipage}\\
1170 UAVE & $m/sec$ & Nrphys
1171 &\begin{minipage}[t]{3in}
1172 {Time-averaged $u-Wind$}
1173 \end{minipage}\\
1174 \end{tabular}
1175 \vfill
1176
1177 \newpage
1178 \vspace*{\fill}
1179 \begin{tabular}{llll}
1180 \hline\hline
1181 NAME & UNITS & LEVELS & DESCRIPTION \\
1182 \hline
1183
1184 &\\
1185 VAVE & $m/sec$ & Nrphys
1186 &\begin{minipage}[t]{3in}
1187 {Time-averaged $v-Wind$}
1188 \end{minipage}\\
1189 TAVE & $deg$ & Nrphys
1190 &\begin{minipage}[t]{3in}
1191 {Time-averaged $Temperature$}
1192 \end{minipage}\\
1193 QAVE & $g/g$ & Nrphys
1194 &\begin{minipage}[t]{3in}
1195 {Time-averaged $Specific \, \, Humidity$}
1196 \end{minipage}\\
1197 RFT & $deg/day$ & Nrphys
1198 &\begin{minipage}[t]{3in}
1199 {Temperature tendency due Rayleigh Friction}
1200 \end{minipage}\\
1201 PS & $mb$ & 1
1202 &\begin{minipage}[t]{3in}
1203 {Surface Pressure}
1204 \end{minipage}\\
1205 QQAVE & $(m/sec)^2$ & Nrphys
1206 &\begin{minipage}[t]{3in}
1207 {Time-averaged $Turbulent Kinetic Energy$}
1208 \end{minipage}\\
1209 SWGCLR & $Watts/m^2$ & 1
1210 &\begin{minipage}[t]{3in}
1211 {Net downward clearsky Shortwave flux at the ground}
1212 \end{minipage}\\
1213 PAVE & $mb$ & 1
1214 &\begin{minipage}[t]{3in}
1215 {Time-averaged Surface Pressure}
1216 \end{minipage}\\
1217 DIABU & $m/sec/day$ & Nrphys
1218 &\begin{minipage}[t]{3in}
1219 {Total Diabatic forcing on $u-Wind$}
1220 \end{minipage}\\
1221 DIABV & $m/sec/day$ & Nrphys
1222 &\begin{minipage}[t]{3in}
1223 {Total Diabatic forcing on $v-Wind$}
1224 \end{minipage}\\
1225 DIABT & $deg/day$ & Nrphys
1226 &\begin{minipage}[t]{3in}
1227 {Total Diabatic forcing on $Temperature$}
1228 \end{minipage}\\
1229 DIABQ & $g/kg/day$ & Nrphys
1230 &\begin{minipage}[t]{3in}
1231 {Total Diabatic forcing on $Specific \, \, Humidity$}
1232 \end{minipage}\\
1233 RFU & $m/sec/day$ & Nrphys
1234 &\begin{minipage}[t]{3in}
1235 {U-Wind tendency due to Rayleigh Friction}
1236 \end{minipage}\\
1237 RFV & $m/sec/day$ & Nrphys
1238 &\begin{minipage}[t]{3in}
1239 {V-Wind tendency due to Rayleigh Friction}
1240 \end{minipage}\\
1241 GWDU & $m/sec/day$ & Nrphys
1242 &\begin{minipage}[t]{3in}
1243 {U-Wind tendency due to Gravity Wave Drag}
1244 \end{minipage}\\
1245 GWDU & $m/sec/day$ & Nrphys
1246 &\begin{minipage}[t]{3in}
1247 {V-Wind tendency due to Gravity Wave Drag}
1248 \end{minipage}\\
1249 GWDUS & $N/m^2$ & 1
1250 &\begin{minipage}[t]{3in}
1251 {U-Wind Gravity Wave Drag Stress at Surface}
1252 \end{minipage}\\
1253 GWDVS & $N/m^2$ & 1
1254 &\begin{minipage}[t]{3in}
1255 {V-Wind Gravity Wave Drag Stress at Surface}
1256 \end{minipage}\\
1257 GWDUT & $N/m^2$ & 1
1258 &\begin{minipage}[t]{3in}
1259 {U-Wind Gravity Wave Drag Stress at Top}
1260 \end{minipage}\\
1261 GWDVT & $N/m^2$ & 1
1262 &\begin{minipage}[t]{3in}
1263 {V-Wind Gravity Wave Drag Stress at Top}
1264 \end{minipage}\\
1265 LZRAD & $mg/kg$ & Nrphys
1266 &\begin{minipage}[t]{3in}
1267 {Estimated Cloud Liquid Water used in Radiation}
1268 \end{minipage}\\
1269 \end{tabular}
1270 \vfill
1271
1272 \newpage
1273 \vspace*{\fill}
1274 \begin{tabular}{llll}
1275 \hline\hline
1276 NAME & UNITS & LEVELS & DESCRIPTION \\
1277 \hline
1278
1279 &\\
1280 SLP & $mb$ & 1
1281 &\begin{minipage}[t]{3in}
1282 {Time-averaged Sea-level Pressure}
1283 \end{minipage}\\
1284 CLDFRC & $0-1$ & 1
1285 &\begin{minipage}[t]{3in}
1286 {Total Cloud Fraction}
1287 \end{minipage}\\
1288 TPW & $gm/cm^2$ & 1
1289 &\begin{minipage}[t]{3in}
1290 {Precipitable water}
1291 \end{minipage}\\
1292 U2M & $m/sec$ & 1
1293 &\begin{minipage}[t]{3in}
1294 {U-Wind at 2 meters}
1295 \end{minipage}\\
1296 V2M & $m/sec$ & 1
1297 &\begin{minipage}[t]{3in}
1298 {V-Wind at 2 meters}
1299 \end{minipage}\\
1300 T2M & $deg$ & 1
1301 &\begin{minipage}[t]{3in}
1302 {Temperature at 2 meters}
1303 \end{minipage}\\
1304 Q2M & $g/kg$ & 1
1305 &\begin{minipage}[t]{3in}
1306 {Specific Humidity at 2 meters}
1307 \end{minipage}\\
1308 U10M & $m/sec$ & 1
1309 &\begin{minipage}[t]{3in}
1310 {U-Wind at 10 meters}
1311 \end{minipage}\\
1312 V10M & $m/sec$ & 1
1313 &\begin{minipage}[t]{3in}
1314 {V-Wind at 10 meters}
1315 \end{minipage}\\
1316 T10M & $deg$ & 1
1317 &\begin{minipage}[t]{3in}
1318 {Temperature at 10 meters}
1319 \end{minipage}\\
1320 Q10M & $g/kg$ & 1
1321 &\begin{minipage}[t]{3in}
1322 {Specific Humidity at 10 meters}
1323 \end{minipage}\\
1324 DTRAIN & $kg/m^2$ & Nrphys
1325 &\begin{minipage}[t]{3in}
1326 {Detrainment Cloud Mass Flux}
1327 \end{minipage}\\
1328 QFILL & $g/kg/day$ & Nrphys
1329 &\begin{minipage}[t]{3in}
1330 {Filling of negative specific humidity}
1331 \end{minipage}\\
1332 \end{tabular}
1333 \vspace{1.5in}
1334 \vfill
1335
1336 \newpage
1337 \vspace*{\fill}
1338 \begin{tabular}{llll}
1339 \hline\hline
1340 NAME & UNITS & LEVELS & DESCRIPTION \\
1341 \hline
1342
1343 &\\
1344 DTCONV & $deg/sec$ & Nr
1345 &\begin{minipage}[t]{3in}
1346 {Temp Change due to Convection}
1347 \end{minipage}\\
1348 DQCONV & $g/kg/sec$ & Nr
1349 &\begin{minipage}[t]{3in}
1350 {Specific Humidity Change due to Convection}
1351 \end{minipage}\\
1352 RELHUM & $percent$ & Nr
1353 &\begin{minipage}[t]{3in}
1354 {Relative Humidity}
1355 \end{minipage}\\
1356 PRECLS & $g/m^2/sec$ & 1
1357 &\begin{minipage}[t]{3in}
1358 {Large Scale Precipitation}
1359 \end{minipage}\\
1360 ENPREC & $J/g$ & 1
1361 &\begin{minipage}[t]{3in}
1362 {Energy of Precipitation (snow, rain Temp)}
1363 \end{minipage}\\
1364 \end{tabular}
1365 \vspace{1.5in}
1366 \vfill
1367
1368 \newpage
1369
1370 Fizhi Diagnostic Description:
1371
1372 In this section we list and describe the diagnostic quantities available within the
1373 GCM. The diagnostics are listed in the order that they appear in the
1374 Diagnostic Menu, Section \ref{sec:pkg:fizhi:diagnostics}.
1375 In all cases, each diagnostic as currently archived on the output datasets
1376 is time-averaged over its diagnostic output frequency:
1377
1378 \[
1379 {\bf DIAGNOSTIC} = \frac{1}{TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1380 \]
1381 where $TTOT = \frac{ {\bf NQDIAG} }{\Delta t}$, {\bf NQDIAG} is the
1382 output frequency of the diagnostic, and $\Delta t$ is
1383 the timestep over which the diagnostic is updated.
1384
1385 { \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1386
1387 The zonal wind stress is the turbulent flux of zonal momentum from
1388 the surface.
1389 \[
1390 {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1391 \]
1392 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1393 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1394 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1395 the zonal wind in the lowest model layer.
1396 \\
1397
1398
1399 { \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1400
1401 The meridional wind stress is the turbulent flux of meridional momentum from
1402 the surface.
1403 \[
1404 {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1405 \]
1406 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1407 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1408 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1409 the meridional wind in the lowest model layer.
1410 \\
1411
1412 { \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1413
1414 The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1415 gradient of virtual potential temperature and the eddy exchange coefficient:
1416 \[
1417 {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1418 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1419 \]
1420 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1421 heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1422 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1423 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1424 for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1425 at the surface and at the bottom model level.
1426 \\
1427
1428
1429 { \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1430
1431 The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1432 gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1433 \[
1434 {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1435 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1436 \]
1437 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1438 the potential evapotranspiration actually evaporated, L is the latent
1439 heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1440 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1441 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1442 for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1443 humidity at the surface and at the bottom model level, respectively.
1444 \\
1445
1446 { \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1447
1448 Over sea ice there is an additional source of energy at the surface due to the heat
1449 conduction from the relatively warm ocean through the sea ice. The heat conduction
1450 through sea ice represents an additional energy source term for the ground temperature equation.
1451
1452 \[
1453 {\bf QICE} = \frac{C_{ti}}{H_i} (T_i-T_g)
1454 \]
1455
1456 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1457 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1458 $T_g$ is the temperature of the sea ice.
1459
1460 NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1461 \\
1462
1463
1464 { \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1465
1466 \begin{eqnarray*}
1467 {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
1468 & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1469 \end{eqnarray*}
1470 \\
1471 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1472 $F_{LW}^\uparrow$ is
1473 the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1474 \\
1475
1476 { \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1477
1478 \begin{eqnarray*}
1479 {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
1480 & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1481 \end{eqnarray*}
1482 \\
1483 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1484 $F_{SW}^\downarrow$ is
1485 the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1486 \\
1487
1488
1489 \noindent
1490 { \underline {RI} Richardson Number} ($dimensionless$)
1491
1492 \noindent
1493 The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1494 \[
1495 {\bf RI} = \frac{ \frac{g}{\theta_v} \pp {\theta_v}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }
1496 = \frac{c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }
1497 \]
1498 \\
1499 where we used the hydrostatic equation:
1500 \[
1501 {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1502 \]
1503 Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1504 indicate dominantly unstable shear, and large positive values indicate dominantly stable
1505 stratification.
1506 \\
1507
1508 \noindent
1509 { \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1510
1511 \noindent
1512 The surface exchange coefficient is obtained from the similarity functions for the stability
1513 dependant flux profile relationships:
1514 \[
1515 {\bf CT} = -\frac{( \overline{w^{\prime}\theta^{\prime}} ) }{ u_* \Delta \theta } =
1516 -\frac{( \overline{w^{\prime}q^{\prime}} ) }{ u_* \Delta q } =
1517 \frac{ k }{ (\psi_{h} + \psi_{g}) }
1518 \]
1519 where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1520 viscous sublayer non-dimensional temperature or moisture change:
1521 \[
1522 \psi_{h} = \int_{\zeta_{0}}^{\zeta} \frac{\phi_{h} }{ \zeta} d \zeta \hspace{1cm} and
1523 \hspace{1cm} \psi_{g} = \frac{ 0.55 (Pr^{2/3} - 0.2) }{ \nu^{1/2} }
1524 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1525 \]
1526 and:
1527 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1528
1529 \noindent
1530 $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1531 the temperature and moisture gradients, specified differently for stable and unstable
1532 layers according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1533 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1534 viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1535 (see diagnostic number 67), and the subscript ref refers to a reference value.
1536 \\
1537
1538 \noindent
1539 { \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
1540
1541 \noindent
1542 The surface exchange coefficient is obtained from the similarity functions for the stability
1543 dependant flux profile relationships:
1544 \[
1545 {\bf CU} = \frac{u_* }{ W_s} = \frac{ k }{ \psi_{m} }
1546 \]
1547 where $\psi_m$ is the surface layer non-dimensional wind shear:
1548 \[
1549 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{m} }{ \zeta} d \zeta}
1550 \]
1551 \noindent
1552 $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1553 the temperature and moisture gradients, specified differently for stable and unstable layers
1554 according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1555 non-dimensional stability parameter, $u_*$ is the surface stress velocity
1556 (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1557 \\
1558
1559 \noindent
1560 { \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1561
1562 \noindent
1563 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1564 moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1565 diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1566 or moisture. In the \cite{helflab:88} adaptation of this closure, $K_h$
1567 takes the form:
1568 \[
1569 {\bf ET} = K_h = -\frac{( \overline{w^{\prime}\theta_v^{\prime}}) }{ \pp{\theta_v}{z} }
1570 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1571 \\ \frac{ q^2 }{ q_e } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1572 \]
1573 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1574 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1575 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1576 depth,
1577 $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1578 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1579 dimensionless buoyancy and wind shear
1580 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1581 are functions of the Richardson number.
1582
1583 \noindent
1584 For the detailed equations and derivations of the modified level 2.5 closure scheme,
1585 see \cite{helflab:88}.
1586
1587 \noindent
1588 In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1589 in units of $m/sec$, given by:
1590 \[
1591 {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
1592 \]
1593 \noindent
1594 where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1595 surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1596 friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1597 and $W_s$ is the magnitude of the surface layer wind.
1598 \\
1599
1600 \noindent
1601 { \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
1602
1603 \noindent
1604 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1605 momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1606 diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1607 In the \cite{helflab:88} adaptation of this closure, $K_m$
1608 takes the form:
1609 \[
1610 {\bf EU} = K_m = -\frac{( \overline{u^{\prime}w^{\prime}} ) }{ \pp{U}{z} }
1611 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1612 \\ \frac{ q^2 }{ q_e } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1613 \]
1614 \noindent
1615 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1616 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1617 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1618 depth,
1619 $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1620 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1621 dimensionless buoyancy and wind shear
1622 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1623 are functions of the Richardson number.
1624
1625 \noindent
1626 For the detailed equations and derivations of the modified level 2.5 closure scheme,
1627 see \cite{helflab:88}.
1628
1629 \noindent
1630 In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1631 in units of $m/sec$, given by:
1632 \[
1633 {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1634 \]
1635 \noindent
1636 where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1637 similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1638 (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1639 magnitude of the surface layer wind.
1640 \\
1641
1642 \noindent
1643 { \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1644
1645 \noindent
1646 The tendency of U-Momentum due to turbulence is written:
1647 \[
1648 {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1649 = {\pp{}{z} }{(K_m \pp{u}{z})}
1650 \]
1651
1652 \noindent
1653 The Helfand and Labraga level 2.5 scheme models the turbulent
1654 flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1655 equation.
1656
1657 \noindent
1658 { \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1659
1660 \noindent
1661 The tendency of V-Momentum due to turbulence is written:
1662 \[
1663 {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1664 = {\pp{}{z} }{(K_m \pp{v}{z})}
1665 \]
1666
1667 \noindent
1668 The Helfand and Labraga level 2.5 scheme models the turbulent
1669 flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1670 equation.
1671 \\
1672
1673 \noindent
1674 { \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
1675
1676 \noindent
1677 The tendency of temperature due to turbulence is written:
1678 \[
1679 {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1680 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1681 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1682 \]
1683
1684 \noindent
1685 The Helfand and Labraga level 2.5 scheme models the turbulent
1686 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1687 equation.
1688 \\
1689
1690 \noindent
1691 { \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
1692
1693 \noindent
1694 The tendency of specific humidity due to turbulence is written:
1695 \[
1696 {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1697 = {\pp{}{z} }{(K_h \pp{q}{z})}
1698 \]
1699
1700 \noindent
1701 The Helfand and Labraga level 2.5 scheme models the turbulent
1702 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1703 equation.
1704 \\
1705
1706 \noindent
1707 { \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1708
1709 \noindent
1710 \[
1711 {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1712 \]
1713 where:
1714 \[
1715 \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha \frac{m_B}{c_p} \Gamma_s \right)_i
1716 \hspace{.4cm} and
1717 \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = \frac{L}{c_p} (q^*-q)
1718 \]
1719 and
1720 \[
1721 \Gamma_s = g \eta \pp{s}{p}
1722 \]
1723
1724 \noindent
1725 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1726 precipitation processes, or supersaturation rain.
1727 The summation refers to contributions from each cloud type called by RAS.
1728 The dry static energy is given
1729 as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1730 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1731 the description of the convective parameterization. The fractional adjustment, or relaxation
1732 parameter, for each cloud type is given as $\alpha$, while
1733 $R$ is the rain re-evaporation adjustment.
1734 \\
1735
1736 \noindent
1737 { \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1738
1739 \noindent
1740 \[
1741 {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1742 \]
1743 where:
1744 \[
1745 \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha \frac{m_B}{L}(\Gamma_h-\Gamma_s) \right)_i
1746 \hspace{.4cm} and
1747 \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1748 \]
1749 and
1750 \[
1751 \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1752 \]
1753 \noindent
1754 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1755 precipitation processes, or supersaturation rain.
1756 The summation refers to contributions from each cloud type called by RAS.
1757 The dry static energy is given as $s$,
1758 the moist static energy is given as $h$,
1759 the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1760 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1761 the description of the convective parameterization. The fractional adjustment, or relaxation
1762 parameter, for each cloud type is given as $\alpha$, while
1763 $R$ is the rain re-evaporation adjustment.
1764 \\
1765
1766 \noindent
1767 { \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1768
1769 \noindent
1770 The net longwave heating rate is calculated as the vertical divergence of the
1771 net terrestrial radiative fluxes.
1772 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1773 longwave routine.
1774 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1775 For a given cloud fraction,
1776 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1777 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1778 for the upward and downward radiative fluxes.
1779 (see Section \ref{sec:fizhi:radcloud}).
1780 The cloudy-sky flux is then obtained as:
1781
1782 \noindent
1783 \[
1784 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1785 \]
1786
1787 \noindent
1788 Finally, the net longwave heating rate is calculated as the vertical divergence of the
1789 net terrestrial radiative fluxes:
1790 \[
1791 \pp{\rho c_p T}{t} = - \p{z} F_{LW}^{NET} ,
1792 \]
1793 or
1794 \[
1795 {\bf RADLW} = \frac{g}{c_p \pi} \p{\sigma} F_{LW}^{NET} .
1796 \]
1797
1798 \noindent
1799 where $g$ is the accelation due to gravity,
1800 $c_p$ is the heat capacity of air at constant pressure,
1801 and
1802 \[
1803 F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1804 \]
1805 \\
1806
1807
1808 \noindent
1809 { \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1810
1811 \noindent
1812 The net Shortwave heating rate is calculated as the vertical divergence of the
1813 net solar radiative fluxes.
1814 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1815 For the clear-sky case, the shortwave fluxes and heating rates are computed with
1816 both CLMO (maximum overlap cloud fraction) and
1817 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1818 The shortwave routine is then called a second time, for the cloudy-sky case, with the
1819 true time-averaged cloud fractions CLMO
1820 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1821 input at the top of the atmosphere.
1822
1823 \noindent
1824 The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1825 \[
1826 \pp{\rho c_p T}{t} = - \p{z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1827 \]
1828 or
1829 \[
1830 {\bf RADSW} = \frac{g}{c_p \pi} \p{\sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1831 \]
1832
1833 \noindent
1834 where $g$ is the accelation due to gravity,
1835 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1836 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1837 \[
1838 F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1839 \]
1840 \\
1841
1842 \noindent
1843 { \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1844
1845 \noindent
1846 For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1847 the vertical integral or total precipitable amount is given by:
1848 \[
1849 {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1850 \frac{dp}{g} = \frac{1}{g} \int_0^1 \Delta q_{moist} dp
1851 \]
1852 \\
1853
1854 \noindent
1855 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1856 time step, scaled to $mm/day$.
1857 \\
1858
1859 \noindent
1860 { \underline {PRECON} Convective Precipition ($mm/day$) }
1861
1862 \noindent
1863 For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1864 the vertical integral or total precipitable amount is given by:
1865 \[
1866 {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1867 \frac{dp}{g} = \frac{1}{g} \int_0^1 \Delta q_{cum} dp
1868 \]
1869 \\
1870
1871 \noindent
1872 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1873 time step, scaled to $mm/day$.
1874 \\
1875
1876 \noindent
1877 { \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1878
1879 \noindent
1880 The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1881 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1882
1883 \[
1884 {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1885 {\rho } {(- K_m \pp{U}{z})}
1886 \]
1887
1888 \noindent
1889 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1890 \\
1891
1892 \noindent
1893 { \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1894
1895 \noindent
1896 The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1897 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1898
1899 \[
1900 {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1901 {\rho } {(- K_m \pp{V}{z})}
1902 \]
1903
1904 \noindent
1905 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1906 \\
1907
1908
1909 \noindent
1910 { \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1911
1912 \noindent
1913 The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1914 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1915
1916 \noindent
1917 \[
1918 {\bf TTFLUX} = c_p {\rho }
1919 P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1920 = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1921 \]
1922
1923 \noindent
1924 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1925 \\
1926
1927
1928 \noindent
1929 { \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1930
1931 \noindent
1932 The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1933 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1934
1935 \noindent
1936 \[
1937 {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1938 {L {\rho }(- K_h \pp{q}{z})}
1939 \]
1940
1941 \noindent
1942 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1943 \\
1944
1945
1946 \noindent
1947 { \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1948
1949 \noindent
1950 The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1951 \[
1952 {\bf CN} = \frac{ k }{ \ln(\frac{h }{z_0}) }
1953 \]
1954
1955 \noindent
1956 where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1957 $z_0$ is the surface roughness.
1958
1959 \noindent
1960 NOTE: CN is not available through model version 5.3, but is available in subsequent
1961 versions.
1962 \\
1963
1964 \noindent
1965 { \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1966
1967 \noindent
1968 The surface wind speed is calculated for the last internal turbulence time step:
1969 \[
1970 {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1971 \]
1972
1973 \noindent
1974 where the subscript $Nrphys$ refers to the lowest model level.
1975 \\
1976
1977 \noindent
1978 { \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1979
1980 \noindent
1981 The air/surface virtual temperature difference measures the stability of the surface layer:
1982 \[
1983 {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1984 \]
1985 \noindent
1986 where
1987 \[
1988 \theta_{v{Nrphys+1}} = \frac{ T_g }{ P^{\kappa}_{surf} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1989 and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1990 \]
1991
1992 \noindent
1993 $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1994 $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
1995 and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
1996 refers to the surface.
1997 \\
1998
1999
2000 \noindent
2001 { \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
2002
2003 \noindent
2004 The ground temperature equation is solved as part of the turbulence package
2005 using a backward implicit time differencing scheme:
2006 \[
2007 {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
2008 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
2009 \]
2010
2011 \noindent
2012 where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
2013 net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
2014 sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
2015 flux, and $C_g$ is the total heat capacity of the ground.
2016 $C_g$ is obtained by solving a heat diffusion equation
2017 for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
2018 \[
2019 C_g = \sqrt{ \frac{\lambda C_s }{ 2 \omega } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
2020 \frac{86400.}{2\pi} } \, \, .
2021 \]
2022 \noindent
2023 Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ $\frac{ly}{sec}
2024 \frac{cm}{K}$,
2025 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
2026 by $2 \pi$ $radians/
2027 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
2028 is a function of the ground wetness, $W$.
2029 \\
2030
2031 \noindent
2032 { \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
2033
2034 \noindent
2035 The surface temperature estimate is made by assuming that the model's lowest
2036 layer is well-mixed, and therefore that $\theta$ is constant in that layer.
2037 The surface temperature is therefore:
2038 \[
2039 {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
2040 \]
2041 \\
2042
2043 \noindent
2044 { \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
2045
2046 \noindent
2047 The change in surface temperature from one turbulence time step to the next, solved
2048 using the Ground Temperature Equation (see diagnostic number 30) is calculated:
2049 \[
2050 {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
2051 \]
2052
2053 \noindent
2054 where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
2055 refers to the value at the previous turbulence time level.
2056 \\
2057
2058 \noindent
2059 { \underline {QG} Ground Specific Humidity ($g/kg$) }
2060
2061 \noindent
2062 The ground specific humidity is obtained by interpolating between the specific
2063 humidity at the lowest model level and the specific humidity of a saturated ground.
2064 The interpolation is performed using the potential evapotranspiration function:
2065 \[
2066 {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2067 \]
2068
2069 \noindent
2070 where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2071 and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
2072 pressure.
2073 \\
2074
2075 \noindent
2076 { \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
2077
2078 \noindent
2079 The surface saturation specific humidity is the saturation specific humidity at
2080 the ground temprature and surface pressure:
2081 \[
2082 {\bf QS} = q^*(T_g,P_s)
2083 \]
2084 \\
2085
2086 \noindent
2087 { \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
2088 radiation subroutine (deg)}
2089 \[
2090 {\bf TGRLW} = T_g(\lambda , \phi ,n)
2091 \]
2092 \noindent
2093 where $T_g$ is the model ground temperature at the current time step $n$.
2094 \\
2095
2096
2097 \noindent
2098 { \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
2099 \[
2100 {\bf ST4} = \sigma T^4
2101 \]
2102 \noindent
2103 where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
2104 \\
2105
2106 \noindent
2107 { \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2108 \[
2109 {\bf OLR} = F_{LW,top}^{NET}
2110 \]
2111 \noindent
2112 where top indicates the top of the first model layer.
2113 In the GCM, $p_{top}$ = 0.0 mb.
2114 \\
2115
2116
2117 \noindent
2118 { \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2119 \[
2120 {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
2121 \]
2122 \noindent
2123 where top indicates the top of the first model layer.
2124 In the GCM, $p_{top}$ = 0.0 mb.
2125 \\
2126
2127 \noindent
2128 { \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
2129
2130 \noindent
2131 \begin{eqnarray*}
2132 {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
2133 & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
2134 \end{eqnarray*}
2135 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2136 $F(clearsky)_{LW}^\uparrow$ is
2137 the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
2138 \\
2139
2140 \noindent
2141 { \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
2142
2143 \noindent
2144 The net longwave heating rate is calculated as the vertical divergence of the
2145 net terrestrial radiative fluxes.
2146 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
2147 longwave routine.
2148 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
2149 For a given cloud fraction,
2150 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
2151 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
2152 for the upward and downward radiative fluxes.
2153 (see Section \ref{sec:fizhi:radcloud}).
2154 The cloudy-sky flux is then obtained as:
2155
2156 \noindent
2157 \[
2158 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2159 \]
2160
2161 \noindent
2162 Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2163 vertical divergence of the
2164 clear-sky longwave radiative flux:
2165 \[
2166 \pp{\rho c_p T}{t}_{clearsky} = - \p{z} F(clearsky)_{LW}^{NET} ,
2167 \]
2168 or
2169 \[
2170 {\bf LWCLR} = \frac{g}{c_p \pi} \p{\sigma} F(clearsky)_{LW}^{NET} .
2171 \]
2172
2173 \noindent
2174 where $g$ is the accelation due to gravity,
2175 $c_p$ is the heat capacity of air at constant pressure,
2176 and
2177 \[
2178 F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2179 \]
2180 \\
2181
2182
2183 \noindent
2184 { \underline {TLW} Instantaneous temperature used as input to the Longwave
2185 radiation subroutine (deg)}
2186 \[
2187 {\bf TLW} = T(\lambda , \phi ,level, n)
2188 \]
2189 \noindent
2190 where $T$ is the model temperature at the current time step $n$.
2191 \\
2192
2193
2194 \noindent
2195 { \underline {SHLW} Instantaneous specific humidity used as input to
2196 the Longwave radiation subroutine (kg/kg)}
2197 \[
2198 {\bf SHLW} = q(\lambda , \phi , level , n)
2199 \]
2200 \noindent
2201 where $q$ is the model specific humidity at the current time step $n$.
2202 \\
2203
2204
2205 \noindent
2206 { \underline {OZLW} Instantaneous ozone used as input to
2207 the Longwave radiation subroutine (kg/kg)}
2208 \[
2209 {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
2210 \]
2211 \noindent
2212 where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2213 mean zonally averaged ozone data set.
2214 \\
2215
2216
2217 \noindent
2218 { \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2219
2220 \noindent
2221 {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2222 Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
2223 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2224 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2225 \[
2226 {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
2227 \]
2228 \\
2229
2230
2231 { \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2232
2233 {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2234 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2235 Radiation packages.
2236 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2237 \[
2238 {\bf CLDTOT} = F_{RAS} + F_{LS}
2239 \]
2240 \\
2241 where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2242 time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2243 \\
2244
2245
2246 \noindent
2247 { \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2248
2249 \noindent
2250 {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2251 Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
2252 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2253 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2254 \[
2255 {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
2256 \]
2257 \\
2258
2259 \noindent
2260 { \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2261
2262 \noindent
2263 {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2264 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2265 Radiation algorithm. These are
2266 convective and large-scale clouds whose radiative characteristics are not
2267 assumed to be correlated in the vertical.
2268 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2269 \[
2270 {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
2271 \]
2272 \\
2273
2274 \noindent
2275 { \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2276 \[
2277 {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2278 \]
2279 \noindent
2280 where $S_0$, is the extra-terrestial solar contant,
2281 $R_a$ is the earth-sun distance in Astronomical Units,
2282 and $cos \phi_z$ is the cosine of the zenith angle.
2283 It should be noted that {\bf RADSWT}, as well as
2284 {\bf OSR} and {\bf OSRCLR},
2285 are calculated at the top of the atmosphere (p=0 mb). However, the
2286 {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2287 calculated at $p= p_{top}$ (0.0 mb for the GCM).
2288 \\
2289
2290 \noindent
2291 { \underline {EVAP} Surface Evaporation ($mm/day$) }
2292
2293 \noindent
2294 The surface evaporation is a function of the gradient of moisture, the potential
2295 evapotranspiration fraction and the eddy exchange coefficient:
2296 \[
2297 {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2298 \]
2299 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2300 the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2301 turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2302 $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2303 number 34) and at the bottom model level, respectively.
2304 \\
2305
2306 \noindent
2307 { \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
2308
2309 \noindent
2310 {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2311 and Analysis forcing.
2312 \[
2313 {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2314 \]
2315 \\
2316
2317 \noindent
2318 { \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
2319
2320 \noindent
2321 {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2322 and Analysis forcing.
2323 \[
2324 {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2325 \]
2326 \\
2327
2328 \noindent
2329 { \underline {DTDT} Total Temperature Tendency ($deg/day$) }
2330
2331 \noindent
2332 {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2333 and Analysis forcing.
2334 \begin{eqnarray*}
2335 {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2336 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2337 \end{eqnarray*}
2338 \\
2339
2340 \noindent
2341 { \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
2342
2343 \noindent
2344 {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2345 and Analysis forcing.
2346 \[
2347 {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2348 + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2349 \]
2350 \\
2351
2352 \noindent
2353 { \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
2354
2355 \noindent
2356 The surface stress velocity, or the friction velocity, is the wind speed at
2357 the surface layer top impeded by the surface drag:
2358 \[
2359 {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2360 C_u = \frac{k}{\psi_m}
2361 \]
2362
2363 \noindent
2364 $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2365 number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2366
2367 \noindent
2368 { \underline {Z0} Surface Roughness Length ($m$) }
2369
2370 \noindent
2371 Over the land surface, the surface roughness length is interpolated to the local
2372 time from the monthly mean data of \cite{dorsell:89}. Over the ocean,
2373 the roughness length is a function of the surface-stress velocity, $u_*$.
2374 \[
2375 {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5}{u_*}
2376 \]
2377
2378 \noindent
2379 where the constants are chosen to interpolate between the reciprocal relation of
2380 \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
2381 for moderate to large winds.
2382 \\
2383
2384 \noindent
2385 { \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
2386
2387 \noindent
2388 The fraction of time when turbulence is present is defined as the fraction of
2389 time when the turbulent kinetic energy exceeds some minimum value, defined here
2390 to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2391 incremented. The fraction over the averaging interval is reported.
2392 \\
2393
2394 \noindent
2395 { \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
2396
2397 \noindent
2398 The depth of the PBL is defined by the turbulence parameterization to be the
2399 depth at which the turbulent kinetic energy reduces to ten percent of its surface
2400 value.
2401
2402 \[
2403 {\bf PBL} = P_{PBL} - P_{surface}
2404 \]
2405
2406 \noindent
2407 where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2408 reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2409 \\
2410
2411 \noindent
2412 { \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2413
2414 \noindent
2415 The net Shortwave heating rate is calculated as the vertical divergence of the
2416 net solar radiative fluxes.
2417 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2418 For the clear-sky case, the shortwave fluxes and heating rates are computed with
2419 both CLMO (maximum overlap cloud fraction) and
2420 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2421 The shortwave routine is then called a second time, for the cloudy-sky case, with the
2422 true time-averaged cloud fractions CLMO
2423 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
2424 input at the top of the atmosphere.
2425
2426 \noindent
2427 The heating rate due to Shortwave Radiation under clear skies is defined as:
2428 \[
2429 \pp{\rho c_p T}{t} = - \p{z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2430 \]
2431 or
2432 \[
2433 {\bf SWCLR} = \frac{g}{c_p } \p{p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2434 \]
2435
2436 \noindent
2437 where $g$ is the accelation due to gravity,
2438 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2439 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2440 \[
2441 F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2442 \]
2443 \\
2444
2445 \noindent
2446 { \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2447 \[
2448 {\bf OSR} = F_{SW,top}^{NET}
2449 \]
2450 \noindent
2451 where top indicates the top of the first model layer used in the shortwave radiation
2452 routine.
2453 In the GCM, $p_{SW_{top}}$ = 0 mb.
2454 \\
2455
2456 \noindent
2457 { \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2458 \[
2459 {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
2460 \]
2461 \noindent
2462 where top indicates the top of the first model layer used in the shortwave radiation
2463 routine.
2464 In the GCM, $p_{SW_{top}}$ = 0 mb.
2465 \\
2466
2467
2468 \noindent
2469 { \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2470
2471 \noindent
2472 The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2473 \[
2474 {\bf CLDMAS} = \eta m_B
2475 \]
2476 where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2477 the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2478 description of the convective parameterization.
2479 \\
2480
2481
2482
2483 \noindent
2484 { \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2485
2486 \noindent
2487 The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2488 the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
2489 Zonal U-Wind which is archived on the Prognostic Output data stream.
2490 \[
2491 {\bf UAVE} = u(\lambda, \phi, level , t)
2492 \]
2493 \\
2494 Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2495 \\
2496
2497 \noindent
2498 { \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2499
2500 \noindent
2501 The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2502 the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
2503 Meridional V-Wind which is archived on the Prognostic Output data stream.
2504 \[
2505 {\bf VAVE} = v(\lambda, \phi, level , t)
2506 \]
2507 \\
2508 Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2509 \\
2510
2511 \noindent
2512 { \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2513
2514 \noindent
2515 The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2516 the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
2517 Temperature which is archived on the Prognostic Output data stream.
2518 \[
2519 {\bf TAVE} = T(\lambda, \phi, level , t)
2520 \]
2521 \\
2522
2523 \noindent
2524 { \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2525
2526 \noindent
2527 The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2528 the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
2529 Specific Humidity which is archived on the Prognostic Output data stream.
2530 \[
2531 {\bf QAVE} = q(\lambda, \phi, level , t)
2532 \]
2533 \\
2534
2535 \noindent
2536 { \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2537
2538 \noindent
2539 The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2540 the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
2541 Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2542 \begin{eqnarray*}
2543 {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
2544 & = & p_s(\lambda, \phi, level , t) - p_T
2545 \end{eqnarray*}
2546 \\
2547
2548
2549 \noindent
2550 { \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2551
2552 \noindent
2553 The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2554 produced by the GCM Turbulence parameterization over
2555 the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
2556 Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2557 \[
2558 {\bf QQAVE} = qq(\lambda, \phi, level , t)
2559 \]
2560 \\
2561 Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2562 \\
2563
2564 \noindent
2565 { \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2566
2567 \noindent
2568 \begin{eqnarray*}
2569 {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2570 & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2571 \end{eqnarray*}
2572 \noindent
2573 \\
2574 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2575 $F(clearsky){SW}^\downarrow$ is
2576 the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2577 the upward clearsky Shortwave flux.
2578 \\
2579
2580 \noindent
2581 { \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
2582
2583 \noindent
2584 {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2585 and the Analysis forcing.
2586 \[
2587 {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2588 \]
2589 \\
2590
2591 \noindent
2592 { \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
2593
2594 \noindent
2595 {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2596 and the Analysis forcing.
2597 \[
2598 {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2599 \]
2600 \\
2601
2602 \noindent
2603 { \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
2604
2605 \noindent
2606 {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2607 and the Analysis forcing.
2608 \begin{eqnarray*}
2609 {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2610 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2611 \end{eqnarray*}
2612 \\
2613 If we define the time-tendency of Temperature due to Diabatic processes as
2614 \begin{eqnarray*}
2615 \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2616 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2617 \end{eqnarray*}
2618 then, since there are no surface pressure changes due to Diabatic processes, we may write
2619 \[
2620 \pp{T}{t}_{Diabatic} = \frac{p^\kappa}{\pi}\pp{\pi \theta}{t}_{Diabatic}
2621 \]
2622 where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
2623 \[
2624 {\bf DIABT} = \frac{p^\kappa}{\pi} \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2625 \]
2626 \\
2627
2628 \noindent
2629 { \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
2630
2631 \noindent
2632 {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2633 and the Analysis forcing.
2634 \[
2635 {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2636 \]
2637 If we define the time-tendency of Specific Humidity due to Diabatic processes as
2638 \[
2639 \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2640 \]
2641 then, since there are no surface pressure changes due to Diabatic processes, we may write
2642 \[
2643 \pp{q}{t}_{Diabatic} = \frac{1}{\pi}\pp{\pi q}{t}_{Diabatic}
2644 \]
2645 Thus, {\bf DIABQ} may be written as
2646 \[
2647 {\bf DIABQ} = \frac{1}{\pi} \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2648 \]
2649 \\
2650
2651 \noindent
2652 { \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2653
2654 \noindent
2655 The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2656 $u q$ over the depth of the atmosphere at each model timestep,
2657 and dividing by the total mass of the column.
2658 \[
2659 {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2660 \]
2661 Using $\rho \delta z = -\frac{\delta p}{g} = - \frac{1}{g} \delta p$, we have
2662 \[
2663 {\bf VINTUQ} = { \int_0^1 u q dp }
2664 \]
2665 \\
2666
2667
2668 \noindent
2669 { \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2670
2671 \noindent
2672 The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2673 $v q$ over the depth of the atmosphere at each model timestep,
2674 and dividing by the total mass of the column.
2675 \[
2676 {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2677 \]
2678 Using $\rho \delta z = -\frac{\delta p}{g} = - \frac{1}{g} \delta p$, we have
2679 \[
2680 {\bf VINTVQ} = { \int_0^1 v q dp }
2681 \]
2682 \\
2683
2684
2685 \noindent
2686 { \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2687
2688 \noindent
2689 The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2690 $u T$ over the depth of the atmosphere at each model timestep,
2691 and dividing by the total mass of the column.
2692 \[
2693 {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2694 \]
2695 Or,
2696 \[
2697 {\bf VINTUT} = { \int_0^1 u T dp }
2698 \]
2699 \\
2700
2701 \noindent
2702 { \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2703
2704 \noindent
2705 The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2706 $v T$ over the depth of the atmosphere at each model timestep,
2707 and dividing by the total mass of the column.
2708 \[
2709 {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2710 \]
2711 Using $\rho \delta z = -\frac{\delta p}{g} $, we have
2712 \[
2713 {\bf VINTVT} = { \int_0^1 v T dp }
2714 \]
2715 \\
2716
2717 \noindent
2718 { \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2719
2720 If we define the
2721 time-averaged random and maximum overlapped cloudiness as CLRO and
2722 CLMO respectively, then the probability of clear sky associated
2723 with random overlapped clouds at any level is (1-CLRO) while the probability of
2724 clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2725 The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2726 the total cloud fraction at each level may be obtained by
2727 1-(1-CLRO)*(1-CLMO).
2728
2729 At any given level, we may define the clear line-of-site probability by
2730 appropriately accounting for the maximum and random overlap
2731 cloudiness. The clear line-of-site probability is defined to be
2732 equal to the product of the clear line-of-site probabilities
2733 associated with random and maximum overlap cloudiness. The clear
2734 line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2735 from the current pressure $p$
2736 to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2737 is simply 1.0 minus the largest maximum overlap cloud value along the
2738 line-of-site, ie.
2739
2740 $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2741
2742 Thus, even in the time-averaged sense it is assumed that the
2743 maximum overlap clouds are correlated in the vertical. The clear
2744 line-of-site probability associated with random overlap clouds is
2745 defined to be the product of the clear sky probabilities at each
2746 level along the line-of-site, ie.
2747
2748 $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2749
2750 The total cloud fraction at a given level associated with a line-
2751 of-site calculation is given by
2752
2753 $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2754 \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2755
2756
2757 \noindent
2758 The 2-dimensional net cloud fraction as seen from the top of the
2759 atmosphere is given by
2760 \[
2761 {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2762 \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2763 \]
2764 \\
2765 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2766
2767
2768 \noindent
2769 { \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2770
2771 \noindent
2772 The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2773 given by:
2774 \begin{eqnarray*}
2775 {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2776 & = & \frac{\pi}{g} \int_0^1 q dp
2777 \end{eqnarray*}
2778 where we have used the hydrostatic relation
2779 $\rho \delta z = -\frac{\delta p}{g} $.
2780 \\
2781
2782
2783 \noindent
2784 { \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2785
2786 \noindent
2787 The u-wind at the 2-meter depth is determined from the similarity theory:
2788 \[
2789 {\bf U2M} = \frac{u_*}{k} \psi_{m_{2m}} \frac{u_{sl}}{W_s} =
2790 \frac{ \psi_{m_{2m}} }{ \psi_{m_{sl}} }u_{sl}
2791 \]
2792
2793 \noindent
2794 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2795 $sl$ refers to the height of the top of the surface layer. If the roughness height
2796 is above two meters, ${\bf U2M}$ is undefined.
2797 \\
2798
2799 \noindent
2800 { \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2801
2802 \noindent
2803 The v-wind at the 2-meter depth is a determined from the similarity theory:
2804 \[
2805 {\bf V2M} = \frac{u_*}{k} \psi_{m_{2m}} \frac{v_{sl}}{W_s} =
2806 \frac{ \psi_{m_{2m}} }{ \psi_{m_{sl}} }v_{sl}
2807 \]
2808
2809 \noindent
2810 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2811 $sl$ refers to the height of the top of the surface layer. If the roughness height
2812 is above two meters, ${\bf V2M}$ is undefined.
2813 \\
2814
2815 \noindent
2816 { \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2817
2818 \noindent
2819 The temperature at the 2-meter depth is a determined from the similarity theory:
2820 \[
2821 {\bf T2M} = P^{\kappa} (\frac{\theta*}{k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2822 P^{\kappa}(\theta_{surf} + \frac{ \psi_{h_{2m}}+\psi_g }{ \psi_{h_{sl}}+\psi_g }
2823 (\theta_{sl} - \theta_{surf}) )
2824 \]
2825 where:
2826 \[
2827 \theta_* = - \frac{ (\overline{w^{\prime}\theta^{\prime}}) }{ u_* }
2828 \]
2829
2830 \noindent
2831 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2832 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2833 $sl$ refers to the height of the top of the surface layer. If the roughness height
2834 is above two meters, ${\bf T2M}$ is undefined.
2835 \\
2836
2837 \noindent
2838 { \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2839
2840 \noindent
2841 The specific humidity at the 2-meter depth is determined from the similarity theory:
2842 \[
2843 {\bf Q2M} = P^{\kappa} \frac({q_*}{k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2844 P^{\kappa}(q_{surf} + \frac{ \psi_{h_{2m}}+\psi_g }{ \psi_{h_{sl}}+\psi_g }
2845 (q_{sl} - q_{surf}))
2846 \]
2847 where:
2848 \[
2849 q_* = - \frac{ (\overline{w^{\prime}q^{\prime}}) }{ u_* }
2850 \]
2851
2852 \noindent
2853 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2854 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2855 $sl$ refers to the height of the top of the surface layer. If the roughness height
2856 is above two meters, ${\bf Q2M}$ is undefined.
2857 \\
2858
2859 \noindent
2860 { \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2861
2862 \noindent
2863 The u-wind at the 10-meter depth is an interpolation between the surface wind
2864 and the model lowest level wind using the ratio of the non-dimensional wind shear
2865 at the two levels:
2866 \[
2867 {\bf U10M} = \frac{u_*}{k} \psi_{m_{10m}} \frac{u_{sl}}{W_s} =
2868 \frac{ \psi_{m_{10m}} }{ \psi_{m_{sl}} }u_{sl}
2869 \]
2870
2871 \noindent
2872 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2873 $sl$ refers to the height of the top of the surface layer.
2874 \\
2875
2876 \noindent
2877 { \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2878
2879 \noindent
2880 The v-wind at the 10-meter depth is an interpolation between the surface wind
2881 and the model lowest level wind using the ratio of the non-dimensional wind shear
2882 at the two levels:
2883 \[
2884 {\bf V10M} = \frac{u_*}{k} \psi_{m_{10m}} \frac{v_{sl}}{W_s} =
2885 \frac{ \psi_{m_{10m}} }{ \psi_{m_{sl}} }v_{sl}
2886 \]
2887
2888 \noindent
2889 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2890 $sl$ refers to the height of the top of the surface layer.
2891 \\
2892
2893 \noindent
2894 { \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2895
2896 \noindent
2897 The temperature at the 10-meter depth is an interpolation between the surface potential
2898 temperature and the model lowest level potential temperature using the ratio of the
2899 non-dimensional temperature gradient at the two levels:
2900 \[
2901 {\bf T10M} = P^{\kappa} (\frac{\theta*}{k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2902 P^{\kappa}(\theta_{surf} + \frac{\psi_{h_{10m}}+\psi_g}{\psi_{h_{sl}}+\psi_g}
2903 (\theta_{sl} - \theta_{surf}))
2904 \]
2905 where:
2906 \[
2907 \theta_* = - \frac{ (\overline{w^{\prime}\theta^{\prime}}) }{ u_* }
2908 \]
2909
2910 \noindent
2911 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2912 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2913 $sl$ refers to the height of the top of the surface layer.
2914 \\
2915
2916 \noindent
2917 { \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2918
2919 \noindent
2920 The specific humidity at the 10-meter depth is an interpolation between the surface specific
2921 humidity and the model lowest level specific humidity using the ratio of the
2922 non-dimensional temperature gradient at the two levels:
2923 \[
2924 {\bf Q10M} = P^{\kappa} (\frac{q_*}{k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2925 P^{\kappa}(q_{surf} + \frac{\psi_{h_{10m}}+\psi_g}{\psi_{h_{sl}}+\psi_g}
2926 (q_{sl} - q_{surf}))
2927 \]
2928 where:
2929 \[
2930 q_* = - \frac{ (\overline{w^{\prime}q^{\prime}}) }{ u_* }
2931 \]
2932
2933 \noindent
2934 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2935 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2936 $sl$ refers to the height of the top of the surface layer.
2937 \\
2938
2939 \noindent
2940 { \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2941
2942 The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2943 \[
2944 {\bf DTRAIN} = \eta_{r_D}m_B
2945 \]
2946 \noindent
2947 where $r_D$ is the detrainment level,
2948 $m_B$ is the cloud base mass flux, and $\eta$
2949 is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2950 \\
2951
2952 \noindent
2953 { \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2954
2955 \noindent
2956 Due to computational errors associated with the numerical scheme used for
2957 the advection of moisture, negative values of specific humidity may be generated. The
2958 specific humidity is checked for negative values after every dynamics timestep. If negative
2959 values have been produced, a filling algorithm is invoked which redistributes moisture from
2960 below. Diagnostic {\bf QFILL} is equal to the net filling needed
2961 to eliminate negative specific humidity, scaled to a per-day rate:
2962 \[
2963 {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2964 \]
2965 where
2966 \[
2967 q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2968 \]
2969
2970
2971 \subsubsection{Key subroutines, parameters and files}
2972
2973 \subsubsection{Dos and donts}
2974
2975 \subsubsection{Fizhi Reference}
2976
2977 \subsubsection{Experiments and tutorials that use fizhi}
2978 \label{sec:pkg:fizhi:experiments}
2979
2980 \begin{itemize}
2981 \item{Global atmosphere experiment with realistic SST and topography in fizhi-cs-32x32x10 verification directory. }
2982 \item{Global atmosphere aqua planet experiment in fizhi-cs-aqualev20 verification directory. }
2983 \end{itemize}
2984

  ViewVC Help
Powered by ViewVC 1.1.22