/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.17 - (show annotations) (download) (as text)
Wed Jun 28 15:35:07 2006 UTC (19 years, 1 month ago) by molod
Branch: MAIN
Changes since 1.16: +12 -8 lines
File MIME type: application/x-tex
Rename files, connect packages and epxeriments that use them.

1 \subsection{Fizhi: High-end Atmospheric Physics}
2 \label{sec:pkg:fizhi}
3 \begin{rawhtml}
4 <!-- CMIREDIR:package_fizhi: -->
5 \end{rawhtml}
6 \input{texinputs/epsf.tex}
7
8 \subsubsection{Introduction}
9 The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art
10 physical parameterizations for atmospheric radiation, cumulus convection, atmospheric
11 boundary layer turbulence, and land surface processes. The collection of atmospheric
12 physics parameterizations were originally used together as part of the GEOS-3
13 (Goddard Earth Observing System-3) GCM developed at the NASA/Goddard Global Modelling
14 and Assimilation Office (GMAO).
15
16 % *************************************************************************
17 % *************************************************************************
18
19 \subsubsection{Equations}
20
21 Moist Convective Processes:
22
23 \paragraph{Sub-grid and Large-scale Convection}
24 \label{sec:fizhi:mc}
25
26 Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa
27 Schubert (RAS) scheme of \cite{moorsz:92}, which is a linearized Arakawa Schubert
28 type scheme. RAS predicts the mass flux from an ensemble of clouds. Each subensemble is identified
29 by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties.
30
31 The thermodynamic variables that are used in RAS to describe the grid scale vertical profile are
32 the dry static energy, $s=c_pT +gz$, and the moist static energy, $h=c_p T + gz + Lq$.
33 The conceptual model behind RAS depicts each subensemble as a rising plume cloud, entraining
34 mass from the environment during ascent, and detraining all cloud air at the level of neutral
35 buoyancy. RAS assumes that the normalized cloud mass flux, $\eta$, normalized by the cloud base
36 mass flux, is a linear function of height, expressed as:
37 \[
38 \pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =
39 -{c_p \over {g}}\theta\lambda
40 \]
41 where we have used the hydrostatic equation written in the form:
42 \[
43 \pp{z}{P^{\kappa}} = -{c_p \over {g}}\theta
44 \]
45
46 The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its
47 detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral
48 buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal
49 to the saturation moist static energy of the environment, $h^*$. Following \cite{moorsz:92},
50 $\lambda$ may be written as
51 \[
52 \lambda = { {h_B - h^*_D} \over { {c_p \over g} {\int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}} } ,
53 \]
54
55 where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level.
56
57
58 The convective instability is measured in terms of the cloud work function $A$, defined as the
59 rate of change of cumulus kinetic energy. The cloud work function is
60 related to the buoyancy, or the difference
61 between the moist static energy in the cloud and in the environment:
62 \[
63 A = \int_{P_D}^{P_B} { {\eta \over {1 + \gamma} }
64 \left[ {{h_c-h^*} \over {P^{\kappa}}} \right] dP^{\kappa}}
65 \]
66
67 where $\gamma$ is ${L \over {c_p}}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation,
68 and the subscript $c$ refers to the value inside the cloud.
69
70
71 To determine the cloud base mass flux, the rate of change of $A$ in time {\em due to dissipation by
72 the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation
73 by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$:
74 \[
75 m_B = {{- \left.{dA \over dt} \right|_{ls}} \over K}
76 \]
77
78 where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per
79 unit cloud base mass flux, and is currently obtained by analytically differentiating the
80 expression for $A$ in time.
81 The rate of change of $A$ due to the generation by the large scale can be written as the
82 difference between the current $A(t+\Delta t)$ and its equillibrated value after the previous
83 convective time step
84 $A(t)$, divided by the time step. $A(t)$ is approximated as some critical $A_{crit}$,
85 computed by Lord (1982) from $in situ$ observations.
86
87
88 The predicted convective mass fluxes are used to solve grid-scale temperature
89 and moisture budget equations to determine the impact of convection on the large scale fields of
90 temperature (through latent heating and compensating subsidence) and moisture (through
91 precipitation and detrainment):
92 \[
93 \left.{\pp{\theta}{t}}\right|_{c} = \alpha { m_B \over {c_p P^{\kappa}}} \eta \pp{s}{p}
94 \]
95 and
96 \[
97 \left.{\pp{q}{t}}\right|_{c} = \alpha { m_B \over {L}} \eta (\pp{h}{p}-\pp{s}{p})
98 \]
99 where $\theta = {T \over P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter.
100
101 As an approximation to a full interaction between the different allowable subensembles,
102 many clouds are simulated frequently, each modifying the large scale environment some fraction
103 $\alpha$ of the total adjustment. The parameterization thereby ``relaxes'' the large scale environment
104 towards equillibrium.
105
106 In addition to the RAS cumulus convection scheme, the fizhi package employs a
107 Kessler-type scheme for the re-evaporation of falling rain (\cite{sudm:88}), which
108 correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current
109 formulation assumes that all cloud water is deposited into the detrainment level as rain.
110 All of the rain is available for re-evaporation, which begins in the level below detrainment.
111 The scheme accounts for some microphysics such as
112 the rainfall intensity, the drop size distribution, as well as the temperature,
113 pressure and relative humidity of the surrounding air. The fraction of the moisture deficit
114 in any model layer into which the rain may re-evaporate is controlled by a free parameter,
115 which allows for a relatively efficient re-evaporation of liquid precipitate and larger rainout
116 for frozen precipitation.
117
118 Due to the increased vertical resolution near the surface, the lowest model
119 layers are averaged to provide a 50 mb thick sub-cloud layer for RAS. Each time RAS is
120 invoked (every ten simulated minutes),
121 a number of randomly chosen subensembles are checked for the possibility
122 of convection, from just above cloud base to 10 mb.
123
124 Supersaturation or large-scale precipitation is initiated in the fizhi package whenever
125 the relative humidity in any grid-box exceeds a critical value, currently 100 \%.
126 The large-scale precipitation re-evaporates during descent to partially saturate
127 lower layers in a process identical to the re-evaporation of convective rain.
128
129
130 \paragraph{Cloud Formation}
131 \label{sec:fizhi:clouds}
132
133 Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined
134 diagnostically as part of the cumulus and large-scale parameterizations.
135 Convective cloud fractions produced by RAS are proportional to the
136 detrained liquid water amount given by
137
138 \[
139 F_{RAS} = \min\left[ {l_{RAS}\over l_c}, 1.0 \right]
140 \]
141
142 where $l_c$ is an assigned critical value equal to $1.25$ g/kg.
143 A memory is associated with convective clouds defined by:
144
145 \[
146 F_{RAS}^n = \min\left[ F_{RAS} + (1-{\Delta t_{RAS}\over\tau})F_{RAS}^{n-1}, 1.0 \right]
147 \]
148
149 where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction
150 from the previous RAS timestep. The memory coefficient is computed using a RAS cloud timescale,
151 $\tau$, equal to 1 hour. RAS cloud fractions are cleared when they fall below 5 \%.
152
153 Large-scale cloudiness is defined, following Slingo and Ritter (1985), as a function of relative
154 humidity:
155
156 \[
157 F_{LS} = \min\left[ { \left( {RH-RH_c \over 1-RH_c} \right) }^2, 1.0 \right]
158 \]
159
160 where
161
162 \bqa
163 RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\
164 s & = & p/p_{surf} \nonumber \\
165 r & = & \left( {1.0-RH_{min} \over \alpha} \right) \nonumber \\
166 RH_{min} & = & 0.75 \nonumber \\
167 \alpha & = & 0.573285 \nonumber .
168 \eqa
169
170 These cloud fractions are suppressed, however, in regions where the convective
171 sub-cloud layer is conditionally unstable. The functional form of $RH_c$ is shown in
172 Figure (\ref{fig.rhcrit}).
173
174 \begin{figure*}[htbp]
175 \vspace{0.4in}
176 \centerline{ \epsfysize=4.0in \epsfbox{part6/rhcrit.ps}}
177 \vspace{0.4in}
178 \caption [Critical Relative Humidity for Clouds.]
179 {Critical Relative Humidity for Clouds.}
180 \label{fig.rhcrit}
181 \end{figure*}
182
183 The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:
184
185 \[
186 F_{CLD} = \max \left[ F_{RAS},F_{LS} \right] .
187 \]
188
189 Finally, cloud fractions are time-averaged between calls to the radiation packages.
190
191
192 Radiation:
193
194 The parameterization of radiative heating in the fizhi package includes effects
195 from both shortwave and longwave processes.
196 Radiative fluxes are calculated at each
197 model edge-level in both up and down directions.
198 The heating rates/cooling rates are then obtained
199 from the vertical divergence of the net radiative fluxes.
200
201 The net flux is
202 \[
203 F = F^\uparrow - F^\downarrow
204 \]
205 where $F$ is the net flux, $F^\uparrow$ is the upward flux and $F^\downarrow$ is
206 the downward flux.
207
208 The heating rate due to the divergence of the radiative flux is given by
209 \[
210 \pp{\rho c_p T}{t} = - \pp{F}{z}
211 \]
212 or
213 \[
214 \pp{T}{t} = \frac{g}{c_p \pi} \pp{F}{\sigma}
215 \]
216 where $g$ is the accelation due to gravity
217 and $c_p$ is the heat capacity of air at constant pressure.
218
219 The time tendency for Longwave
220 Radiation is updated every 3 hours. The time tendency for Shortwave Radiation is updated once
221 every three hours assuming a normalized incident solar radiation, and subsequently modified at
222 every model time step by the true incident radiation.
223 The solar constant value used in the package is equal to 1365 $W/m^2$
224 and a $CO_2$ mixing ratio of 330 ppm.
225 For the ozone mixing ratio, monthly mean zonally averaged
226 climatological values specified as a function
227 of latitude and height (\cite{rosen:87}) are linearly interpolated to the current time.
228
229
230 \paragraph{Shortwave Radiation}
231
232 The shortwave radiation package used in the package computes solar radiative
233 heating due to the absoption by water vapor, ozone, carbon dioxide, oxygen,
234 clouds, and aerosols and due to the
235 scattering by clouds, aerosols, and gases.
236 The shortwave radiative processes are described by
237 \cite{chou:90,chou:92}. This shortwave package
238 uses the Delta-Eddington approximation to compute the
239 bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986).
240 The transmittance and reflectance of diffuse radiation
241 follow the procedures of Sagan and Pollock (JGR, 1967) and \cite{lhans:74}.
242
243 Highly accurate heating rate calculations are obtained through the use
244 of an optimal grouping strategy of spectral bands. By grouping the UV and visible regions
245 as indicated in Table \ref{tab:fizhi:solar2}, the Rayleigh scattering and the ozone absorption of solar radiation
246 can be accurately computed in the ultraviolet region and the photosynthetically
247 active radiation (PAR) region.
248 The computation of solar flux in the infrared region is performed with a broadband
249 parameterization using the spectrum regions shown in Table \ref{tab:fizhi:solar1}.
250 The solar radiation algorithm used in the fizhi package can be applied not only for climate studies but
251 also for studies on the photolysis in the upper atmosphere and the photosynthesis in the biosphere.
252
253 \begin{table}[htb]
254 \begin{center}
255 {\bf UV and Visible Spectral Regions} \\
256 \vspace{0.1in}
257 \begin{tabular}{|c|c|c|}
258 \hline
259 Region & Band & Wavelength (micron) \\ \hline
260 \hline
261 UV-C & 1. & .175 - .225 \\
262 & 2. & .225 - .245 \\
263 & & .260 - .280 \\
264 & 3. & .245 - .260 \\ \hline
265 UV-B & 4. & .280 - .295 \\
266 & 5. & .295 - .310 \\
267 & 6. & .310 - .320 \\ \hline
268 UV-A & 7. & .320 - .400 \\ \hline
269 PAR & 8. & .400 - .700 \\
270 \hline
271 \end{tabular}
272 \end{center}
273 \caption{UV and Visible Spectral Regions used in shortwave radiation package.}
274 \label{tab:fizhi:solar2}
275 \end{table}
276
277 \begin{table}[htb]
278 \begin{center}
279 {\bf Infrared Spectral Regions} \\
280 \vspace{0.1in}
281 \begin{tabular}{|c|c|c|}
282 \hline
283 Band & Wavenumber(cm$^{-1}$) & Wavelength (micron) \\ \hline
284 \hline
285 1 & 1000-4400 & 2.27-10.0 \\
286 2 & 4400-8200 & 1.22-2.27 \\
287 3 & 8200-14300 & 0.70-1.22 \\
288 \hline
289 \end{tabular}
290 \end{center}
291 \caption{Infrared Spectral Regions used in shortwave radiation package.}
292 \label{tab:fizhi:solar1}
293 \end{table}
294
295 Within the shortwave radiation package,
296 both ice and liquid cloud particles are allowed to co-exist in any of the model layers.
297 Two sets of cloud parameters are used, one for ice paticles and the other for liquid particles.
298 Cloud parameters are defined as the cloud optical thickness and the effective cloud particle size.
299 In the fizhi package, the effective radius for water droplets is given as 10 microns,
300 while 65 microns is used for ice particles. The absorption due to aerosols is currently
301 set to zero.
302
303 To simplify calculations in a cloudy atmosphere, clouds are
304 grouped into low ($p>700$ mb), middle (700 mb $\ge p > 400$ mb), and high ($p < 400$ mb) cloud regions.
305 Within each of the three regions, clouds are assumed maximally
306 overlapped, and the cloud cover of the group is the maximum
307 cloud cover of all the layers in the group. The optical thickness
308 of a given layer is then scaled for both the direct (as a function of the
309 solar zenith angle) and diffuse beam radiation
310 so that the grouped layer reflectance is the same as the original reflectance.
311 The solar flux is computed for each of eight cloud realizations possible within this
312 low/middle/high classification, and appropriately averaged to produce the net solar flux.
313
314 \paragraph{Longwave Radiation}
315
316 The longwave radiation package used in the fizhi package is thoroughly described by \cite{chsz:94}.
317 As described in that document, IR fluxes are computed due to absorption by water vapor, carbon
318 dioxide, and ozone. The spectral bands together with their absorbers and parameterization methods,
319 configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}.
320
321
322 \begin{table}[htb]
323 \begin{center}
324 {\bf IR Spectral Bands} \\
325 \vspace{0.1in}
326 \begin{tabular}{|c|c|l|c| }
327 \hline
328 Band & Spectral Range (cm$^{-1}$) & Absorber & Method \\ \hline
329 \hline
330 1 & 0-340 & H$_2$O line & T \\ \hline
331 2 & 340-540 & H$_2$O line & T \\ \hline
332 3a & 540-620 & H$_2$O line & K \\
333 3b & 620-720 & H$_2$O continuum & S \\
334 3b & 720-800 & CO$_2$ & T \\ \hline
335 4 & 800-980 & H$_2$O line & K \\
336 & & H$_2$O continuum & S \\ \hline
337 & & H$_2$O line & K \\
338 5 & 980-1100 & H$_2$O continuum & S \\
339 & & O$_3$ & T \\ \hline
340 6 & 1100-1380 & H$_2$O line & K \\
341 & & H$_2$O continuum & S \\ \hline
342 7 & 1380-1900 & H$_2$O line & T \\ \hline
343 8 & 1900-3000 & H$_2$O line & K \\ \hline
344 \hline
345 \multicolumn{4}{|l|}{ \quad K: {\em k}-distribution method with linear pressure scaling } \\
346 \multicolumn{4}{|l|}{ \quad T: Table look-up with temperature and pressure scaling } \\
347 \multicolumn{4}{|l|}{ \quad S: One-parameter temperature scaling } \\
348 \hline
349 \end{tabular}
350 \end{center}
351 \vspace{0.1in}
352 \caption{IR Spectral Bands, Absorbers, and Parameterization Method (from \cite{chsz:94})}
353 \label{tab:fizhi:longwave}
354 \end{table}
355
356
357 The longwave radiation package accurately computes cooling rates for the middle and
358 lower atmosphere from 0.01 mb to the surface. Errors are $<$ 0.4 C day$^{-1}$ in cooling
359 rates and $<$ 1\% in fluxes. From Chou and Suarez, it is estimated that the total effect of
360 neglecting all minor absorption bands and the effects of minor infrared absorbers such as
361 nitrous oxide (N$_2$O), methane (CH$_4$), and the chlorofluorocarbons (CFCs), is an underestimate
362 of $\approx$ 5 W/m$^2$ in the downward flux at the surface and an overestimate of $\approx$ 3 W/m$^2$
363 in the upward flux at the top of the atmosphere.
364
365 Similar to the procedure used in the shortwave radiation package, clouds are grouped into
366 three regions catagorized as low/middle/high.
367 The net clear line-of-site probability $(P)$ between any two levels, $p_1$ and $p_2 \quad (p_2 > p_1)$,
368 assuming randomly overlapped cloud groups, is simply the product of the probabilities within each group:
369
370 \[ P_{net} = P_{low} \times P_{mid} \times P_{hi} . \]
371
372 Since all clouds within a group are assumed maximally overlapped, the clear line-of-site probability within
373 a group is given by:
374
375 \[ P_{group} = 1 - F_{max} , \]
376
377 where $F_{max}$ is the maximum cloud fraction encountered between $p_1$ and $p_2$ within that group.
378 For groups and/or levels outside the range of $p_1$ and $p_2$, a clear line-of-site probability equal to 1 is
379 assigned.
380
381
382 \paragraph{Cloud-Radiation Interaction}
383 \label{sec:fizhi:radcloud}
384
385 The cloud fractions and diagnosed cloud liquid water produced by moist processes
386 within the fizhi package are used in the radiation packages to produce cloud-radiative forcing.
387 The cloud optical thickness associated with large-scale cloudiness is made
388 proportional to the diagnosed large-scale liquid water, $\ell$, detrained due to super-saturation.
389 Two values are used corresponding to cloud ice particles and water droplets.
390 The range of optical thickness for these clouds is given as
391
392 \[ 0.0002 \le \tau_{ice} (mb^{-1}) \le 0.002 \quad\mbox{for}\quad 0 \le \ell \le 2 \quad\mbox{mg/kg} , \]
393 \[ 0.02 \le \tau_{h_2o} (mb^{-1}) \le 0.2 \quad\mbox{for}\quad 0 \le \ell \le 10 \quad\mbox{mg/kg} . \]
394
395 The partitioning, $\alpha$, between ice particles and water droplets is achieved through a linear scaling
396 in temperature:
397
398 \[ 0 \le \alpha \le 1 \quad\mbox{for}\quad 233.15 \le T \le 253.15 . \]
399
400 The resulting optical depth associated with large-scale cloudiness is given as
401
402 \[ \tau_{LS} = \alpha \tau_{h_2o} + (1-\alpha)\tau_{ice} . \]
403
404 The optical thickness associated with sub-grid scale convective clouds produced by RAS is given as
405
406 \[ \tau_{RAS} = 0.16 \quad mb^{-1} . \]
407
408 The total optical depth in a given model layer is computed as a weighted average between
409 the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the
410 layer:
411
412 \[ \tau = \left( {F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} \over F_{RAS}+F_{LS} } \right) \Delta p, \]
413
414 where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale
415 processes described in Section \ref{sec:fizhi:clouds}.
416 The optical thickness for the longwave radiative feedback is assumed to be 75 $\%$ of these values.
417
418 The entire Moist Convective Processes Module is called with a frequency of 10 minutes.
419 The cloud fraction values are time-averaged over the period between Radiation calls (every 3
420 hours). Therefore, in a time-averaged sense, both convective and large-scale
421 cloudiness can exist in a given grid-box.
422
423 \paragraph{Turbulence}:
424
425 Turbulence is parameterized in the fizhi package to account for its contribution to the
426 vertical exchange of heat, moisture, and momentum.
427 The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative
428 time scheme with an internal time step of 5 minutes.
429 The tendencies of atmospheric state variables due to turbulent diffusion are calculated using
430 the diffusion equations:
431
432 \[
433 {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
434 = {\pp{}{z} }{(K_m \pp{u}{z})}
435 \]
436 \[
437 {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
438 = {\pp{}{z} }{(K_m \pp{v}{z})}
439 \]
440 \[
441 {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
442 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
443 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
444 \]
445 \[
446 {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
447 = {\pp{}{z} }{(K_h \pp{q}{z})}
448 \]
449
450 Within the atmosphere, the time evolution
451 of second turbulent moments is explicitly modeled by representing the third moments in terms of
452 the first and second moments. This approach is known as a second-order closure modeling.
453 To simplify and streamline the computation of the second moments, the level 2.5 assumption
454 of Mellor and Yamada (1974) and \cite{yam:77} is employed, in which only the turbulent
455 kinetic energy (TKE),
456
457 \[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \]
458
459 is solved prognostically and the other second moments are solved diagnostically.
460 The prognostic equation for TKE allows the scheme to simulate
461 some of the transient and diffusive effects in the turbulence. The TKE budget equation
462 is solved numerically using an implicit backward computation of the terms linear in $q^2$
463 and is written:
464
465 \[
466 {\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ {5 \over 3} {{\lambda}_1} q { \pp {}{z}
467 ({\h}q^2)} })} =
468 {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}
469 { \pp{V}{z} }} + {{g \over {\Theta_0}}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}} }
470 - { q^3 \over {{\Lambda} _1} }
471 \]
472
473 where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and
474 ${{\theta}^{\prime}}$ are the fluctuating parts of the velocity components and potential
475 temperature, $U$ and $V$ are the mean velocity components, ${\Theta_0}^{-1}$ is the
476 coefficient of thermal expansion, and ${{\lambda}_1}$ and ${{\Lambda} _1}$ are constant
477 multiples of the master length scale, $\ell$, which is designed to be a characteristic measure
478 of the vertical structure of the turbulent layers.
479
480 The first term on the left-hand side represents the time rate of change of TKE, and
481 the second term is a representation of the triple correlation, or turbulent
482 transport term. The first three terms on the right-hand side represent the sources of
483 TKE due to shear and bouyancy, and the last term on the right hand side is the dissipation
484 of TKE.
485
486 In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the
487 wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and
488 $K_m$, respectively. In the statisically realizable level 2.5 turbulence scheme of
489 \cite{helflab:88}, these diffusion coefficients are expressed as
490
491 \[
492 K_h
493 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}
494 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
495 \]
496
497 and
498
499 \[
500 K_m
501 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}
502 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
503 \]
504
505 where the subscript $e$ refers to the value under conditions of local equillibrium
506 (obtained from the Level 2.0 Model), $\ell$ is the master length scale related to the
507 vertical structure of the atmosphere,
508 and $S_M$ and $S_H$ are functions of $G_H$ and $G_M$, the dimensionless buoyancy and
509 wind shear parameters, respectively.
510 Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
511 are functions of the Richardson number:
512
513 \[
514 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
515 = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } .
516 \]
517
518 Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$)
519 indicate dominantly unstable shear, and large positive values indicate dominantly stable
520 stratification.
521
522 Turbulent eddy diffusion coefficients of momentum, heat and moisture in the surface layer,
523 which corresponds to the lowest GCM level (see \ref{tab:fizhi:sigma}),
524 are calculated using stability-dependant functions based on Monin-Obukhov theory:
525 \[
526 {K_m} (surface) = C_u \times u_* = C_D W_s
527 \]
528 and
529 \[
530 {K_h} (surface) = C_t \times u_* = C_H W_s
531 \]
532 where $u_*=C_uW_s$ is the surface friction velocity,
533 $C_D$ is termed the surface drag coefficient, $C_H$ the heat transfer coefficient,
534 and $W_s$ is the magnitude of the surface layer wind.
535
536 $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
537 similarity functions:
538 \[
539 {C_u} = {u_* \over W_s} = { k \over \psi_{m} }
540 \]
541 where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional
542 wind shear given by
543 \[
544 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} .
545 \]
546 Here $\zeta$ is the non-dimensional stability parameter, and
547 $\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of
548 the momentum gradient. The functional form of $\phi_m$ is specified differently for stable and unstable
549 layers.
550
551 $C_t$ is the dimensionless exchange coefficient for heat and
552 moisture from the surface layer similarity functions:
553 \[
554 {C_t} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
555 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
556 { k \over { (\psi_{h} + \psi_{g}) } }
557 \]
558 where $\psi_h$ is the surface layer non-dimensional temperature gradient given by
559 \[
560 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} .
561 \]
562 Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
563 the temperature and moisture gradients, and is specified differently for stable and unstable
564 layers according to \cite{helfschu:95}.
565
566 $\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer,
567 which is the mosstly laminar region between the surface and the tops of the roughness
568 elements, in which temperature and moisture gradients can be quite large.
569 Based on \cite{yagkad:74}:
570 \[
571 \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
572 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
573 \]
574 where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the
575 surface roughness length, and the subscript {\em ref} refers to a reference value.
576 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
577
578 The surface roughness length over oceans is is a function of the surface-stress velocity,
579 \[
580 {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
581 \]
582 where the constants are chosen to interpolate between the reciprocal relation of
583 \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
584 for moderate to large winds. Roughness lengths over land are specified
585 from the climatology of \cite{dorsell:89}.
586
587 For an unstable surface layer, the stability functions, chosen to interpolate between the
588 condition of small values of $\beta$ and the convective limit, are the KEYPS function
589 (\cite{pano:73}) for momentum, and its generalization for heat and moisture:
590 \[
591 {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}
592 {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .
593 \]
594 The function for heat and moisture assures non-vanishing heat and moisture fluxes as the wind
595 speed approaches zero.
596
597 For a stable surface layer, the stability functions are the observationally
598 based functions of \cite{clarke:70}, slightly modified for
599 the momemtum flux:
600 \[
601 {\phi_m} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {{\zeta}_1}
602 (1+ 5 {{\zeta}_1}) } } \hspace{1cm} ; \hspace{1cm}
603 {\phi_h} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {\zeta}
604 (1+ 5 {{\zeta}_1}) } } .
605 \]
606 The moisture flux also depends on a specified evapotranspiration
607 coefficient, set to unity over oceans and dependant on the climatological ground wetness over
608 land.
609
610 Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically
611 using an implicit backward operator.
612
613 \paragraph{Atmospheric Boundary Layer}
614
615 The depth of the atmospheric boundary layer (ABL) is diagnosed by the parameterization as the
616 level at which the turbulent kinetic energy is reduced to a tenth of its maximum near surface value.
617 The vertical structure of the ABL is explicitly resolved by the lowest few (3-8) model layers.
618
619 \paragraph{Surface Energy Budget}
620
621 The ground temperature equation is solved as part of the turbulence package
622 using a backward implicit time differencing scheme:
623 \[
624 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
625 \]
626 where $R_{sw}$ is the net surface downward shortwave radiative flux and $R_{lw}$ is the
627 net surface upward longwave radiative flux.
628
629 $H$ is the upward sensible heat flux, given by:
630 \[
631 {H} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{NLAY})
632 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
633 \]
634 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
635 heat of air at constant pressure, and $\theta$ represents the potential temperature
636 of the surface and of the lowest $\sigma$-level, respectively.
637
638 The upward latent heat flux, $LE$, is given by
639 \[
640 {LE} = \rho \beta L C_{H} W_s (q_{surface} - q_{NLAY})
641 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
642 \]
643 where $\beta$ is the fraction of the potential evapotranspiration actually evaporated,
644 L is the latent heat of evaporation, and $q_{surface}$ and $q_{NLAY}$ are the specific
645 humidity of the surface and of the lowest $\sigma$-level, respectively.
646
647 The heat conduction through sea ice, $Q_{ice}$, is given by
648 \[
649 {Q_{ice}} = {C_{ti} \over {H_i}} (T_i-T_g)
650 \]
651 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
652 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the
653 surface temperature of the ice.
654
655 $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation
656 for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
657 \[
658 C_g = \sqrt{ {\lambda C_s \over 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
659 {86400 \over 2 \pi} } \, \, .
660 \]
661 Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ ${ly\over{ sec}}
662 {cm \over {^oK}}$,
663 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
664 by $2 \pi$ $radians/
665 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
666 is a function of the ground wetness, $W$.
667
668 Land Surface Processes:
669
670 \paragraph{Surface Type}
671 The fizhi package surface Types are designated using the Koster-Suarez (\cite{ks:91,ks:92})
672 Land Surface Model (LSM) mosaic philosophy which allows multiple ``tiles'', or multiple surface
673 types, in any one grid cell. The Koster-Suarez LSM surface type classifications
674 are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid
675 cell occupied by any surface type were derived from the surface classification of
676 \cite{deftow:94}, and information about the location of permanent
677 ice was obtained from the classifications of \cite{dorsell:89}.
678 The surface type map for a $1^\circ$ grid is shown in Figure \ref{fig:fizhi:surftype}.
679 The determination of the land or sea category of surface type was made from NCAR's
680 10 minute by 10 minute Navy topography
681 dataset, which includes information about the percentage of water-cover at any point.
682 The data were averaged to the model's grid resolutions,
683 and any grid-box whose averaged water percentage was $\geq 60 \%$ was
684 defined as a water point. The Land-Water designation was further modified
685 subjectively to ensure sufficient representation from small but isolated land and water regions.
686
687 \begin{table}
688 \begin{center}
689 {\bf Surface Type Designation} \\
690 \vspace{0.1in}
691 \begin{tabular}{ |c|l| }
692 \hline
693 Type & Vegetation Designation \\ \hline
694 \hline
695 1 & Broadleaf Evergreen Trees \\ \hline
696 2 & Broadleaf Deciduous Trees \\ \hline
697 3 & Needleleaf Trees \\ \hline
698 4 & Ground Cover \\ \hline
699 5 & Broadleaf Shrubs \\ \hline
700 6 & Dwarf Trees (Tundra) \\ \hline
701 7 & Bare Soil \\ \hline
702 8 & Desert (Bright) \\ \hline
703 9 & Glacier \\ \hline
704 10 & Desert (Dark) \\ \hline
705 100 & Ocean \\ \hline
706 \end{tabular}
707 \end{center}
708 \caption{Surface type designations.}
709 \label{tab:fizhi:surftype}
710 \end{table}
711
712 \begin{figure*}[htbp]
713 \centerline{ \epsfysize=4.0in \epsfbox{part6/surftype.eps}}
714 \vspace{0.2in}
715 \caption {Surface Type Combinations.}
716 \label{fig:fizhi:surftype}
717 \end{figure*}
718
719 % \rotatebox{270}{\centerline{ \epsfysize=4in \epsfbox{part6/surftypes.eps}}}
720 % \rotatebox{270}{\centerline{ \epsfysize=4in \epsfbox{part6/surftypes.descrip.eps}}}
721 %\begin{figure*}[htbp]
722 % \centerline{ \epsfysize=4in \epsfbox{part6/surftypes.descrip.ps}}
723 % \vspace{0.3in}
724 % \caption {Surface Type Descriptions.}
725 % \label{fig:fizhi:surftype.desc}
726 %\end{figure*}
727
728
729 \paragraph{Surface Roughness}
730 The surface roughness length over oceans is computed iteratively with the wind
731 stress by the surface layer parameterization (\cite{helfschu:95}).
732 It employs an interpolation between the functions of \cite{larpond:81}
733 for high winds and of \cite{kondo:75} for weak winds.
734
735
736 \paragraph{Albedo}
737 The surface albedo computation, described in \cite{ks:91},
738 employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)
739 Model which distinguishes between the direct and diffuse albedos in the visible
740 and in the near infra-red spectral ranges. The albedos are functions of the observed
741 leaf area index (a description of the relative orientation of the leaves to the
742 sun), the greenness fraction, the vegetation type, and the solar zenith angle.
743 Modifications are made to account for the presence of snow, and its depth relative
744 to the height of the vegetation elements.
745
746 \paragraph{Gravity Wave Drag}
747
748 The fizhi package employs the gravity wave drag scheme of \cite{zhouetal:95}).
749 This scheme is a modified version of Vernekar et al. (1992),
750 which was based on Alpert et al. (1988) and Helfand et al. (1987).
751 In this version, the gravity wave stress at the surface is
752 based on that derived by Pierrehumbert (1986) and is given by:
753
754 \bq
755 |\vec{\tau}_{sfc}| = {\rho U^3\over{N \ell^*}} \left(F_r^2 \over{1+F_r^2}\right) \, \, ,
756 \eq
757
758 where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the
759 surface wind speed, $h$ is the standard deviation of the sub-grid scale orography,
760 and $\ell^*$ is the wavelength of the monochromatic gravity wave in the direction of the low-level wind.
761 A modification introduced by Zhou et al. allows for the momentum flux to
762 escape through the top of the model, although this effect is small for the current 70-level model.
763 The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m.
764
765 The effects of using this scheme within a GCM are shown in \cite{taksz:96}.
766 Experiments using the gravity wave drag parameterization yielded significant and
767 beneficial impacts on both the time-mean flow and the transient statistics of the
768 a GCM climatology, and have eliminated most of the worst dynamically driven biases
769 in the a GCM simulation.
770 An examination of the angular momentum budget during climate runs indicates that the
771 resulting gravity wave torque is similar to the data-driven torque produced by a data
772 assimilation which was performed without gravity
773 wave drag. It was shown that the inclusion of gravity wave drag results in
774 large changes in both the mean flow and in eddy fluxes.
775 The result is a more
776 accurate simulation of surface stress (through a reduction in the surface wind strength),
777 of mountain torque (through a redistribution of mean sea-level pressure), and of momentum
778 convergence (through a reduction in the flux of westerly momentum by transient flow eddies).
779
780
781 Boundary Conditions and other Input Data:
782
783 Required fields which are not explicitly predicted or diagnosed during model execution must
784 either be prescribed internally or obtained from external data sets. In the fizhi package these
785 fields include: sea surface temperature, sea ice estent, surface geopotential variance,
786 vegetation index, and the radiation-related background levels of: ozone, carbon dioxide,
787 and stratospheric moisture.
788
789 Boundary condition data sets are available at the model's
790 resolutions for either climatological or yearly varying conditions.
791 Any frequency of boundary condition data can be used in the fizhi package;
792 however, the current selection of data is summarized in Table \ref{tab:fizhi:bcdata}\@.
793 The time mean values are interpolated during each model timestep to the
794 current time.
795
796 \begin{table}[htb]
797 \begin{center}
798 {\bf Fizhi Input Datasets} \\
799 \vspace{0.1in}
800 \begin{tabular}{|l|c|r|} \hline
801 \multicolumn{1}{|c}{Variable} & \multicolumn{1}{|c}{Frequency} & \multicolumn{1}{|c|}{Years} \\ \hline\hline
802 Sea Ice Extent & monthly & 1979-current, climatology \\ \hline
803 Sea Ice Extent & weekly & 1982-current, climatology \\ \hline
804 Sea Surface Temperature & monthly & 1979-current, climatology \\ \hline
805 Sea Surface Temperature & weekly & 1982-current, climatology \\ \hline
806 Zonally Averaged Upper-Level Moisture & monthly & climatology \\ \hline
807 Zonally Averaged Ozone Concentration & monthly & climatology \\ \hline
808 \end{tabular}
809 \end{center}
810 \caption{Boundary conditions and other input data used in the fizhi package. Also noted are the
811 current years and frequencies available.}
812 \label{tab:fizhi:bcdata}
813 \end{table}
814
815
816 \paragraph{Topography and Topography Variance}
817
818 Surface geopotential heights are provided from an averaging of the Navy 10 minute
819 by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the
820 model's grid resolution. The original topography is first rotated to the proper grid-orientation
821 which is being run, and then averages the data to the model resolution.
822
823 The standard deviation of the subgrid-scale topography is computed by interpolating the 10 minute
824 data to the model's resolution and re-interpolating back to the 10 minute by 10 minute resolution.
825 The sub-grid scale variance is constructed based on this smoothed dataset.
826
827
828 \paragraph{Upper Level Moisture}
829 The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas
830 Experiment (SAGE) as input into the model's radiation packages. The SAGE data is archived
831 as monthly zonal means at $5^\circ$ latitudinal resolution. The data is interpolated to the
832 model's grid location and current time, and blended with the GCM's moisture data. Below 300 mb,
833 the model's moisture data is used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb,
834 a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.
835
836
837 \subsubsection{Fizhi Diagnostics}
838
839 Fizhi Diagnostic Menu:
840 \label{sec:pkg:fizhi:diagnostics}
841
842 \begin{tabular}{llll}
843 \hline\hline
844 NAME & UNITS & LEVELS & DESCRIPTION \\
845 \hline
846
847 &\\
848 UFLUX & $Newton/m^2$ & 1
849 &\begin{minipage}[t]{3in}
850 {Surface U-Wind Stress on the atmosphere}
851 \end{minipage}\\
852 VFLUX & $Newton/m^2$ & 1
853 &\begin{minipage}[t]{3in}
854 {Surface V-Wind Stress on the atmosphere}
855 \end{minipage}\\
856 HFLUX & $Watts/m^2$ & 1
857 &\begin{minipage}[t]{3in}
858 {Surface Flux of Sensible Heat}
859 \end{minipage}\\
860 EFLUX & $Watts/m^2$ & 1
861 &\begin{minipage}[t]{3in}
862 {Surface Flux of Latent Heat}
863 \end{minipage}\\
864 QICE & $Watts/m^2$ & 1
865 &\begin{minipage}[t]{3in}
866 {Heat Conduction through Sea-Ice}
867 \end{minipage}\\
868 RADLWG & $Watts/m^2$ & 1
869 &\begin{minipage}[t]{3in}
870 {Net upward LW flux at the ground}
871 \end{minipage}\\
872 RADSWG & $Watts/m^2$ & 1
873 &\begin{minipage}[t]{3in}
874 {Net downward SW flux at the ground}
875 \end{minipage}\\
876 RI & $dimensionless$ & Nrphys
877 &\begin{minipage}[t]{3in}
878 {Richardson Number}
879 \end{minipage}\\
880 CT & $dimensionless$ & 1
881 &\begin{minipage}[t]{3in}
882 {Surface Drag coefficient for T and Q}
883 \end{minipage}\\
884 CU & $dimensionless$ & 1
885 &\begin{minipage}[t]{3in}
886 {Surface Drag coefficient for U and V}
887 \end{minipage}\\
888 ET & $m^2/sec$ & Nrphys
889 &\begin{minipage}[t]{3in}
890 {Diffusivity coefficient for T and Q}
891 \end{minipage}\\
892 EU & $m^2/sec$ & Nrphys
893 &\begin{minipage}[t]{3in}
894 {Diffusivity coefficient for U and V}
895 \end{minipage}\\
896 TURBU & $m/sec/day$ & Nrphys
897 &\begin{minipage}[t]{3in}
898 {U-Momentum Changes due to Turbulence}
899 \end{minipage}\\
900 TURBV & $m/sec/day$ & Nrphys
901 &\begin{minipage}[t]{3in}
902 {V-Momentum Changes due to Turbulence}
903 \end{minipage}\\
904 TURBT & $deg/day$ & Nrphys
905 &\begin{minipage}[t]{3in}
906 {Temperature Changes due to Turbulence}
907 \end{minipage}\\
908 TURBQ & $g/kg/day$ & Nrphys
909 &\begin{minipage}[t]{3in}
910 {Specific Humidity Changes due to Turbulence}
911 \end{minipage}\\
912 MOISTT & $deg/day$ & Nrphys
913 &\begin{minipage}[t]{3in}
914 {Temperature Changes due to Moist Processes}
915 \end{minipage}\\
916 MOISTQ & $g/kg/day$ & Nrphys
917 &\begin{minipage}[t]{3in}
918 {Specific Humidity Changes due to Moist Processes}
919 \end{minipage}\\
920 RADLW & $deg/day$ & Nrphys
921 &\begin{minipage}[t]{3in}
922 {Net Longwave heating rate for each level}
923 \end{minipage}\\
924 RADSW & $deg/day$ & Nrphys
925 &\begin{minipage}[t]{3in}
926 {Net Shortwave heating rate for each level}
927 \end{minipage}\\
928 PREACC & $mm/day$ & 1
929 &\begin{minipage}[t]{3in}
930 {Total Precipitation}
931 \end{minipage}\\
932 PRECON & $mm/day$ & 1
933 &\begin{minipage}[t]{3in}
934 {Convective Precipitation}
935 \end{minipage}\\
936 TUFLUX & $Newton/m^2$ & Nrphys
937 &\begin{minipage}[t]{3in}
938 {Turbulent Flux of U-Momentum}
939 \end{minipage}\\
940 TVFLUX & $Newton/m^2$ & Nrphys
941 &\begin{minipage}[t]{3in}
942 {Turbulent Flux of V-Momentum}
943 \end{minipage}\\
944 TTFLUX & $Watts/m^2$ & Nrphys
945 &\begin{minipage}[t]{3in}
946 {Turbulent Flux of Sensible Heat}
947 \end{minipage}\\
948 \end{tabular}
949
950 \newpage
951 \vspace*{\fill}
952 \begin{tabular}{llll}
953 \hline\hline
954 NAME & UNITS & LEVELS & DESCRIPTION \\
955 \hline
956
957 &\\
958 TQFLUX & $Watts/m^2$ & Nrphys
959 &\begin{minipage}[t]{3in}
960 {Turbulent Flux of Latent Heat}
961 \end{minipage}\\
962 CN & $dimensionless$ & 1
963 &\begin{minipage}[t]{3in}
964 {Neutral Drag Coefficient}
965 \end{minipage}\\
966 WINDS & $m/sec$ & 1
967 &\begin{minipage}[t]{3in}
968 {Surface Wind Speed}
969 \end{minipage}\\
970 DTSRF & $deg$ & 1
971 &\begin{minipage}[t]{3in}
972 {Air/Surface virtual temperature difference}
973 \end{minipage}\\
974 TG & $deg$ & 1
975 &\begin{minipage}[t]{3in}
976 {Ground temperature}
977 \end{minipage}\\
978 TS & $deg$ & 1
979 &\begin{minipage}[t]{3in}
980 {Surface air temperature (Adiabatic from lowest model layer)}
981 \end{minipage}\\
982 DTG & $deg$ & 1
983 &\begin{minipage}[t]{3in}
984 {Ground temperature adjustment}
985 \end{minipage}\\
986
987 QG & $g/kg$ & 1
988 &\begin{minipage}[t]{3in}
989 {Ground specific humidity}
990 \end{minipage}\\
991 QS & $g/kg$ & 1
992 &\begin{minipage}[t]{3in}
993 {Saturation surface specific humidity}
994 \end{minipage}\\
995 TGRLW & $deg$ & 1
996 &\begin{minipage}[t]{3in}
997 {Instantaneous ground temperature used as input to the
998 Longwave radiation subroutine}
999 \end{minipage}\\
1000 ST4 & $Watts/m^2$ & 1
1001 &\begin{minipage}[t]{3in}
1002 {Upward Longwave flux at the ground ($\sigma T^4$)}
1003 \end{minipage}\\
1004 OLR & $Watts/m^2$ & 1
1005 &\begin{minipage}[t]{3in}
1006 {Net upward Longwave flux at the top of the model}
1007 \end{minipage}\\
1008 OLRCLR & $Watts/m^2$ & 1
1009 &\begin{minipage}[t]{3in}
1010 {Net upward clearsky Longwave flux at the top of the model}
1011 \end{minipage}\\
1012 LWGCLR & $Watts/m^2$ & 1
1013 &\begin{minipage}[t]{3in}
1014 {Net upward clearsky Longwave flux at the ground}
1015 \end{minipage}\\
1016 LWCLR & $deg/day$ & Nrphys
1017 &\begin{minipage}[t]{3in}
1018 {Net clearsky Longwave heating rate for each level}
1019 \end{minipage}\\
1020 TLW & $deg$ & Nrphys
1021 &\begin{minipage}[t]{3in}
1022 {Instantaneous temperature used as input to the Longwave radiation
1023 subroutine}
1024 \end{minipage}\\
1025 SHLW & $g/g$ & Nrphys
1026 &\begin{minipage}[t]{3in}
1027 {Instantaneous specific humidity used as input to the Longwave radiation
1028 subroutine}
1029 \end{minipage}\\
1030 OZLW & $g/g$ & Nrphys
1031 &\begin{minipage}[t]{3in}
1032 {Instantaneous ozone used as input to the Longwave radiation
1033 subroutine}
1034 \end{minipage}\\
1035 CLMOLW & $0-1$ & Nrphys
1036 &\begin{minipage}[t]{3in}
1037 {Maximum overlap cloud fraction used in the Longwave radiation
1038 subroutine}
1039 \end{minipage}\\
1040 CLDTOT & $0-1$ & Nrphys
1041 &\begin{minipage}[t]{3in}
1042 {Total cloud fraction used in the Longwave and Shortwave radiation
1043 subroutines}
1044 \end{minipage}\\
1045 LWGDOWN & $Watts/m^2$ & 1
1046 &\begin{minipage}[t]{3in}
1047 {Downwelling Longwave radiation at the ground}
1048 \end{minipage}\\
1049 GWDT & $deg/day$ & Nrphys
1050 &\begin{minipage}[t]{3in}
1051 {Temperature tendency due to Gravity Wave Drag}
1052 \end{minipage}\\
1053 RADSWT & $Watts/m^2$ & 1
1054 &\begin{minipage}[t]{3in}
1055 {Incident Shortwave radiation at the top of the atmosphere}
1056 \end{minipage}\\
1057 TAUCLD & $per 100 mb$ & Nrphys
1058 &\begin{minipage}[t]{3in}
1059 {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
1060 \end{minipage}\\
1061 TAUCLDC & $Number$ & Nrphys
1062 &\begin{minipage}[t]{3in}
1063 {Cloud Optical Depth Counter}
1064 \end{minipage}\\
1065 \end{tabular}
1066 \vfill
1067
1068 \newpage
1069 \vspace*{\fill}
1070 \begin{tabular}{llll}
1071 \hline\hline
1072 NAME & UNITS & LEVELS & DESCRIPTION \\
1073 \hline
1074
1075 &\\
1076 CLDLOW & $0-1$ & Nrphys
1077 &\begin{minipage}[t]{3in}
1078 {Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)}
1079 \end{minipage}\\
1080 EVAP & $mm/day$ & 1
1081 &\begin{minipage}[t]{3in}
1082 {Surface evaporation}
1083 \end{minipage}\\
1084 DPDT & $hPa/day$ & 1
1085 &\begin{minipage}[t]{3in}
1086 {Surface Pressure tendency}
1087 \end{minipage}\\
1088 UAVE & $m/sec$ & Nrphys
1089 &\begin{minipage}[t]{3in}
1090 {Average U-Wind}
1091 \end{minipage}\\
1092 VAVE & $m/sec$ & Nrphys
1093 &\begin{minipage}[t]{3in}
1094 {Average V-Wind}
1095 \end{minipage}\\
1096 TAVE & $deg$ & Nrphys
1097 &\begin{minipage}[t]{3in}
1098 {Average Temperature}
1099 \end{minipage}\\
1100 QAVE & $g/kg$ & Nrphys
1101 &\begin{minipage}[t]{3in}
1102 {Average Specific Humidity}
1103 \end{minipage}\\
1104 OMEGA & $hPa/day$ & Nrphys
1105 &\begin{minipage}[t]{3in}
1106 {Vertical Velocity}
1107 \end{minipage}\\
1108 DUDT & $m/sec/day$ & Nrphys
1109 &\begin{minipage}[t]{3in}
1110 {Total U-Wind tendency}
1111 \end{minipage}\\
1112 DVDT & $m/sec/day$ & Nrphys
1113 &\begin{minipage}[t]{3in}
1114 {Total V-Wind tendency}
1115 \end{minipage}\\
1116 DTDT & $deg/day$ & Nrphys
1117 &\begin{minipage}[t]{3in}
1118 {Total Temperature tendency}
1119 \end{minipage}\\
1120 DQDT & $g/kg/day$ & Nrphys
1121 &\begin{minipage}[t]{3in}
1122 {Total Specific Humidity tendency}
1123 \end{minipage}\\
1124 VORT & $10^{-4}/sec$ & Nrphys
1125 &\begin{minipage}[t]{3in}
1126 {Relative Vorticity}
1127 \end{minipage}\\
1128 DTLS & $deg/day$ & Nrphys
1129 &\begin{minipage}[t]{3in}
1130 {Temperature tendency due to Stratiform Cloud Formation}
1131 \end{minipage}\\
1132 DQLS & $g/kg/day$ & Nrphys
1133 &\begin{minipage}[t]{3in}
1134 {Specific Humidity tendency due to Stratiform Cloud Formation}
1135 \end{minipage}\\
1136 USTAR & $m/sec$ & 1
1137 &\begin{minipage}[t]{3in}
1138 {Surface USTAR wind}
1139 \end{minipage}\\
1140 Z0 & $m$ & 1
1141 &\begin{minipage}[t]{3in}
1142 {Surface roughness}
1143 \end{minipage}\\
1144 FRQTRB & $0-1$ & Nrphys-1
1145 &\begin{minipage}[t]{3in}
1146 {Frequency of Turbulence}
1147 \end{minipage}\\
1148 PBL & $mb$ & 1
1149 &\begin{minipage}[t]{3in}
1150 {Planetary Boundary Layer depth}
1151 \end{minipage}\\
1152 SWCLR & $deg/day$ & Nrphys
1153 &\begin{minipage}[t]{3in}
1154 {Net clearsky Shortwave heating rate for each level}
1155 \end{minipage}\\
1156 OSR & $Watts/m^2$ & 1
1157 &\begin{minipage}[t]{3in}
1158 {Net downward Shortwave flux at the top of the model}
1159 \end{minipage}\\
1160 OSRCLR & $Watts/m^2$ & 1
1161 &\begin{minipage}[t]{3in}
1162 {Net downward clearsky Shortwave flux at the top of the model}
1163 \end{minipage}\\
1164 CLDMAS & $kg / m^2$ & Nrphys
1165 &\begin{minipage}[t]{3in}
1166 {Convective cloud mass flux}
1167 \end{minipage}\\
1168 UAVE & $m/sec$ & Nrphys
1169 &\begin{minipage}[t]{3in}
1170 {Time-averaged $u-Wind$}
1171 \end{minipage}\\
1172 \end{tabular}
1173 \vfill
1174
1175 \newpage
1176 \vspace*{\fill}
1177 \begin{tabular}{llll}
1178 \hline\hline
1179 NAME & UNITS & LEVELS & DESCRIPTION \\
1180 \hline
1181
1182 &\\
1183 VAVE & $m/sec$ & Nrphys
1184 &\begin{minipage}[t]{3in}
1185 {Time-averaged $v-Wind$}
1186 \end{minipage}\\
1187 TAVE & $deg$ & Nrphys
1188 &\begin{minipage}[t]{3in}
1189 {Time-averaged $Temperature$}
1190 \end{minipage}\\
1191 QAVE & $g/g$ & Nrphys
1192 &\begin{minipage}[t]{3in}
1193 {Time-averaged $Specific \, \, Humidity$}
1194 \end{minipage}\\
1195 RFT & $deg/day$ & Nrphys
1196 &\begin{minipage}[t]{3in}
1197 {Temperature tendency due Rayleigh Friction}
1198 \end{minipage}\\
1199 PS & $mb$ & 1
1200 &\begin{minipage}[t]{3in}
1201 {Surface Pressure}
1202 \end{minipage}\\
1203 QQAVE & $(m/sec)^2$ & Nrphys
1204 &\begin{minipage}[t]{3in}
1205 {Time-averaged $Turbulent Kinetic Energy$}
1206 \end{minipage}\\
1207 SWGCLR & $Watts/m^2$ & 1
1208 &\begin{minipage}[t]{3in}
1209 {Net downward clearsky Shortwave flux at the ground}
1210 \end{minipage}\\
1211 PAVE & $mb$ & 1
1212 &\begin{minipage}[t]{3in}
1213 {Time-averaged Surface Pressure}
1214 \end{minipage}\\
1215 DIABU & $m/sec/day$ & Nrphys
1216 &\begin{minipage}[t]{3in}
1217 {Total Diabatic forcing on $u-Wind$}
1218 \end{minipage}\\
1219 DIABV & $m/sec/day$ & Nrphys
1220 &\begin{minipage}[t]{3in}
1221 {Total Diabatic forcing on $v-Wind$}
1222 \end{minipage}\\
1223 DIABT & $deg/day$ & Nrphys
1224 &\begin{minipage}[t]{3in}
1225 {Total Diabatic forcing on $Temperature$}
1226 \end{minipage}\\
1227 DIABQ & $g/kg/day$ & Nrphys
1228 &\begin{minipage}[t]{3in}
1229 {Total Diabatic forcing on $Specific \, \, Humidity$}
1230 \end{minipage}\\
1231 RFU & $m/sec/day$ & Nrphys
1232 &\begin{minipage}[t]{3in}
1233 {U-Wind tendency due to Rayleigh Friction}
1234 \end{minipage}\\
1235 RFV & $m/sec/day$ & Nrphys
1236 &\begin{minipage}[t]{3in}
1237 {V-Wind tendency due to Rayleigh Friction}
1238 \end{minipage}\\
1239 GWDU & $m/sec/day$ & Nrphys
1240 &\begin{minipage}[t]{3in}
1241 {U-Wind tendency due to Gravity Wave Drag}
1242 \end{minipage}\\
1243 GWDU & $m/sec/day$ & Nrphys
1244 &\begin{minipage}[t]{3in}
1245 {V-Wind tendency due to Gravity Wave Drag}
1246 \end{minipage}\\
1247 GWDUS & $N/m^2$ & 1
1248 &\begin{minipage}[t]{3in}
1249 {U-Wind Gravity Wave Drag Stress at Surface}
1250 \end{minipage}\\
1251 GWDVS & $N/m^2$ & 1
1252 &\begin{minipage}[t]{3in}
1253 {V-Wind Gravity Wave Drag Stress at Surface}
1254 \end{minipage}\\
1255 GWDUT & $N/m^2$ & 1
1256 &\begin{minipage}[t]{3in}
1257 {U-Wind Gravity Wave Drag Stress at Top}
1258 \end{minipage}\\
1259 GWDVT & $N/m^2$ & 1
1260 &\begin{minipage}[t]{3in}
1261 {V-Wind Gravity Wave Drag Stress at Top}
1262 \end{minipage}\\
1263 LZRAD & $mg/kg$ & Nrphys
1264 &\begin{minipage}[t]{3in}
1265 {Estimated Cloud Liquid Water used in Radiation}
1266 \end{minipage}\\
1267 \end{tabular}
1268 \vfill
1269
1270 \newpage
1271 \vspace*{\fill}
1272 \begin{tabular}{llll}
1273 \hline\hline
1274 NAME & UNITS & LEVELS & DESCRIPTION \\
1275 \hline
1276
1277 &\\
1278 SLP & $mb$ & 1
1279 &\begin{minipage}[t]{3in}
1280 {Time-averaged Sea-level Pressure}
1281 \end{minipage}\\
1282 CLDFRC & $0-1$ & 1
1283 &\begin{minipage}[t]{3in}
1284 {Total Cloud Fraction}
1285 \end{minipage}\\
1286 TPW & $gm/cm^2$ & 1
1287 &\begin{minipage}[t]{3in}
1288 {Precipitable water}
1289 \end{minipage}\\
1290 U2M & $m/sec$ & 1
1291 &\begin{minipage}[t]{3in}
1292 {U-Wind at 2 meters}
1293 \end{minipage}\\
1294 V2M & $m/sec$ & 1
1295 &\begin{minipage}[t]{3in}
1296 {V-Wind at 2 meters}
1297 \end{minipage}\\
1298 T2M & $deg$ & 1
1299 &\begin{minipage}[t]{3in}
1300 {Temperature at 2 meters}
1301 \end{minipage}\\
1302 Q2M & $g/kg$ & 1
1303 &\begin{minipage}[t]{3in}
1304 {Specific Humidity at 2 meters}
1305 \end{minipage}\\
1306 U10M & $m/sec$ & 1
1307 &\begin{minipage}[t]{3in}
1308 {U-Wind at 10 meters}
1309 \end{minipage}\\
1310 V10M & $m/sec$ & 1
1311 &\begin{minipage}[t]{3in}
1312 {V-Wind at 10 meters}
1313 \end{minipage}\\
1314 T10M & $deg$ & 1
1315 &\begin{minipage}[t]{3in}
1316 {Temperature at 10 meters}
1317 \end{minipage}\\
1318 Q10M & $g/kg$ & 1
1319 &\begin{minipage}[t]{3in}
1320 {Specific Humidity at 10 meters}
1321 \end{minipage}\\
1322 DTRAIN & $kg/m^2$ & Nrphys
1323 &\begin{minipage}[t]{3in}
1324 {Detrainment Cloud Mass Flux}
1325 \end{minipage}\\
1326 QFILL & $g/kg/day$ & Nrphys
1327 &\begin{minipage}[t]{3in}
1328 {Filling of negative specific humidity}
1329 \end{minipage}\\
1330 \end{tabular}
1331 \vspace{1.5in}
1332 \vfill
1333
1334 \newpage
1335 \vspace*{\fill}
1336 \begin{tabular}{llll}
1337 \hline\hline
1338 NAME & UNITS & LEVELS & DESCRIPTION \\
1339 \hline
1340
1341 &\\
1342 DTCONV & $deg/sec$ & Nr
1343 &\begin{minipage}[t]{3in}
1344 {Temp Change due to Convection}
1345 \end{minipage}\\
1346 DQCONV & $g/kg/sec$ & Nr
1347 &\begin{minipage}[t]{3in}
1348 {Specific Humidity Change due to Convection}
1349 \end{minipage}\\
1350 RELHUM & $percent$ & Nr
1351 &\begin{minipage}[t]{3in}
1352 {Relative Humidity}
1353 \end{minipage}\\
1354 PRECLS & $g/m^2/sec$ & 1
1355 &\begin{minipage}[t]{3in}
1356 {Large Scale Precipitation}
1357 \end{minipage}\\
1358 ENPREC & $J/g$ & 1
1359 &\begin{minipage}[t]{3in}
1360 {Energy of Precipitation (snow, rain Temp)}
1361 \end{minipage}\\
1362 \end{tabular}
1363 \vspace{1.5in}
1364 \vfill
1365
1366 \newpage
1367
1368 Fizhi Diagnostic Description:
1369
1370 In this section we list and describe the diagnostic quantities available within the
1371 GCM. The diagnostics are listed in the order that they appear in the
1372 Diagnostic Menu, Section \ref{sec:pkg:fizhi:diagnostics}.
1373 In all cases, each diagnostic as currently archived on the output datasets
1374 is time-averaged over its diagnostic output frequency:
1375
1376 \[
1377 {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1378 \]
1379 where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
1380 output frequency of the diagnostic, and $\Delta t$ is
1381 the timestep over which the diagnostic is updated.
1382
1383 { \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1384
1385 The zonal wind stress is the turbulent flux of zonal momentum from
1386 the surface.
1387 \[
1388 {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1389 \]
1390 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1391 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1392 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1393 the zonal wind in the lowest model layer.
1394 \\
1395
1396
1397 { \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1398
1399 The meridional wind stress is the turbulent flux of meridional momentum from
1400 the surface.
1401 \[
1402 {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1403 \]
1404 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1405 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1406 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1407 the meridional wind in the lowest model layer.
1408 \\
1409
1410 { \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1411
1412 The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1413 gradient of virtual potential temperature and the eddy exchange coefficient:
1414 \[
1415 {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1416 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1417 \]
1418 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1419 heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1420 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1421 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1422 for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1423 at the surface and at the bottom model level.
1424 \\
1425
1426
1427 { \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1428
1429 The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1430 gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1431 \[
1432 {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1433 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1434 \]
1435 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1436 the potential evapotranspiration actually evaporated, L is the latent
1437 heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1438 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1439 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1440 for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1441 humidity at the surface and at the bottom model level, respectively.
1442 \\
1443
1444 { \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1445
1446 Over sea ice there is an additional source of energy at the surface due to the heat
1447 conduction from the relatively warm ocean through the sea ice. The heat conduction
1448 through sea ice represents an additional energy source term for the ground temperature equation.
1449
1450 \[
1451 {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
1452 \]
1453
1454 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1455 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1456 $T_g$ is the temperature of the sea ice.
1457
1458 NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1459 \\
1460
1461
1462 { \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1463
1464 \begin{eqnarray*}
1465 {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
1466 & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1467 \end{eqnarray*}
1468 \\
1469 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1470 $F_{LW}^\uparrow$ is
1471 the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1472 \\
1473
1474 { \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1475
1476 \begin{eqnarray*}
1477 {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
1478 & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1479 \end{eqnarray*}
1480 \\
1481 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1482 $F_{SW}^\downarrow$ is
1483 the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1484 \\
1485
1486
1487 \noindent
1488 { \underline {RI} Richardson Number} ($dimensionless$)
1489
1490 \noindent
1491 The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1492 \[
1493 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1494 = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1495 \]
1496 \\
1497 where we used the hydrostatic equation:
1498 \[
1499 {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1500 \]
1501 Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1502 indicate dominantly unstable shear, and large positive values indicate dominantly stable
1503 stratification.
1504 \\
1505
1506 \noindent
1507 { \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1508
1509 \noindent
1510 The surface exchange coefficient is obtained from the similarity functions for the stability
1511 dependant flux profile relationships:
1512 \[
1513 {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
1514 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
1515 { k \over { (\psi_{h} + \psi_{g}) } }
1516 \]
1517 where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1518 viscous sublayer non-dimensional temperature or moisture change:
1519 \[
1520 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
1521 \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
1522 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1523 \]
1524 and:
1525 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1526
1527 \noindent
1528 $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1529 the temperature and moisture gradients, specified differently for stable and unstable
1530 layers according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1531 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1532 viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1533 (see diagnostic number 67), and the subscript ref refers to a reference value.
1534 \\
1535
1536 \noindent
1537 { \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
1538
1539 \noindent
1540 The surface exchange coefficient is obtained from the similarity functions for the stability
1541 dependant flux profile relationships:
1542 \[
1543 {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
1544 \]
1545 where $\psi_m$ is the surface layer non-dimensional wind shear:
1546 \[
1547 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
1548 \]
1549 \noindent
1550 $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1551 the temperature and moisture gradients, specified differently for stable and unstable layers
1552 according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1553 non-dimensional stability parameter, $u_*$ is the surface stress velocity
1554 (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1555 \\
1556
1557 \noindent
1558 { \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1559
1560 \noindent
1561 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1562 moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1563 diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1564 or moisture. In the \cite{helflab:88} adaptation of this closure, $K_h$
1565 takes the form:
1566 \[
1567 {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
1568 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1569 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1570 \]
1571 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1572 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1573 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1574 depth,
1575 $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1576 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1577 dimensionless buoyancy and wind shear
1578 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1579 are functions of the Richardson number.
1580
1581 \noindent
1582 For the detailed equations and derivations of the modified level 2.5 closure scheme,
1583 see \cite{helflab:88}.
1584
1585 \noindent
1586 In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1587 in units of $m/sec$, given by:
1588 \[
1589 {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
1590 \]
1591 \noindent
1592 where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1593 surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1594 friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1595 and $W_s$ is the magnitude of the surface layer wind.
1596 \\
1597
1598 \noindent
1599 { \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
1600
1601 \noindent
1602 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1603 momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1604 diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1605 In the \cite{helflab:88} adaptation of this closure, $K_m$
1606 takes the form:
1607 \[
1608 {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
1609 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1610 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1611 \]
1612 \noindent
1613 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1614 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1615 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1616 depth,
1617 $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1618 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1619 dimensionless buoyancy and wind shear
1620 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1621 are functions of the Richardson number.
1622
1623 \noindent
1624 For the detailed equations and derivations of the modified level 2.5 closure scheme,
1625 see \cite{helflab:88}.
1626
1627 \noindent
1628 In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1629 in units of $m/sec$, given by:
1630 \[
1631 {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1632 \]
1633 \noindent
1634 where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1635 similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1636 (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1637 magnitude of the surface layer wind.
1638 \\
1639
1640 \noindent
1641 { \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1642
1643 \noindent
1644 The tendency of U-Momentum due to turbulence is written:
1645 \[
1646 {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1647 = {\pp{}{z} }{(K_m \pp{u}{z})}
1648 \]
1649
1650 \noindent
1651 The Helfand and Labraga level 2.5 scheme models the turbulent
1652 flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1653 equation.
1654
1655 \noindent
1656 { \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1657
1658 \noindent
1659 The tendency of V-Momentum due to turbulence is written:
1660 \[
1661 {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1662 = {\pp{}{z} }{(K_m \pp{v}{z})}
1663 \]
1664
1665 \noindent
1666 The Helfand and Labraga level 2.5 scheme models the turbulent
1667 flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1668 equation.
1669 \\
1670
1671 \noindent
1672 { \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
1673
1674 \noindent
1675 The tendency of temperature due to turbulence is written:
1676 \[
1677 {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1678 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1679 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1680 \]
1681
1682 \noindent
1683 The Helfand and Labraga level 2.5 scheme models the turbulent
1684 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1685 equation.
1686 \\
1687
1688 \noindent
1689 { \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
1690
1691 \noindent
1692 The tendency of specific humidity due to turbulence is written:
1693 \[
1694 {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1695 = {\pp{}{z} }{(K_h \pp{q}{z})}
1696 \]
1697
1698 \noindent
1699 The Helfand and Labraga level 2.5 scheme models the turbulent
1700 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1701 equation.
1702 \\
1703
1704 \noindent
1705 { \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1706
1707 \noindent
1708 \[
1709 {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1710 \]
1711 where:
1712 \[
1713 \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1714 \hspace{.4cm} and
1715 \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1716 \]
1717 and
1718 \[
1719 \Gamma_s = g \eta \pp{s}{p}
1720 \]
1721
1722 \noindent
1723 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1724 precipitation processes, or supersaturation rain.
1725 The summation refers to contributions from each cloud type called by RAS.
1726 The dry static energy is given
1727 as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1728 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1729 the description of the convective parameterization. The fractional adjustment, or relaxation
1730 parameter, for each cloud type is given as $\alpha$, while
1731 $R$ is the rain re-evaporation adjustment.
1732 \\
1733
1734 \noindent
1735 { \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1736
1737 \noindent
1738 \[
1739 {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1740 \]
1741 where:
1742 \[
1743 \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1744 \hspace{.4cm} and
1745 \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1746 \]
1747 and
1748 \[
1749 \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1750 \]
1751 \noindent
1752 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1753 precipitation processes, or supersaturation rain.
1754 The summation refers to contributions from each cloud type called by RAS.
1755 The dry static energy is given as $s$,
1756 the moist static energy is given as $h$,
1757 the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1758 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1759 the description of the convective parameterization. The fractional adjustment, or relaxation
1760 parameter, for each cloud type is given as $\alpha$, while
1761 $R$ is the rain re-evaporation adjustment.
1762 \\
1763
1764 \noindent
1765 { \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1766
1767 \noindent
1768 The net longwave heating rate is calculated as the vertical divergence of the
1769 net terrestrial radiative fluxes.
1770 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1771 longwave routine.
1772 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1773 For a given cloud fraction,
1774 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1775 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1776 for the upward and downward radiative fluxes.
1777 (see Section \ref{sec:fizhi:radcloud}).
1778 The cloudy-sky flux is then obtained as:
1779
1780 \noindent
1781 \[
1782 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1783 \]
1784
1785 \noindent
1786 Finally, the net longwave heating rate is calculated as the vertical divergence of the
1787 net terrestrial radiative fluxes:
1788 \[
1789 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1790 \]
1791 or
1792 \[
1793 {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1794 \]
1795
1796 \noindent
1797 where $g$ is the accelation due to gravity,
1798 $c_p$ is the heat capacity of air at constant pressure,
1799 and
1800 \[
1801 F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1802 \]
1803 \\
1804
1805
1806 \noindent
1807 { \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1808
1809 \noindent
1810 The net Shortwave heating rate is calculated as the vertical divergence of the
1811 net solar radiative fluxes.
1812 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1813 For the clear-sky case, the shortwave fluxes and heating rates are computed with
1814 both CLMO (maximum overlap cloud fraction) and
1815 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1816 The shortwave routine is then called a second time, for the cloudy-sky case, with the
1817 true time-averaged cloud fractions CLMO
1818 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1819 input at the top of the atmosphere.
1820
1821 \noindent
1822 The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1823 \[
1824 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1825 \]
1826 or
1827 \[
1828 {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1829 \]
1830
1831 \noindent
1832 where $g$ is the accelation due to gravity,
1833 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1834 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1835 \[
1836 F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1837 \]
1838 \\
1839
1840 \noindent
1841 { \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1842
1843 \noindent
1844 For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1845 the vertical integral or total precipitable amount is given by:
1846 \[
1847 {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1848 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1849 \]
1850 \\
1851
1852 \noindent
1853 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1854 time step, scaled to $mm/day$.
1855 \\
1856
1857 \noindent
1858 { \underline {PRECON} Convective Precipition ($mm/day$) }
1859
1860 \noindent
1861 For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1862 the vertical integral or total precipitable amount is given by:
1863 \[
1864 {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1865 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1866 \]
1867 \\
1868
1869 \noindent
1870 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1871 time step, scaled to $mm/day$.
1872 \\
1873
1874 \noindent
1875 { \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1876
1877 \noindent
1878 The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1879 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1880
1881 \[
1882 {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1883 {\rho } {(- K_m \pp{U}{z})}
1884 \]
1885
1886 \noindent
1887 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1888 \\
1889
1890 \noindent
1891 { \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1892
1893 \noindent
1894 The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1895 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1896
1897 \[
1898 {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1899 {\rho } {(- K_m \pp{V}{z})}
1900 \]
1901
1902 \noindent
1903 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1904 \\
1905
1906
1907 \noindent
1908 { \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1909
1910 \noindent
1911 The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1912 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1913
1914 \noindent
1915 \[
1916 {\bf TTFLUX} = c_p {\rho }
1917 P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1918 = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1919 \]
1920
1921 \noindent
1922 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1923 \\
1924
1925
1926 \noindent
1927 { \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1928
1929 \noindent
1930 The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1931 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1932
1933 \noindent
1934 \[
1935 {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1936 {L {\rho }(- K_h \pp{q}{z})}
1937 \]
1938
1939 \noindent
1940 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1941 \\
1942
1943
1944 \noindent
1945 { \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1946
1947 \noindent
1948 The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1949 \[
1950 {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1951 \]
1952
1953 \noindent
1954 where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1955 $z_0$ is the surface roughness.
1956
1957 \noindent
1958 NOTE: CN is not available through model version 5.3, but is available in subsequent
1959 versions.
1960 \\
1961
1962 \noindent
1963 { \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1964
1965 \noindent
1966 The surface wind speed is calculated for the last internal turbulence time step:
1967 \[
1968 {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1969 \]
1970
1971 \noindent
1972 where the subscript $Nrphys$ refers to the lowest model level.
1973 \\
1974
1975 \noindent
1976 { \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1977
1978 \noindent
1979 The air/surface virtual temperature difference measures the stability of the surface layer:
1980 \[
1981 {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1982 \]
1983 \noindent
1984 where
1985 \[
1986 \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1987 and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1988 \]
1989
1990 \noindent
1991 $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1992 $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
1993 and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
1994 refers to the surface.
1995 \\
1996
1997
1998 \noindent
1999 { \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
2000
2001 \noindent
2002 The ground temperature equation is solved as part of the turbulence package
2003 using a backward implicit time differencing scheme:
2004 \[
2005 {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
2006 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
2007 \]
2008
2009 \noindent
2010 where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
2011 net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
2012 sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
2013 flux, and $C_g$ is the total heat capacity of the ground.
2014 $C_g$ is obtained by solving a heat diffusion equation
2015 for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
2016 \[
2017 C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
2018 { 86400. \over {2 \pi} } } \, \, .
2019 \]
2020 \noindent
2021 Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
2022 {cm \over {^oK}}$,
2023 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
2024 by $2 \pi$ $radians/
2025 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
2026 is a function of the ground wetness, $W$.
2027 \\
2028
2029 \noindent
2030 { \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
2031
2032 \noindent
2033 The surface temperature estimate is made by assuming that the model's lowest
2034 layer is well-mixed, and therefore that $\theta$ is constant in that layer.
2035 The surface temperature is therefore:
2036 \[
2037 {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
2038 \]
2039 \\
2040
2041 \noindent
2042 { \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
2043
2044 \noindent
2045 The change in surface temperature from one turbulence time step to the next, solved
2046 using the Ground Temperature Equation (see diagnostic number 30) is calculated:
2047 \[
2048 {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
2049 \]
2050
2051 \noindent
2052 where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
2053 refers to the value at the previous turbulence time level.
2054 \\
2055
2056 \noindent
2057 { \underline {QG} Ground Specific Humidity ($g/kg$) }
2058
2059 \noindent
2060 The ground specific humidity is obtained by interpolating between the specific
2061 humidity at the lowest model level and the specific humidity of a saturated ground.
2062 The interpolation is performed using the potential evapotranspiration function:
2063 \[
2064 {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2065 \]
2066
2067 \noindent
2068 where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2069 and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
2070 pressure.
2071 \\
2072
2073 \noindent
2074 { \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
2075
2076 \noindent
2077 The surface saturation specific humidity is the saturation specific humidity at
2078 the ground temprature and surface pressure:
2079 \[
2080 {\bf QS} = q^*(T_g,P_s)
2081 \]
2082 \\
2083
2084 \noindent
2085 { \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
2086 radiation subroutine (deg)}
2087 \[
2088 {\bf TGRLW} = T_g(\lambda , \phi ,n)
2089 \]
2090 \noindent
2091 where $T_g$ is the model ground temperature at the current time step $n$.
2092 \\
2093
2094
2095 \noindent
2096 { \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
2097 \[
2098 {\bf ST4} = \sigma T^4
2099 \]
2100 \noindent
2101 where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
2102 \\
2103
2104 \noindent
2105 { \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2106 \[
2107 {\bf OLR} = F_{LW,top}^{NET}
2108 \]
2109 \noindent
2110 where top indicates the top of the first model layer.
2111 In the GCM, $p_{top}$ = 0.0 mb.
2112 \\
2113
2114
2115 \noindent
2116 { \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2117 \[
2118 {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
2119 \]
2120 \noindent
2121 where top indicates the top of the first model layer.
2122 In the GCM, $p_{top}$ = 0.0 mb.
2123 \\
2124
2125 \noindent
2126 { \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
2127
2128 \noindent
2129 \begin{eqnarray*}
2130 {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
2131 & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
2132 \end{eqnarray*}
2133 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2134 $F(clearsky)_{LW}^\uparrow$ is
2135 the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
2136 \\
2137
2138 \noindent
2139 { \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
2140
2141 \noindent
2142 The net longwave heating rate is calculated as the vertical divergence of the
2143 net terrestrial radiative fluxes.
2144 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
2145 longwave routine.
2146 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
2147 For a given cloud fraction,
2148 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
2149 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
2150 for the upward and downward radiative fluxes.
2151 (see Section \ref{sec:fizhi:radcloud}).
2152 The cloudy-sky flux is then obtained as:
2153
2154 \noindent
2155 \[
2156 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2157 \]
2158
2159 \noindent
2160 Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2161 vertical divergence of the
2162 clear-sky longwave radiative flux:
2163 \[
2164 \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
2165 \]
2166 or
2167 \[
2168 {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
2169 \]
2170
2171 \noindent
2172 where $g$ is the accelation due to gravity,
2173 $c_p$ is the heat capacity of air at constant pressure,
2174 and
2175 \[
2176 F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2177 \]
2178 \\
2179
2180
2181 \noindent
2182 { \underline {TLW} Instantaneous temperature used as input to the Longwave
2183 radiation subroutine (deg)}
2184 \[
2185 {\bf TLW} = T(\lambda , \phi ,level, n)
2186 \]
2187 \noindent
2188 where $T$ is the model temperature at the current time step $n$.
2189 \\
2190
2191
2192 \noindent
2193 { \underline {SHLW} Instantaneous specific humidity used as input to
2194 the Longwave radiation subroutine (kg/kg)}
2195 \[
2196 {\bf SHLW} = q(\lambda , \phi , level , n)
2197 \]
2198 \noindent
2199 where $q$ is the model specific humidity at the current time step $n$.
2200 \\
2201
2202
2203 \noindent
2204 { \underline {OZLW} Instantaneous ozone used as input to
2205 the Longwave radiation subroutine (kg/kg)}
2206 \[
2207 {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
2208 \]
2209 \noindent
2210 where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2211 mean zonally averaged ozone data set.
2212 \\
2213
2214
2215 \noindent
2216 { \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2217
2218 \noindent
2219 {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2220 Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
2221 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2222 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2223 \[
2224 {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
2225 \]
2226 \\
2227
2228
2229 { \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2230
2231 {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2232 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2233 Radiation packages.
2234 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2235 \[
2236 {\bf CLDTOT} = F_{RAS} + F_{LS}
2237 \]
2238 \\
2239 where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2240 time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2241 \\
2242
2243
2244 \noindent
2245 { \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2246
2247 \noindent
2248 {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2249 Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
2250 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2251 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2252 \[
2253 {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
2254 \]
2255 \\
2256
2257 \noindent
2258 { \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2259
2260 \noindent
2261 {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2262 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2263 Radiation algorithm. These are
2264 convective and large-scale clouds whose radiative characteristics are not
2265 assumed to be correlated in the vertical.
2266 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2267 \[
2268 {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
2269 \]
2270 \\
2271
2272 \noindent
2273 { \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2274 \[
2275 {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2276 \]
2277 \noindent
2278 where $S_0$, is the extra-terrestial solar contant,
2279 $R_a$ is the earth-sun distance in Astronomical Units,
2280 and $cos \phi_z$ is the cosine of the zenith angle.
2281 It should be noted that {\bf RADSWT}, as well as
2282 {\bf OSR} and {\bf OSRCLR},
2283 are calculated at the top of the atmosphere (p=0 mb). However, the
2284 {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2285 calculated at $p= p_{top}$ (0.0 mb for the GCM).
2286 \\
2287
2288 \noindent
2289 { \underline {EVAP} Surface Evaporation ($mm/day$) }
2290
2291 \noindent
2292 The surface evaporation is a function of the gradient of moisture, the potential
2293 evapotranspiration fraction and the eddy exchange coefficient:
2294 \[
2295 {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2296 \]
2297 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2298 the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2299 turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2300 $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2301 number 34) and at the bottom model level, respectively.
2302 \\
2303
2304 \noindent
2305 { \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
2306
2307 \noindent
2308 {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2309 and Analysis forcing.
2310 \[
2311 {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2312 \]
2313 \\
2314
2315 \noindent
2316 { \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
2317
2318 \noindent
2319 {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2320 and Analysis forcing.
2321 \[
2322 {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2323 \]
2324 \\
2325
2326 \noindent
2327 { \underline {DTDT} Total Temperature Tendency ($deg/day$) }
2328
2329 \noindent
2330 {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2331 and Analysis forcing.
2332 \begin{eqnarray*}
2333 {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2334 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2335 \end{eqnarray*}
2336 \\
2337
2338 \noindent
2339 { \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
2340
2341 \noindent
2342 {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2343 and Analysis forcing.
2344 \[
2345 {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2346 + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2347 \]
2348 \\
2349
2350 \noindent
2351 { \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
2352
2353 \noindent
2354 The surface stress velocity, or the friction velocity, is the wind speed at
2355 the surface layer top impeded by the surface drag:
2356 \[
2357 {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2358 C_u = {k \over {\psi_m} }
2359 \]
2360
2361 \noindent
2362 $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2363 number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2364
2365 \noindent
2366 { \underline {Z0} Surface Roughness Length ($m$) }
2367
2368 \noindent
2369 Over the land surface, the surface roughness length is interpolated to the local
2370 time from the monthly mean data of \cite{dorsell:89}. Over the ocean,
2371 the roughness length is a function of the surface-stress velocity, $u_*$.
2372 \[
2373 {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
2374 \]
2375
2376 \noindent
2377 where the constants are chosen to interpolate between the reciprocal relation of
2378 \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
2379 for moderate to large winds.
2380 \\
2381
2382 \noindent
2383 { \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
2384
2385 \noindent
2386 The fraction of time when turbulence is present is defined as the fraction of
2387 time when the turbulent kinetic energy exceeds some minimum value, defined here
2388 to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2389 incremented. The fraction over the averaging interval is reported.
2390 \\
2391
2392 \noindent
2393 { \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
2394
2395 \noindent
2396 The depth of the PBL is defined by the turbulence parameterization to be the
2397 depth at which the turbulent kinetic energy reduces to ten percent of its surface
2398 value.
2399
2400 \[
2401 {\bf PBL} = P_{PBL} - P_{surface}
2402 \]
2403
2404 \noindent
2405 where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2406 reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2407 \\
2408
2409 \noindent
2410 { \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2411
2412 \noindent
2413 The net Shortwave heating rate is calculated as the vertical divergence of the
2414 net solar radiative fluxes.
2415 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2416 For the clear-sky case, the shortwave fluxes and heating rates are computed with
2417 both CLMO (maximum overlap cloud fraction) and
2418 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2419 The shortwave routine is then called a second time, for the cloudy-sky case, with the
2420 true time-averaged cloud fractions CLMO
2421 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
2422 input at the top of the atmosphere.
2423
2424 \noindent
2425 The heating rate due to Shortwave Radiation under clear skies is defined as:
2426 \[
2427 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2428 \]
2429 or
2430 \[
2431 {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2432 \]
2433
2434 \noindent
2435 where $g$ is the accelation due to gravity,
2436 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2437 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2438 \[
2439 F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2440 \]
2441 \\
2442
2443 \noindent
2444 { \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2445 \[
2446 {\bf OSR} = F_{SW,top}^{NET}
2447 \]
2448 \noindent
2449 where top indicates the top of the first model layer used in the shortwave radiation
2450 routine.
2451 In the GCM, $p_{SW_{top}}$ = 0 mb.
2452 \\
2453
2454 \noindent
2455 { \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2456 \[
2457 {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
2458 \]
2459 \noindent
2460 where top indicates the top of the first model layer used in the shortwave radiation
2461 routine.
2462 In the GCM, $p_{SW_{top}}$ = 0 mb.
2463 \\
2464
2465
2466 \noindent
2467 { \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2468
2469 \noindent
2470 The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2471 \[
2472 {\bf CLDMAS} = \eta m_B
2473 \]
2474 where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2475 the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2476 description of the convective parameterization.
2477 \\
2478
2479
2480
2481 \noindent
2482 { \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2483
2484 \noindent
2485 The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2486 the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
2487 Zonal U-Wind which is archived on the Prognostic Output data stream.
2488 \[
2489 {\bf UAVE} = u(\lambda, \phi, level , t)
2490 \]
2491 \\
2492 Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2493 \\
2494
2495 \noindent
2496 { \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2497
2498 \noindent
2499 The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2500 the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
2501 Meridional V-Wind which is archived on the Prognostic Output data stream.
2502 \[
2503 {\bf VAVE} = v(\lambda, \phi, level , t)
2504 \]
2505 \\
2506 Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2507 \\
2508
2509 \noindent
2510 { \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2511
2512 \noindent
2513 The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2514 the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
2515 Temperature which is archived on the Prognostic Output data stream.
2516 \[
2517 {\bf TAVE} = T(\lambda, \phi, level , t)
2518 \]
2519 \\
2520
2521 \noindent
2522 { \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2523
2524 \noindent
2525 The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2526 the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
2527 Specific Humidity which is archived on the Prognostic Output data stream.
2528 \[
2529 {\bf QAVE} = q(\lambda, \phi, level , t)
2530 \]
2531 \\
2532
2533 \noindent
2534 { \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2535
2536 \noindent
2537 The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2538 the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
2539 Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2540 \begin{eqnarray*}
2541 {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
2542 & = & p_s(\lambda, \phi, level , t) - p_T
2543 \end{eqnarray*}
2544 \\
2545
2546
2547 \noindent
2548 { \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2549
2550 \noindent
2551 The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2552 produced by the GCM Turbulence parameterization over
2553 the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
2554 Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2555 \[
2556 {\bf QQAVE} = qq(\lambda, \phi, level , t)
2557 \]
2558 \\
2559 Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2560 \\
2561
2562 \noindent
2563 { \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2564
2565 \noindent
2566 \begin{eqnarray*}
2567 {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2568 & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2569 \end{eqnarray*}
2570 \noindent
2571 \\
2572 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2573 $F(clearsky){SW}^\downarrow$ is
2574 the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2575 the upward clearsky Shortwave flux.
2576 \\
2577
2578 \noindent
2579 { \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
2580
2581 \noindent
2582 {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2583 and the Analysis forcing.
2584 \[
2585 {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2586 \]
2587 \\
2588
2589 \noindent
2590 { \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
2591
2592 \noindent
2593 {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2594 and the Analysis forcing.
2595 \[
2596 {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2597 \]
2598 \\
2599
2600 \noindent
2601 { \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
2602
2603 \noindent
2604 {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2605 and the Analysis forcing.
2606 \begin{eqnarray*}
2607 {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2608 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2609 \end{eqnarray*}
2610 \\
2611 If we define the time-tendency of Temperature due to Diabatic processes as
2612 \begin{eqnarray*}
2613 \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2614 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2615 \end{eqnarray*}
2616 then, since there are no surface pressure changes due to Diabatic processes, we may write
2617 \[
2618 \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2619 \]
2620 where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
2621 \[
2622 {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2623 \]
2624 \\
2625
2626 \noindent
2627 { \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
2628
2629 \noindent
2630 {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2631 and the Analysis forcing.
2632 \[
2633 {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2634 \]
2635 If we define the time-tendency of Specific Humidity due to Diabatic processes as
2636 \[
2637 \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2638 \]
2639 then, since there are no surface pressure changes due to Diabatic processes, we may write
2640 \[
2641 \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2642 \]
2643 Thus, {\bf DIABQ} may be written as
2644 \[
2645 {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2646 \]
2647 \\
2648
2649 \noindent
2650 { \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2651
2652 \noindent
2653 The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2654 $u q$ over the depth of the atmosphere at each model timestep,
2655 and dividing by the total mass of the column.
2656 \[
2657 {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2658 \]
2659 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2660 \[
2661 {\bf VINTUQ} = { \int_0^1 u q dp }
2662 \]
2663 \\
2664
2665
2666 \noindent
2667 { \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2668
2669 \noindent
2670 The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2671 $v q$ over the depth of the atmosphere at each model timestep,
2672 and dividing by the total mass of the column.
2673 \[
2674 {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2675 \]
2676 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2677 \[
2678 {\bf VINTVQ} = { \int_0^1 v q dp }
2679 \]
2680 \\
2681
2682
2683 \noindent
2684 { \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2685
2686 \noindent
2687 The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2688 $u T$ over the depth of the atmosphere at each model timestep,
2689 and dividing by the total mass of the column.
2690 \[
2691 {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2692 \]
2693 Or,
2694 \[
2695 {\bf VINTUT} = { \int_0^1 u T dp }
2696 \]
2697 \\
2698
2699 \noindent
2700 { \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2701
2702 \noindent
2703 The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2704 $v T$ over the depth of the atmosphere at each model timestep,
2705 and dividing by the total mass of the column.
2706 \[
2707 {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2708 \]
2709 Using $\rho \delta z = -{\delta p \over g} $, we have
2710 \[
2711 {\bf VINTVT} = { \int_0^1 v T dp }
2712 \]
2713 \\
2714
2715 \noindent
2716 { \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2717
2718 If we define the
2719 time-averaged random and maximum overlapped cloudiness as CLRO and
2720 CLMO respectively, then the probability of clear sky associated
2721 with random overlapped clouds at any level is (1-CLRO) while the probability of
2722 clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2723 The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2724 the total cloud fraction at each level may be obtained by
2725 1-(1-CLRO)*(1-CLMO).
2726
2727 At any given level, we may define the clear line-of-site probability by
2728 appropriately accounting for the maximum and random overlap
2729 cloudiness. The clear line-of-site probability is defined to be
2730 equal to the product of the clear line-of-site probabilities
2731 associated with random and maximum overlap cloudiness. The clear
2732 line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2733 from the current pressure $p$
2734 to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2735 is simply 1.0 minus the largest maximum overlap cloud value along the
2736 line-of-site, ie.
2737
2738 $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2739
2740 Thus, even in the time-averaged sense it is assumed that the
2741 maximum overlap clouds are correlated in the vertical. The clear
2742 line-of-site probability associated with random overlap clouds is
2743 defined to be the product of the clear sky probabilities at each
2744 level along the line-of-site, ie.
2745
2746 $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2747
2748 The total cloud fraction at a given level associated with a line-
2749 of-site calculation is given by
2750
2751 $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2752 \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2753
2754
2755 \noindent
2756 The 2-dimensional net cloud fraction as seen from the top of the
2757 atmosphere is given by
2758 \[
2759 {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2760 \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2761 \]
2762 \\
2763 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2764
2765
2766 \noindent
2767 { \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2768
2769 \noindent
2770 The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2771 given by:
2772 \begin{eqnarray*}
2773 {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2774 & = & {\pi \over g} \int_0^1 q dp
2775 \end{eqnarray*}
2776 where we have used the hydrostatic relation
2777 $\rho \delta z = -{\delta p \over g} $.
2778 \\
2779
2780
2781 \noindent
2782 { \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2783
2784 \noindent
2785 The u-wind at the 2-meter depth is determined from the similarity theory:
2786 \[
2787 {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2788 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2789 \]
2790
2791 \noindent
2792 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2793 $sl$ refers to the height of the top of the surface layer. If the roughness height
2794 is above two meters, ${\bf U2M}$ is undefined.
2795 \\
2796
2797 \noindent
2798 { \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2799
2800 \noindent
2801 The v-wind at the 2-meter depth is a determined from the similarity theory:
2802 \[
2803 {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2804 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2805 \]
2806
2807 \noindent
2808 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2809 $sl$ refers to the height of the top of the surface layer. If the roughness height
2810 is above two meters, ${\bf V2M}$ is undefined.
2811 \\
2812
2813 \noindent
2814 { \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2815
2816 \noindent
2817 The temperature at the 2-meter depth is a determined from the similarity theory:
2818 \[
2819 {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2820 P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2821 (\theta_{sl} - \theta_{surf}))
2822 \]
2823 where:
2824 \[
2825 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2826 \]
2827
2828 \noindent
2829 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2830 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2831 $sl$ refers to the height of the top of the surface layer. If the roughness height
2832 is above two meters, ${\bf T2M}$ is undefined.
2833 \\
2834
2835 \noindent
2836 { \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2837
2838 \noindent
2839 The specific humidity at the 2-meter depth is determined from the similarity theory:
2840 \[
2841 {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2842 P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2843 (q_{sl} - q_{surf}))
2844 \]
2845 where:
2846 \[
2847 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2848 \]
2849
2850 \noindent
2851 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2852 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2853 $sl$ refers to the height of the top of the surface layer. If the roughness height
2854 is above two meters, ${\bf Q2M}$ is undefined.
2855 \\
2856
2857 \noindent
2858 { \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2859
2860 \noindent
2861 The u-wind at the 10-meter depth is an interpolation between the surface wind
2862 and the model lowest level wind using the ratio of the non-dimensional wind shear
2863 at the two levels:
2864 \[
2865 {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2866 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2867 \]
2868
2869 \noindent
2870 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2871 $sl$ refers to the height of the top of the surface layer.
2872 \\
2873
2874 \noindent
2875 { \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2876
2877 \noindent
2878 The v-wind at the 10-meter depth is an interpolation between the surface wind
2879 and the model lowest level wind using the ratio of the non-dimensional wind shear
2880 at the two levels:
2881 \[
2882 {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2883 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2884 \]
2885
2886 \noindent
2887 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2888 $sl$ refers to the height of the top of the surface layer.
2889 \\
2890
2891 \noindent
2892 { \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2893
2894 \noindent
2895 The temperature at the 10-meter depth is an interpolation between the surface potential
2896 temperature and the model lowest level potential temperature using the ratio of the
2897 non-dimensional temperature gradient at the two levels:
2898 \[
2899 {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2900 P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2901 (\theta_{sl} - \theta_{surf}))
2902 \]
2903 where:
2904 \[
2905 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2906 \]
2907
2908 \noindent
2909 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2910 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2911 $sl$ refers to the height of the top of the surface layer.
2912 \\
2913
2914 \noindent
2915 { \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2916
2917 \noindent
2918 The specific humidity at the 10-meter depth is an interpolation between the surface specific
2919 humidity and the model lowest level specific humidity using the ratio of the
2920 non-dimensional temperature gradient at the two levels:
2921 \[
2922 {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2923 P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2924 (q_{sl} - q_{surf}))
2925 \]
2926 where:
2927 \[
2928 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2929 \]
2930
2931 \noindent
2932 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2933 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2934 $sl$ refers to the height of the top of the surface layer.
2935 \\
2936
2937 \noindent
2938 { \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2939
2940 The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2941 \[
2942 {\bf DTRAIN} = \eta_{r_D}m_B
2943 \]
2944 \noindent
2945 where $r_D$ is the detrainment level,
2946 $m_B$ is the cloud base mass flux, and $\eta$
2947 is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2948 \\
2949
2950 \noindent
2951 { \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2952
2953 \noindent
2954 Due to computational errors associated with the numerical scheme used for
2955 the advection of moisture, negative values of specific humidity may be generated. The
2956 specific humidity is checked for negative values after every dynamics timestep. If negative
2957 values have been produced, a filling algorithm is invoked which redistributes moisture from
2958 below. Diagnostic {\bf QFILL} is equal to the net filling needed
2959 to eliminate negative specific humidity, scaled to a per-day rate:
2960 \[
2961 {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2962 \]
2963 where
2964 \[
2965 q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2966 \]
2967
2968
2969 \subsubsection{Key subroutines, parameters and files}
2970
2971 \subsubsection{Dos and donts}
2972
2973 \subsubsection{Fizhi Reference}
2974
2975 \subsubsection{Experiments and tutorials that use fizhi}
2976 \label{sec:pkg:fizhi:experiments}
2977
2978 \begin{itemize}
2979 \item{Global atmosphere experiment with realistic SST and topography in fizhi-cs-32x32x10 verification directory. }
2980 \item{Global atmosphere aqua planet experiment in fizhi-cs-aqualev20 verification directory. }
2981 \end{itemize}
2982

  ViewVC Help
Powered by ViewVC 1.1.22